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3
Abelian Varieties Attached to Modular

Forms

LECTURE NOTES FOR MATH 252, November 14, 2003, By William
Stein

In this chapter we describe how to decompose J1(N), up to isogeny, as a product
of abelian subvarieties Af corresponding to Galois conjugacy classes of cusp forms f
of weight 2. This was first accomplished by Shimura (see [10, Theorem 7.14]). We
also discuss properties of the Galois representation attached to f .

In this chapter we will work almost exclusively with J1(N). However, everything
goes through exactly as below with J1(N) replaced by J0(N) and S2(Γ1(N)) re-
placed by S2(Γ0(N)). Since, J1(N) has dimension much larger than J0(N), so for
computational investigations it is frequently better to work with J0(N).

See Brian Conrad’s appendix to [ribet-stein: Lectures on Serre’s Conjectures]
for a much more extensive exposition of the construction discussed below, which is
geared toward preparing the reader for Deligne’s more general construction of Ga-
lois representations associated to newforms of weight k ≥ 2 (for that, see Conrad’s
book ...).

3.1 Decomposition of the Hecke Algebra

Let N be a positive integer and let

T = Z[. . . , Tn, . . .] ⊂ End(J1(N))

be the algebra of all Hecke operators acting on J1(N). Recall from Section 1.3 that
the anemic Hecke algebra is the subalgebra

T0 = Z[. . . , Tn, . . . : (n, N) = 1] ⊂ T

of T obtained by adjoining to Z only those Hecke operators Tn with n relatively
prime to N .
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Remark 3.1.1. Viewed as Z-modules, T0 need not be saturated in T, i.e., T/T0

need not be torsion free. For example, if T is the Hecke algebra associated to
S2(Γ1(24)) then T/T0

∼= Z/2Z. Also, if T is the Hecke algebra associated to
S2(Γ0(54)), then T/T0

∼= Z/3Z× Z.

If f =
∑

anqn is a newform, then the field Kf = Q(a1, a2, . . .) has finite degree
over Q, since the an are the eigenvalues of a family of commuting operators with
integral characteristic polynomials. The Galois conjugates of f are the newforms
σ(f) =

∑

σ(an)qn, for σ ∈ Gal(Q/Q). There are [Kf : Q] Galois conjugates of f .
As in Section 1.3, we have a canonical decomposition

T0 ⊗Q ∼=
∏

f

Kf , (3.1.1)

where f varies over a set of representatives for the Galois conjugacy classes of
newforms in S2(Γ1(N)) of level dividing N . For each f , let

πf = (0, . . . , 0, 1, 0, . . . , 0) ∈
∏

Kf

be projection onto the factor Kf of the product (3.1.1). Since T0 ⊂ T, and T
has no additive torsion, we have T0 ⊗ Q ⊂ T ⊗ Q, so these projectors πf lie
in TQ = T ⊗ Q. Since TQ is commutative and the πf are mutually orthogonal
idempotents whose sum is (1, 1, . . . , 1), we see that TQ breaks up as a product of
algebras

TQ
∼=

∏

f

Lf , t 7→
∑

f

tπf .

3.1.1 The Dimension of Lf

Proposition 3.1.2. If f , Lf and Kf are as above, then dimKf
Lf is the number

of divisors of N/Nf where Nf is the level of the newform f .

Proof. Let Vf be the complex vector space spanned by all images of Galois con-
jugates of f via all maps αd with d | N/Nf . It follows from [Atkin-Lehner-
Li theory – multiplicity one] that the images via αd of the Galois conjugates
of f are linearly independent. (Details: More generally, if f and g are newforms
of level M , then by Proposition 1.1.1, B(f) = {αd(f) : d | N/Nf} is a lin-
early independent set and likewise for B(g). Suppose some nonzero element f ′

of the span of B(f) equals some element g′ of the span of B(g). Since Tp, for
p - N , commutes with αd, we have Tp(f

′) = ap(f)f ′ and Tp(g
′) = ap(g)g′, so

0 = Tp(0) = Tp(f
′ − g′) = ap(f)f ′ − ap(g)g′. Since f ′ = g′, this implies that

ap(f) = ap(g). Because a newform is determined by the eigenvalues of Tp for
p - N , it follows that f = g.) Thus the C-dimension of Vf is the number of divisors
of N/Nf times dimQ Kf .

The factor Lf is isomorphic to the image of TQ ⊂ End(Sk(Γ1(N))) in End(Vf ).
As in Section ??, there is a single element v ∈ Vf so that Vf = TC · v. Thus the
image of TQ in End(Vf ) has dimension dimC Vf , and the result follows.

Let’s examine a particular case of this proposition. Suppose p is a prime and f =
∑

anqn is a newform of level Nf coprime to p, and let N = p ·Nf . We will show
that

Lf = Kf [U ]/(U2 − apU + p), (3.1.2)
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hence dimKf
Lf = 2 which, as expected, is the number of divisors of N/Nf = p.

The first step is to view Lf as the space of operators generated by the Hecke
operators Tn acting on the span V of the images f(dz) = f(qd) for d | (N/Nf ) = p.
If n 6= p, then Tn acts on V as the scalar an, and when n = p, the Hecke operator Tp

acts on Sk(Γ1(p ·Nf )) as the operator also denoted Up. By Section 1.1, we know

that Up corresponds to the matrix
(

ap 1
−p 0

)

with respect to the basis f(q), f(qp)

of V . Thus Up satisfies the relation U2
p − apU + p. Since Up is not a scalar matrix,

this minimal polynomial of Up is quadratic, which proves (3.1.2).
More generally, see [2, Lem. 4.4] (Diamond-Darmon-Taylor) for an explicit pre-

sentation of Lf as a quotient

Lf
∼= Kf [. . . , Up, . . .]/I

where I is an ideal and the Up correspond to the prime divisors of N/Nf .

3.2 Decomposition of J1(N)

Let f be a newform in S2(Γ1(N)) of level a divisor M of N , so f ∈ S2(Γ1(M))new

is a normalized eigenform for all the Hecke operators of level M . We associate
to f an abelian subvariety Af of J1(N), of dimension [Lf : Q], as follows. Recall
that πf is the fth projector in T0 ⊗Q =

∏

g Kg. We can not define Af to be the
image of J1(N) under πf , since πf is only, a priori, an element of End(J1(N))⊗Q.
Fortunately, there exists a positive integer n such that nπf ∈ End(J1(N)), and we
let

Af = nπf (J1(N)).

This is independent of the choice of n, since the choices for n are all multiples of
the “denominator” n0 of πf , and if A is any abelian variety and n is a positive
integer, then nA = A.

The natural map
∏

f Af → J1(N), which is induced by summing the inclusion
maps, is an isogeny. Also Af is simple if f is of level N , and otherwise Af is
isogenous to a power of A′

f ⊂ J1(Nf ). Thus we obtain an isogeny decomposition
of J1(N) as a product of Q-simple abelian varieties.

Remark 3.2.1. The abelian varieties Af frequently decompose further over Q, i.e.,
they are not absolutely simple, and it is an interesting problem to determine an
isogeny decomposition of J1(N)Q as a product of simple abelian varieties. It is still
not known precisely how to do this computationally for any particular N .

This decomposition can be viewed in another way over the complex numbers.
As a complex torus, J1(N)(C) has the following model:

J1(N)(C) = Hom(S2(Γ1(N)),C)/H1(X1(N),Z).

The action of the Hecke algebra T on J1(N)(C) is compatible with its action on
the cotangent space S2(Γ1(N)). This construction presents J1(N)(C) naturally
as V/L with V a complex vector space and L a lattice in V . The anemic Hecke
algebra T0 then decomposes V as a direct sum V =

⊕

f Vf . The Hecke operators
act on Vf and L in a compatible way, so T0 decomposes L ⊗Q in a compatible
way. Thus Lf = Vf ∩ L is a lattice in Vf , so we may Af (C) view as the complex
torus Vf /Lf .
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Lemma 3.2.2. Let f ∈ S2(Γ1(N)) be a newform of level dividing N and Af =
nπf (J1(N)) be the corresponding abelian subvariety of J1(N). Then the Hecke
algebra T ⊂ End(J1(N)) leaves Af invariant.

Proof. The Hecke algebra T is commutative, so if t ∈ T, then

tAf = tnπf (J1(N)) = nπf (tJ1(N)) ⊂ nπf (J1(N)) = Af .

Remark 3.2.3. Viewing Af (C) as Vf /Lf is extremely useful computationally, since
L can be computed using modular symbols, and Lf can be cut out using the Hecke
operators. For example, if f and g are nonconjugate newforms of level dividing N ,
we can explicitly compute the group structure of Af ∩ Ag ⊂ J1(N) by doing a
computation with modular symbols in L. More precisely, we have

Af ∩ Ag
∼= (L/(Lf + Lg))tor.

Note that Af depends on viewing f as an element of S2(Γ1(N)) for some N .
Thus it would be more accurate to denote Af by Af,N , where N is any multiple of
the level of f , and to reserve the notation Af for the case N = 1. Then dim Af,N

is dim Af times the number of divisors of N/Nf .

3.2.1 Aside: Intersections and Congruences

Suppose f and g are not Galois conjugate. Then the intersection Ψ = Af ∩ Ag

is finite, since Vf ∩ Vg = 0, and the integer #Ψ is of interest. This cardinality
is related to congruence between f and g, but the exact relation is unclear. For
example, one might expect that p | #Ψ if and only if there is a prime ℘ of the
compositum Kf .Kg of residue characteristic p such that aq(f) ≡ aq(g) (mod ℘)
for all q - N . If p | #Ψ, then such a prime ℘ exists (take ℘ to be induced by
a maximal ideal in the support of the nonzero T-module Ψ[p]). The converse is
frequently true, but is sometimes false. For example, if N is the prime 431 and

f = q − q2 + q3 − q4 + q5 − q6 − 2q7 + · · ·

g = q − q2 + 3q3 − q4 − 3q5 − 3q6 + 2q7 + · · · ,

then f ≡ g (mod 2), but Af ∩ Ag = 0. This example implies that “multiplicity
one fails” for level 431 and p = 2, so the Hecke algebra associated to J0(431) is
not Gorenstein (see [Lloyd Kilford paper] for more details).

3.3 Galois Representations Attached to Af

It is important to emphasize the case when f is a newform of level N , since then Af

is Q-simple and there is a compatible family of 2-dimensional `-adic representations
attached to f , which arise from torsion points on Af .

Proposition 3.1.2 implies that Lf = Kf . Fix such an f , let A = Af , let K = Kf ,
and let

d = dim A = dimQ K = [K : Q].
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Let ` be a prime and consider the Q`-adic Tate module Tate`(A) of A:

Tate`(A) = Q` ⊗ lim
←−
ν>0

A[`ν ].

Note that as a Q`-vector space Tate`(A) ∼= Q2d
` , since A[n] ∼= (Z/nZ)2d, as groups.

There is a natural action of the ring K⊗QQ` on Tate`(A). By algebraic number
theory

K ⊗Q Q` =
∏

λ|`

Kλ,

where λ runs through the primes of the ring OK of integers of K lying over ` and
Kλ denotes the completion of K with respect to the absolute value induced by λ.
Thus Tate`(A) decomposes as a product

Tate`(A) =
∏

λ|`

Tateλ(A)

where Tateλ(A) is a Kλ vector space.

Lemma 3.3.1. Let the notation be as above. Then for all λ lying over `,

dimKλ
Tateλ(A) = 2.

Proof. Write A = V/L, with V = Vf a complex vector space and L a lattice. Then
Tateλ(A) ∼= L ⊗ Q` as Kλ-modules (not as Gal(Q/Q)-modules!), since A[`n] ∼=
L/`nL, and lim

←−n
L/`nL ∼= Z`⊗L. Also, L⊗Q is a vector space over K, which must

have dimension 2, since L ⊗Q has dimension 2d = 2 dim A and K has degree d.
Thus

Tateλ(A) ∼= L ⊗Kλ ≈ (K ⊕K)⊗K Kλ
∼= Kλ ⊕Kλ

has dimension 2 over Kλ.

Now consider Tateλ(A), which is a Kλ-vector space of dimension 2. The Hecke
operators are defined over Q, so Gal(Q/Q) acts on Tate`(A) in a way compatible
with the action of K ⊗Q Q`. We thus obtain a homomorphism

ρ` = ρf,` : Gal(Q/Q)→ AutK⊗Q`
Tate`(A) ≈ GL2(K ⊗Q`) ∼=

∏

λ

GL2(Kλ).

Thus ρ` is the direct sum of `-adic Galois representations ρλ where

ρλ : Gal(Q/Q)→ EndKλ
(Tateλ(A))

gives the action of Gal(Q/Q) on Tateλ(A).
If p - `N , then ρλ is unramified at p (see [9, Thm. 1]). In this case it makes

sense to consider ρλ(ϕp), where ϕp ∈ Gal(Q/Q) is a Frobenius element at p. Then
ρλ(ϕp) has a well-defined trace and determinant, or equivalently, a well-defined
characteristic polynomial Φ(X) ∈ Kλ[X ].

Theorem 3.3.2. Let f ∈ S2(Γ1(N), ε) be a newform of level N with Dirichlet
character ε. Suppose p - `N , and let ϕp ∈ Gal(Q/Q) be a Frobenius element at p.
Let Φ(X) be the characteristic polynomial of ρλ(ϕp). Then

Φ(X) = X2 − apX + p · ε(p),

where ap is the pth coefficient of the modular form f (thus ap is the image of Tp

in Ef and ε(p) is the image of 〈p〉).
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Let ϕ = ϕp. By the Cayley-Hamilton theorem

ρλ(ϕ)2 − tr(ρλ(ϕ))ρλ(ϕ) + det(ρλ(ϕ)) = 0.

Using the Eichler-Shimura congruence relation (see ) we will show that tr(ρλ(ϕ)) =
ap, but we defer the proof of this until ....

We will prove that det(ρλ(ϕ)) = p in the special case when ε = 1. This will
follow from the equality

det(ρλ) = χ`, (3.3.1)

where χ` is the `th cyclotomic character

χ` : Gal(Q/Q)→ Z∗
` ⊂ K∗

λ,

which gives the action of Gal(Q/Q) on µ`∞ . We have χ`(ϕ) = p because ϕ induces
induces pth powering map on µ`∞ .

It remains to establish (3.3.1). The simplest case is when A is an elliptic curve. In
[11, ], Silverman shows that det(ρ`) = χ` using the Weil pairing. We will consider
the Weil pairing in more generality in the next section, and use it to establish
(3.3.1).

3.3.1 The Weil Pairing

Let T`(A) = lim
←−n≥1

A[`n], so Tate`(A) = Q` ⊗ T`(A). The Weil pairing is a non-

degenerate perfect pairing

e` : T`(A) × T`(A
∨)→ Z`(1).

(See e.g., [4, §16] for a summary of some of its main properties.)

Remark 3.3.3. Identify Z/`nZ with µ`n by 1 7→ e−2πi/`n

, and extend to a map
Z` → Z`(1). If J = Jac(X) is a Jacobian, then the Weil pairing on J is induced
by the canonical isomorphism

T`(J) ∼= H1(X,Z`) = H1(X,Z)⊗ Z`,

and the cup product pairing

H1(X,Z`)⊗Z`
H1(X,Z`)

∪
−−→ Z`.

For more details see the discussion on pages 210–211 of Conrad’s appendix to
[7], and the references therein. In particular, note that H1(X,Z`) is isomorphic to
H1(X,Z`), because H1(X,Z`) is self-dual because of the intersection pairing. It is
easy to see that H1(X,Z`) ∼= T`(J) since by Abel-Jacobi J ∼= T0(J)/ H1(X,Z),
where T0(J) is the tangent space at J at 0 (see Lemma 3.3.1).

Here Z`(1) ∼= lim
←−

µ`n is isomorphic to Z` as a ring, but has the action of

Gal(Q/Q) induced by the action of Gal(Q/Q) on lim
←−

µ`n . Given σ ∈ Gal(Q/Q),

there is an element χ`(σ) ∈ Z∗
` such that σ(ζ) = ζχ`(σ), for every `nth root of

unity ζ. If we view Z`(1) as just Z` with an action of Gal(Q/Q), then the action
of σ ∈ Gal(Q/Q) on Z`(1) is left multiplication by χ`(σ) ∈ Z∗

` .
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Definition 3.3.4 (Cyclotomic Character). The homomorphism

χ` : Gal(Q/Q)→ Z∗
`

is called the `-adic cyclotomic character.

If ϕ : A → A∨ is a polarization (so it is an isogeny defined by translation of an
ample invertible sheaf), we define a pairing

eϕ
` : T`(A)× T`(A)→ Z`(1) (3.3.2)

by eϕ
` (a, b) = e`(a, ϕ(b)). The pairing (3.3.2) is a skew-symmetric, nondegenerate,

bilinear pairing that is Gal(Q/Q)-equivariant, in the sense that if σ ∈ Gal(Q/Q),
then

eϕ
` (σ(a), σ(b)) = σ · eϕ

` (a, b) = χ`(σ)eϕ
` (a, b).

We now apply the Weil pairing in the special case A = Af ⊂ J1(N). Abelian
varieties attached to modular forms are equipped with a canonical polarization
called the modular polarization. The canonical principal polarization of J1(N) is
an isomorphism J1(N)

∼
−→ J1(N)∨, so we obtain the modular polarization ϕ =

ϕA : A→ A∨ of A, as illustrated in the following diagram:

J1(N)
autoduality∼=

// J1(N)∨

��
A

OO

polarizationϕA

// A∨

Consider (3.3.2) with ϕ = ϕA the modular polarization. Tensoring over Q and
restricting to Tateλ(A), we obtain a nondegenerate skew-symmetric bilinear pairing

e : Tateλ(A)× Tateλ(A)→ Q`(1). (3.3.3)

The nondegeneracy follows from the nondegeneracy of eϕ
` and the observation that

eϕ
` (Tateλ(A), Tateλ′(A)) = 0

when λ 6= λ′. This uses the Galois equivariance of eφ
` carries over to Galois equiv-

ariance of e, in the following sense. If σ ∈ Gal(Q/Q) and x, y ∈ Tateλ(A), then

e(σx, σy) = σe(x, y) = χ`(σ)e(x, y).

Note that σ acts on Q`(1) as multiplication by χ`(σ).

3.3.2 The Determinant

There are two proofs of the theorem, a fancy proof and a concrete proof. We first
present the fancy proof. The pairing e of (3.3.3) is a skew-symmetric and bilinear
form so it determines a Gal(Q/Q)-equivarient homomorphism

2
∧

Kλ

Tateλ(A)→ Q`(1). (3.3.4)
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It is not a priori true that we can take the wedge product over Kλ instead of
Q`, but we can because e(tx, y) = e(x, ty) for any t ∈ Kλ. This is where we use
that A is attached to a newform with trivial character, since when the character
is nontrivial, the relation between e(Tpx, y) and e(x, Tpy) will involve 〈p〉. Let

D =
∧2

Tateλ(A) and note that dimKλ
D = 1, since Tateλ(A) has dimension 2

over Kλ.
There is a canonical isomorphism

HomQ`
(D,Q`(1)) ∼= HomKλ

(D, Kλ(1)),

and the map of (3.3.4) maps to an isomorphism D ∼= Kλ(1) of Gal(Q/Q)-modules.
Since the representation of Gal(Q/Q) on D is the determinant, and the represen-
tation on Kλ(1) is the cyclotomic character χ`, it follows that det ρλ = χ`.

Next we consider a concrete proof. If σ ∈ Gal(Q/Q), then we must show that
det(σ) = χ`(σ). Choose a basis x, y ∈ Tateλ(A) of Tateλ(A) as a 2 dimensional
Kλ vector space. We have σ(x) = ax + cy and σ(y) = bx + dy, for a, b, c, d ∈ Kλ.
Then

χ`(σ)e(x, y) = 〈σx, σy)

= e(ax + cy, bx + dy)

= e(ax, bx) + e(ax, dy) + e(cy, bx) + e(cy, dy)

= e(ax, dy) + e(cy, bx)

= e(adx, y)− e(bcx, y)

= e((ad− bc)x, y)

= (ad− bc)e(x, y)

To see that e(ax, bx) = 0, note that

e(ax, bx) = e(abx, x) = −e(x, abx) = −e(ax, bx).

Finally, since e is nondegenerate, there exists x, y such that e(x, y) 6= 0, so χ`(σ) =
ad− bc = det(σ).

3.4 Remarks About the Modular Polarization

Let A and ϕ be as in Section 3.3.1. The degree deg(ϕ) of the modular polarization
of A is an interesting arithmetic invariant of A. If B ⊂ J1(N) is the sum of all
modular abelian varieties Ag attached to newforms g ∈ S2(Γ1(N)), with g not a
Galois conjugate of f and of level dividing N , then ker(ϕ) ∼= A ∩B, as illustrated
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in the following diagram:

ker(ϕB)

$$J

J

J

J

J

J

J

J

J

J

∼=

��
ker(ϕAi)

∼= //

%%L

L

L

L

L

L

L

L

L

L

L

A ∩ B //

��

B

�� ""F

F

F

F

F

F

F

F

F

A //

ϕ

%%K

K

K

K

K

K

K

K

K

K

K

J1(N)

��

// B∨

A∨

Note that ker(ϕB) is also isomorphic to A ∩ B, as indicated in the diagram.
In connection with Section ??, the quantity ker(ϕA) = A∩B is closely related to

congruences between f and eigenforms orthogonal to the Galois conjugates of f .
When A has dimension 1, we may alternatively view A as a quotient of X1(N)

via the map
X1(N)→ J1(N)→ A∨ ∼= A.

Then ϕA : A → A is pullback of divisors to X1(N) followed by push forward,
which is multiplication by the degree. Thus ϕA = [n], where n is the degree of the
morphism X1(N)→ A of algebraic curves. The modular degree is

deg(X1(N)→ A) =
√

deg(ϕA).

More generally, if A has dimension greater than 1, then deg(ϕA) has order a perfect
square (for references, see [4, Thm. 13.3]), and we define the modular degree to be
√

deg(ϕA).
Let f be a newform of level N . In the spirit of Section 3.2.1 we use congruences

to define a number related to the modular degree, called the congruence number.
For a subspace V ⊂ S2(Γ1(N)), let V (Z) = V ∩Z[[q]] be the elements with integral
q-expansion at ∞ and V ⊥ denotes the orthogonal complement of V with respect
to the Petersson inner product. The congruence number of f is

rf = #
S2(Γ1(N))(Z)

Vf (Z) + V ⊥
f (Z)

,

where Vf is the complex vector space spanned by the Galois conjugates of f . We
thus have two positive associated to f , the congruence number rf and the modular
degree mf of of Af .

Theorem 3.4.1. mf | rf

Ribet mentions this in the case of elliptic curves in [ZAGIER, 1985] [12], but
the statement is given incorrectly in that paper (the paper says that rf | mf ,
which is wrong). The proof for dimension greater than one is in [AGASHE-STEIN,
Manin constant...]. Ribet also subsequently proved that if p2 - N , then ordp(mf ) =
ordp(rf ).

We can make the same definitions with J1(N) replaced by J0(N), so if f ∈
S2(Γ0(N)) is a newform, Af ⊂ J0(N), and the congruence number measures con-
gruences between f and other forms in S2(Γ0(N)). In [?, Ques. 4.4], they ask
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whether it is always the case that mf = rf when Af is an elliptic curve, and mf

and rf are defined relative to Γ0(N). I implemented an algorithm in MAGMA to
compute rf , and found the first few counterexamples, which occur when

N = 54, 64, 72, 80, 88, 92, 96, 99, 108, 120, 124, 126, 128, 135, 144.

For example, the elliptic curve A labeled 54B1 in [1] has rA = 6 and mA = 2.
To see directly that 3 | rA, observe that if f is the newform corresponding to E
and g is the newform corresponding to X0(27), then g(q)+ g(q2) is congruent to f
modulo 3. This is consistent with Ribet’s theorem that if p | rA/mA then p2 | N .
There seems to be no absolute bound on the p that occur.

It would be interesting to determine the answer to the analogue of the question
of Frey-Mueller for Γ1(N). For example, if A ⊂ J1(54) is the curve isogeneous to
54B1, then mA = 18 is divisible by 3. However, I do not know rA in this case,
because I haven’t written a program to compute it for Γ1(N). If somebody would
like to work with me on this for a final project, let me know. The final project would
involve: (1) reading relevant literature (I’ll tell you the papers), (2) summarizing it,
and (3) I’ll code a program to compute rA and mA for Γ1(N), and you’ll orchestrate
running it.

WEDNESDAY: Description of the Eichler-Shimura Congruence Re-
lation I’ll describe the relationship between Tp and Frobenius in characteristic p
and use this relationship to prove that tr(ρ(Frobp)) = ap. In particular, this will
finally explain why if E is an elliptic curve p + 1−#E(Fp) is the coefficient of p
of the corresponding newform!
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