
CHAPTER 5

Appendix by Brian Conrad: The Shimura
construction in weight 2

The purpose of this appendix is to explain the ideas of Eichler-Shimura for constructing the
two-dimensional

�
-adic representations attached to classical weight-2 Hecke eigenforms.

We assume familiarity with the theory of schemes and the theory of newforms, but the es-
sential arithmetic ideas are due to Eichler and Shimura. We warn the reader that a complete
proof along the lines indicated below requires the verification of a number of compatibil-
ities between algebraic geometry, algebraic topology, and the classical theory of modular
forms. As the aim of this appendix is to explain the key arithmetic ideas of the proof, we
must pass over in silence the verification of many such compatibilities. However, we at
least make explicit what compatibilities we need. To prove them all here would require a
serious digression from our expository goal; see [18, Ch. 3] for details. It is also worth not-
ing that the form of the arguments we present is exactly the weight-2 version of Deligne’s
more general proof of related results in weight � 1, up to the canonical isomorphism

Q 
 � Z� lim� � Pic0
X � k �

� n � � k � �� H1
ét
�
X � Q 
 � 1 � � �� H1

ét � c
�
Y � Q 
 � 1 � �

for a proper smooth connected curve X over a separably closed field k of characteristic
prime to

�
, and Y a dense open in X . Using

�
-adic Tate modules allows us to bypass the

general theory of étale cohomology which arises in the case of higher weight.

5.1. Analytic preparations

Fix i � � � 1 � C for all time. Fix an integer N � 5 and let X1
�
N � an denote the classical

analytic modular curve, the “canonical” compactification of Y1
�
N � an � Γ1

�
N � � � , where� � � z � C : Imz � 0 	 and Γ1

�
N � � SL2

�
Z � acts on the left via linear fractional trans-

formations. The classical theory identifies the C-vector space H0 � X1
�
N � an � Ω1

X1 � N � an � with
S2
�
Γ1
�
N � � C � , the space of weight-2 cusp forms. Note that the classical Riemann surface

X1
�
N � an has genus 0 if we consider N

�
5, while S2

�
Γ1
�
N � � C � � 0 if N

�
5. Thus, assum-

ing N � 5 is harmless for what we will do.
The Hodge decomposition for the compact Riemann surface X1

�
N � an supplies us with

an isomorphism of C-vector spaces
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60 CONRAD, THE SHIMURA CONSTRUCTION

S2
�
Γ1
�
N � � C � � S2

�
Γ1
�
N � � C �

�� H0 � X1
�
N � an � Ω1

X1 � N � an � � H0 � X1
�
N � an � Ω1

X1 � N � an �
�� � H1 � X1

�
N � an � C �

�� H1 � X1
�
N � an � Z � � Z C

(where A denotes the constant sheaf attached to an abelian group A). This will be called the
(weight-2) Shimura isomorphism. We want to define “geometric” operations on H 1 � X1

�
N � an � Z �

which recover the classical Hecke operators on S2
�
Γ1
�
N � � C � via the above isomorphism.

The “geometric” (or rather, cohomological) operations we wish to define can be de-
scribed in two ways. First, we can use explicit matrices and explicit “upper-half plane”
models of modular curves. This has the advantage of being concrete, but it provides little
conceptual insight and encourages messy matrix calculations. The other point of view is
to identify the classical modular curves as the base of certain universal analytic families of
(generalized) elliptic curves with level structure. A proper discussion of this latter point of
view would take us too far afield, so we will have to settle for only some brief indications
along these two lines (though this is how to best verify compatibility with the algebraic
theory via schemes).

Choose a matrix γn
� SL2

�
Z � with γn �

�
n � 1

�0 n � �
mod N � , for n

� �
Z � NZ � � . The

action of γn on � induces an action on Y1
�
N � an and even on X1

�
N � an. Associating to each

z
� � the data of the elliptic curve C � � 1 � z � � C � � Z �

Zz � and the point 1 � N of exact
order N, we may identify Y1

�
N � an as a set with the set of isomorphism classes of pairs�

E � P � consisting of an elliptic curve E over C and a point P
�

E of exact order N. The map
Y1
�
N � an � Y1

�
N � an induced by γn can then described on the underlying set by

�
E � P � ���

E � nP � , so it is “intrinsic”, depending only on n
� �

Z � NZ � � . We denote by In : X1
�
N � an �

X1
�
N � an the induced map on X1

�
N � an. Once this data

�
E � P � is formulated in a relative

context over an analytic base, we could define the analytic map In conceptually, without
using the matrix γn. We ignore this point here.

The map z �� 	 1
Nz on � induces a map Y1

�
N � an � Y1

�
N � an which extends to wN :

X1
�
N � an � X1

�
N � an. More conceptually and more generally, if ζ �

µN
�
C � is a primitive

Nth root of unity, consider the rule wζ that sends
�
E � P � � Y1

�
N � an to

�
E � P� P � mod P � ,

where P
� �

E has exact order N and � P� P � � N
� ζ, with � � � N the Weil pairing on N-torsion

points (following the sign conventions of [62, 77]; opposite the convention of [109]). More
specifically, on C � � 1 � z � we have � 1

N � z
N � N

� e2πi � N . The map wζ extends to an analytic map

X1
�
N � an � X1

�
N � an. When ζ � e2πi � N, we have wζ

� wN due to the above sign convention.
We have induced pullback maps

w �ζ � I �n : H1 � X1
�
N � an � Z � � H1 � X1

�
N � an � Z ���

We write � n � � rather than I �n .
Finally, choose a prime p. Define Γ1

�
N � p � � SL2

�
Z � to be Γ1

�
N � p � � Γ1

�
N � � Γ0

�
p �

when p � N and Γ1
�
N � p � � Γ1

�
N � � Γ0

�
p � t when p 
 N, where the group Γ0

�
p � t is the

transpose of Γ0
�
p � . Define Y1

�
N � p � an � Γ1

�
N � p � � � and let X1

�
N � p � an be its “canonical”

compactification. Using the assignment

z �� �
C � � 1 � z � � 1

N
� � 1

p
� �
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when p � N and

z �� �
C � � 1 � z � � 1

N
� � z

p
� �

when p 
 N, we may identify the set Y1
�
N � p � an with the set of isomorphism classes of

triples
�
E � P� C � where P

�
E has exact order N and C � E is a cyclic subgroup of order p,

meeting � P � trivially (a constraint if p 
 N). Here and below, we denote by � P � the (cyclic)
subgroup generated by P.

There are unique analytic maps

π � p �1 � π � p �2 : X1
�
N � p � an � X1

�
N � an

determined on Y1
�
N � p � an by

π � p �1

�
E � P� C � � �

E � P �
and

π � p �2

�
E � P� C � � �

E � C � P mod C ���
For example, π � p �1 is induced by z �� z on � , in terms of the above upper half plane uni-
formization of Y1

�
N � an and Y1

�
N � p � an.

We define

T �p
� �

π � p �1 � � �
�
π � p �2 � � : H1 � X1

�
N � an � Z ��� H1 � X1

�
N � an � Z �

where
�
π � p �1 � � : H1 � X1

�
N � p � an � Z � � H1 � X1

�
N � an � Z � is the canonical trace map associated

to the finite map π � p �1 of compact Riemann surfaces. More specifically, we have a canonical
isomorphism

H1 � X1
�
N � p � an � Z � �� H1 � X1

�
N � an � � π � p �1 � � Z �

since
�
π � p �1 � � is exact on abelian sheaves, and there is a unique trace map of sheaves�

π � p �1 � � Z � Z determined on stalks at x
�

X1
�
N � an by

∏
π � p �

1 � y � � x

Z � Z

�
ay � �� Σyeyay

(5.1)

where ey is the ramification degree of y over x via π � p �1 .
A fundamental compatibility, whose proof we omit for reasons of space, is:

Theorem 5.1. The weight-2 Shimura isomorphism

ShΓ1 � N � : S2
�
Γ1
�
N � � C � � S2

�
Γ1
�
N � � C � �� H1 � X1

�
N � an � Z � � Z C

from
�
5 � 1 � identifies � n � � � n � with � n � � � 1, Tp � T p with T �p � 1, and wN � wN with

w �
e2πi � N � 1.

Let T1
�
N � � EndZ

�
H1 � X1

�
N � an � Z � � be the subring generated by the T �p ’s and � n � � ’s.

By Theorem 5.1, this is identified via the Shimura isomorphism with the classical (weight-
2) Hecke ring at level N. In particular, this ring is commutative (which can be seen directly
via cohomological considerations as well). It is clearly a finite flat Z-algebra.

The natural map

(5.2) T1
�
N � � Z C � � EndC

�
H1 � X1

�
N � an � Z � � Z C �
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induces an injection T1
�
N � � C � � EndC

�
S2
�
Γ1
�
N � � C � � , by Theorem 5.1. This is the

classical realization of Hecke operators in weight 2.
Another compatibility we need is between the cup product on H1 � X1

�
N � an � Z � and

the (non-normalized) Petersson product on S2
�
Γ1
�
N � � C � . To be precise, we define an

isomorphism H2 � X1
�
N � an � Z � �� Z using the i-orientation of the complex manifold X1

�
N � an

(i.e., the “idz � dz” orientation), so we get via cup product a (perfect) pairing
� � � Γ1 � N � : H1 � X1

�
N � an � Z � � Z H1 � X1

�
N � an � Z ��� H2 � X1

�
N � an � Z � �� Z �

This induces an analogous pairing after applying � ZC. For f � g �
S2
�
Γ1
�
N � � C � we define

� f � g � Γ1 � N � � � Γ1 � N ����� f
�
z � g � z � dxdy

where this integral is absolutely convergent since f and g have exponential decay near the
cusps. This is a perfect Hermitian pairing.

Theorem 5.2. Under the weight-2 Shimura isomorphism ShΓ1 � N � ,
� ShΓ1 � N �

�
f1
�

g1 � � ShΓ1 � N �
�
f2
�

g2 � � Γ1 � N �
� 4π �

� � f1 � g2 � Γ1 � N � � � f2 � g1 � Γ1 � N � ���
Note that both sides are antilinear in g1, g2 and alternating with respect to interchang-

ing the pair
�
f1 � g1 � and

�
f2 � g2 � . The extra factor of 4π is harmless for our purposes since

it does not affect formation of adjoints. What is important is that in the classical theory,
conjugation by the involution wN takes each T

� T1
�
N � to its adjoint with respect to the

Petersson product. The most subtle case of this is T � T �p for p 
 N. For p � N the adjoint
of T �p is � p 	 1 � � T �p and the adjoint of � n � � is � n 	 1 � � . These classical facts (especially for T �p
with p 
 N) yield the following important corollary of Theorem 5.2.

Corollary 5.3. With respect to the pairing � x � y � Γ1 � N � �
�
x � w �ζy � Γ1 � N � with ζ � e2πi � N , the

action of T1
�
N � on H1 � X1

�
N � an � Z � is equivariant. That is,

� x � Ty � Γ1 � N � � � Tx � y � Γ1 � N �
for all T

� T1
�
N � . With respect to

� � � Γ1 � N � , the adjoint of T �p for p � N is � p 	 1 � � T �p and the
adjoint of � n � � is � n 	 1 � � for n

� �
Z � NZ � � .

Looking back at the “conceptual” definition of w �ζ for an arbitrary primitive Nth root
of unity ζ � µN

�
C � , which gives an analytic involution of X1

�
N � an, one can check that

w �ζ j � w �ζ
� � j � � for j � �

Z � NZ � � . Since � j � � is a unit in T1
�
N � and T1

�
N � is commutative,

we conclude that Corollary 5.3 is true with ζ �
µN
�
C � any primitive Nth root of unity (by

reduction to the case ζ � e2πi � N).
Our final step on the analytic side is to reformulate everything above in terms of Ja-

cobians. For any compact Riemann surface X , there is an isomorphism of complex Lie
groups

(5.3) Pic0
X �� H1 � X � OX � � H1 � X � Z �

via the exponential sequence

0 � Z � OX
e2πi � � �� � � � O �X � 1

and the identification of the underlying group of Pic0
X with

H1 � X � O �X � �� Ȟ1 � X � O �X � �
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where the line bundle L with trivializations ϕi : OUi �
� L 
Ui corresponds to the class of the

Čech 1-cocycle
� ϕ 	 1

j � ϕi : OUi � U j �
� OUi � U j 	 � ∏

i � j
H0 � Ui � U j � O �X �

for an ordered open cover � Ui 	 . Beware that the tangent space isomorphism

T0
�
Pic0

X � �� H1 � X � OX �
coming from (5.3) is � 2πi times the “algebraic” isomorphism arising from

0 � OX � O �X � ε � � O �X � 1 �
where X � ε � � �

X � OX � ε � � ε2 � is the non-reduced space of “dual numbers over X”. This extra
factor of � 2πi will not cause problems. We will use (5.3) to “compute” with Jacobians.

Let f : X � Y be a finite map between compact Riemann surfaces. Since f is finite
flat, there is a natural trace map f � OX � OY , and it is not difficult to check that this is
compatible with the trace map f � Z � Z as defined in (5.1). In particular, we have a trace
map

f � : H1 � X � OX � �� H1 � Y � f � OX � � H1 � Y � OY � �
Likewise, we have compatible pullback maps f � OY �� OX and f � Z �� Z.

Thus, any such f gives rise to commutative diagrams

H1 � Y � OY �
f �

// H1 � X � OX �

H1 � Y � Z �

OO

f �
// H1 � X � Z �

OO
H1 � X � OX �

f � // H1 � Y � OY �

H1 � X � Z �

OO

f � // H1 � Y � Z � �

OO

where the columns are induced by the canonical maps Z � OY and Z � OX . Passing to
quotients on the columns therefore gives rise to maps

f � : Pic0
Y � Pic0

X � f � : Pic0
X � Pic0

Y

of analytic Lie groups. These maps are “computed” by

Lemma 5.4. In the above situation, f � � Pic0 � f � is the map induced by Pic0 functoriality
and f �

� Alb
�
f � is the map induced by Albanese functoriality. These are dual with respect

to the canonical autodualities of Pic0
X , Pic0

Y .

The significance of the theory of Jacobians is that by (5.3) we have a canonical iso-
morphism

T
 � Pic0
X1 � N � an � �� H1 � X1

�
N � an � Z 
 �

�� H1 � X1
�
N � an � Z � � Z Z 
 �

(5.4)

connecting the
�
-adic Tate module of Pic0

X1 � N � with the Z-module H1 � X1
�
N � an � Z � that “en-

codes” S2
�
Γ1
�
N � � C � via the Shimura isomorphism. Note that this isomorphism is defined

in terms of the analytic construction (5.3) which depends upon the choice of i. The intrinsic
isomorphism (compatible with étale cohomology) has Z above replaced by 2πiZ � � 2πiZ.

Definition 5.5. We define endomorphisms of Pic0
X1 � N � an via

T �p
� Alb

�
π � p �1 � � Pic0 � π � p �2 � � � n � � � Pic0 � In � � w �ζ

� Pic0 � wζ ���
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By Lemma 5.4, it follows that the above isomorphism (5.4) carries the operators on
T
 � Pic0

X1 � N � an � over to the ones previously defined on H1 � X1
�
N � an � Z � (which are, in turn,

compatible with the classical operations via the Shimura isomorphism). By the faithfulness
of the “Tate module” functor on complex tori, we conclude that T1

�
N � acts on Pic0

X1 � N � an

in a unique manner compatible with the above definition, and (5.4) is an isomorphism of
T1
�
N � � Z Z 
 -modules. We call this the

� � � -action of T1
�
N � on Pic0

X1 � N � an .
We must warn the reader that under the canonical isomorphism of C-vector spaces

S2
�
Γ1
�
N � � C � �� H0 � X1

�
N � an � Ω1

X1 � N � an �
�� H0 � Pic0

X1 � N � an � Ω1
Pic0

X1 � N � an
�

�� Cot0
�
Pic0

X1 � N � an � �
the

� � � -action of T
� T1

�
N � on Pic0

X1 � N � an does not go over to the classical action of T on
S2
�
Γ1
�
N � � C � , but rather the adjoint of T with respect to the Petersson pairing. To clear up

this matter, we make the following definition:

Definition 5.6.
�
Tp � �

� Alb
�
π � p �2 � � Pic0 � π � p �1 � � � n � �

� Alb
�
In � �

�
wζ � �

� Alb
�
wζ ���

Since I 	 1
n

� In � 1 and w 	 1
ζ

� wζ on X1
�
N � an, we have

�
wζ � �

� w �ζ and � n � �
� � n 	 1 � � .

We claim that the above
� � � operators are the dual morphisms (with respect to the canonical

principal polarization of Pic0
X1 � N � an ) of the

� � � operators and induce exactly the classical
action of Tp and � n � on S2

�
Γ1
�
N � � C � , so we also have a well-defined

� � � -action of T1
�
N �

on Pic0
X1 � N � an , dual to the

� � � -action. By Theorem 5.2, Corollary 5.3, and Lemma 5.4, this
follows from the following general fact about compact Riemann surfaces. The proof is
non-trivial.

Lemma 5.7. Let X be a compact Riemann surface, and use the i-orientation to define
H2 � X � Z � �� Z. Use 1 �� e2πi � 
 n to define Z � � n �� µ 
 n � C � for all n. The diagram

H1 � X � Z 
 � � Z � H1 � X � Z 
 �
�

//

��
��

Z 


��
��

T
 � Pic0
X � � Z � T
 � Pic0

X � // lim� � µ 
 n � C �
anticommutes

�
i.e., going around from upper left to lower right in the two possible ways

gives results that are negatives of each other � , where the bottom row is the
�
-adic Weil

pairing
�
with respect to the canonical principal polarization Pic0

X ��
�

Pic0
X for the “second”

Pic0
X in the lower left. �

Note that the sign doesn’t affect formation of adjoints. It ultimately comes from the
sign on the bottom of [77, pg. 237] since our Weil pairing sign convention agrees with [77].

We now summarize our findings in terms of V
 � N � � Q 
 � Z � T
 � Pic0
X1 � N � an � , which has

a perfect alternating Weil pairing
� � �	
 : V
 � N � � V
 � N � � Q 
 � 1 �

and has two Q 
 � T1
�
N � -actions, via the

� � � -actions and the
� � � -actions. Since

�
wζ � �

� w �ζ,
we simply write wζ for this operator on V
 � N � .
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Theorem 5.8. Let T1
�
N � act on V
 � N � with respect to the

� � � -action or with respect to the� � � -action. With respect to
� � � 
 , the adjoint of Tp for p � N is � p � 	 1Tp and the adjoint of

� n � is � n � 	 1 for n
� �

Z � NZ � � . With respect to

� x � y � 
 � �
x � wζ

�
y � � 


for ζ �
µN
�
C � a primitive Nth root of unity, the action of T1

�
N � on V
 � N � is self-adjoint.

In general, adjointness with respect to
� � � 
 interchanges the

� � � -action and
� � � -action.

It should be noted that when making the translation to étale cohomology, the
� � � -action

plays a more prominent role (since this is what makes (5.4) a T1
�
N � -equivariant map).

However, when working directly with Tate modules and arithmetic Frobenius elements, it
is the

� � � -action which gives the cleaner formulation of Shimura’s results.
An important consequence of Theorem 5.8 is

Corollary 5.9. The Q 
 � Z T1
�
N � -module V
 � N � is free of rank 2 for either action, and

HomQ
�
Q � T1

�
N � � Q � is free of rank 1 over Q � T1

�
N � � hence likewise with Q replaced

by any field of characteristic 0 � .
Remark 5.10. The assertion about HomQ

�
Q � T1

�
N � � Q � is equivalent to the intrinsic con-

dition that Q � T1
�
N � is Gorenstein. Also, this freeness clearly makes the two assertions

about V
 � N � for the
� � � - and

� � � -actions equivalent. For the proof, the
� � � -action is what

we use. But in what follows, it is the case of the
� � � -action that we need!

Proof. Using (5.4) and the choice of
� � � -action on V
 � N � , it suffices to prove� H1 � X1

�
N � an � Q � is free of rank 2 over Q � T1

�
N � ,� HomQ

�
Q � T1

�
N � � Q � is free of rank 1 over Q � T1

�
N � .

Using � ��� Γ1 � N � , we have

(5.5) H1 � X1
�
N � an � Q � �� HomQ

�
H1 � X1

�
N � an � Q � � Q �

as Q � T1
�
N � -modules, so we may study this Q-dual instead. Since Q � T1

�
N � is semilo-

cal, a finite module over this ring is locally free of constant rank if and only if it is free
of that rank. But local freeness of constant rank can be checked after faithfully flat base
change. Applying this with the base change Q � C, and noting that C � T1

�
N � is semilo-

cal, it suffices to replace Q by C above.
Note that if the right hand side of (5.5) is free of rank 2, so is the left side, so choos-

ing a basis of the left side and feeding it into the right hand side shows that HomQ
�
Q �

T1
�
N � � 2 � Q � is free of rank 2. In particular, the direct summand HomQ

�
Q � T1

�
N � � Q � is

flat over Q � T1
�
N � with full support over Spec

�
Q � T1

�
N � � , so it must be locally free with

local rank at least 1 at all points of Spec
�
Q � T1

�
N � � . Consideration of Q-dimensions then

forces HomQ
�
Q � T1

�
N � � Q � to be locally free of rank 1, hence free of rank 1. In other

words, it suffices to show that HomQ
�
H1 � X1

�
N � an � Q � � Q � is free of rank 2 over T1

�
N � � Q,

or equivalently that HomC
�
H1 � X1

�
N � an � C � � C � is free of rank 2 over T1

�
N � � C.

Via the Shimura isomorphism (in weight 2), which is compatible with the Hecke
actions, we are reduced to showing that Hom

�
S2
�
Γ1
�
N � � C � � C � is free of rank 1 over

C � T1
�
N � . For this purpose, we will study the C � T1

�
N � -equivariant C-bilinear pair-

ing

S2
�
Γ1
�
N � � C � � C

�
C � T1

�
N � � � C

�
f � T � �� a1

�
T f �
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were a1
�

� � is the “Fourier coefficient of q”. This is C � T1
�
N � -equivariant, since T1

�
N �

is commutative. It suffices to check that there’s no nonzero kernel on either side of this
pairing. Since

C � T1
�
N � � EndC

�
S2
�
Γ1
�
N � � C � �

is injective (as noted in (5.2)) and a1
�
T Tn f � � an

�
T f � for T

� T1
�
N � , the kernel on the

right is trivial. Since a1
�
Tn f � � an

�
f � , the kernel on the left is also trivial.

�

5.2. Algebraic preliminaries

Let S be a scheme. An elliptic curve E � S is a proper smooth group scheme with geomet-
rically connected fibers of dimension 1 (necessarily of genus 1). It follows from [62, Ch.2]
that the group structure is commutative and uniquely determined by the identity section.
Fix N � 1 and assume N � H0 � S � O �S � (i.e., S is a Z � 1

N � -scheme). Thus, the map N : E � E
is finite étale of degree N2 as can be checked on geometric fibers. A point of exact order N
on E is a section P : S � E which is killed by N (i.e., factors through the finite étale group
scheme E �N � ) and induces a point of exact order N on geometric fibers.

It follows from the stack-theoretic methods in [25] or the more explicit descent argu-
ments in [62] that for N � 5 there is a proper smooth Z � 1

N � -scheme X1
�
N � equipped with

a finite flat map to P1
Z � 1

N � , such that the open subscheme Y1
�
N � lying over P1

Z � 1
N � � � ∞ 	 �

A1
Z � 1

N � is the base of a universal object
�
E1
�
N � � P � � Y1

�
N � for elliptic curves with a point

of exact order N over variable Z � 1
N � -schemes.

Moreover, the fibers of X1
�
N � � SpecZ � 1

N � are geometrically connected, as this can
be checked on a single geometric fiber and by choosing the complex fiber we may appeal
to the fact (whose proof requires some care) that there is an isomorphism

�
X1
�
N � � Z � 1

N �
C � an �� X1

�
N � an identifying the “algebraic” data

�
C � � 1 � z � � 1

N � in Y1
�
N � � C � � X1

�
N � � C �

with the class of z
� � in Γ1

�
N ��� � � Y1

�
N � an � X1

�
N � an (and X1

�
N � an is connected, as � is).

These kinds of compatibilities are somewhat painful to check unless one develops a full-
blown relative theory of elliptic curves in the analytic world (in which case the verifications
become quite mechanical and natural).

Again fixing N � 5, but now also a prime p, we want an algebraic analogue of
X1
�
N � p � an over Z � 1

N p � . Let
�
E � P � � S be an elliptic curve with a point of exact or-

der N over a Z � 1
N p � -scheme S. We’re interested in studying triples

�
E � P� C � � S where

C � E is an order-p finite locally free S-subgroup-scheme which is not contained in the
subgroup generated by P on geometric fibers (if p 
 N). Methods in [25] and [62] ensure
the existence of a universal such object

�
E1
�
N � p � � P� C � � Y1

�
N � p � for a smooth affine

Z � 1
N p � -scheme which naturally sits as the complement of a relative Cartier divisor in a

proper smooth Z � 1
N p � -scheme X1

�
N � p � which is finite flat over P1

Z � 1
N p � (with Y1

�
N � p � the

preimage of A1
Z � 1

N p � ). Base change to C and analytification recovers X1
�
N � p � an as before,

so X1
�
N � p � � SpecZ � 1

N p � has geometrically connected fibers.

There are maps of Z � 1
N p � -schemes (respectively, Z � 1

N � -schemes)

Y1
�
N � p �

π � p �
1

yyssssssssss π � p �
2

%%KKKKKKKKKK

Y1
�
N � � 1p � Y1

�
N � � 1p �

Y1
�
N � In� � Y1

�
N �
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determined by
�
E � P� C � π � p �

1��� � �
E � P � and

�
E � P� C � π � p �

2��� � �
E � C � P � (which makes sense in

Y1
�
N � if p 
 N by the “disjointness” condition on C and P) and In

�
E � P � � �

E � nP � . Al-

though π � p �2 is not a map over A1
Z � 1

N p � , it can be shown that these all uniquely extend to

(necessarily finite flat) maps, again denoted π � p �1 , π � p �2 , In between X1
�
N � p � , X1

�
N � � 1p � ,

X1
�
N � . A proof of this fact requires the theory of minimal regular proper models of curves

over a Dedekind base; the analogous fact over Q is an immediate consequence of basic
facts about proper smooth curves over a field, but in order to most easily do some later
calculations in characteristic p � N it is convenient to know that we have the map Ip defined
on X1

�
N � over Z � 1 � N � (though this could be bypassed by using liftings to characteristic 0

in a manner similar to our later calculations of Tp in characteristic p).
Likewise, over Z � 1

N � ζN � we can define, for any primitive Nth root of unity ζ � ζi
N

(i � �
Z � NZ � � ), an operator wζ : Y1

�
N � � Z � 1

N � ζN � � Y1
�
N � � Z � 1

N � ζN � via wζ
�
E � P � � �

E � � P � � P � �
where � P � is the order-N étale subgroup-scheme generated by P and P

� � �
E �N � � � P � � � S � is

uniquely determined by the relative Weil pairing condition � P� P � � N
� ζ (with P

� �
E � N � � S �

here). This really does extend to X1
�
N � � Z � 1

N � ζN � , and one checks that wζ j wζ
� I j for j �

�
Z � NZ � � . In particular, w2

ζ
� 1.

Since X1
�
N � � SpecZ � 1

N � is a proper smooth scheme with geometrically connected
fibers of dimension 1, Pic0

X1 � N � � Z � 1
N �

is an abelian scheme over Z � 1
N � and hence is the Néron

model of its generic fiber. We have scheme-theoretic Albanese and Pic0 functoriality for
finite (flat) maps between proper smooth curves (with geometrically connected fibers) over
any base at all, and analytification of such a situation over C recovers the classical theory
of Pic0 as used in Section 5.1.

For example, we have endomorphisms

� n � � � Pic0 � In � � � n � �
� Alb

�
In �

on Pic0
X1 � N � � Z � 1

N �
,

w �ζ
� Pic0 � wζ � � Alb

�
wζ � �

�
wζ � �

on Pic0
X1 � N � � Z � 1

N � ζN �
, and

T �p
� Alb

�
π � p �1 � � Pic0 � π � p �2 �

�
Tp � �

� Alb
�
π � p �2 � � Pic0 � π � p �1 �

on Pic0
X1 � N � � Z � 1

N p �
. A key point is that by the Néronian property, T �p and

�
Tp � � uniquely

extend to endomorphisms of Pic0
X1 � N � � Z � 1

N �
, even though the π � p �i do not make sense over

Z � 1
N � from what has gone before. In particular, it makes sense to study T �p and

�
Tp � � on

the abelian variety Pic0
X1 � N � � Fp

over Fp for p � N. This will be rather crucial later, but note

it requires the Néronian property in the definition.
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Passing to the analytifications, the above constructions recover the operators defined
on Pic0

X1 � N � an in Section 5.1. The resulting subring of

End
�
Pic0

X1 � N � � Z � 1
N �
� � End

�
Pic0

X1 � N � an �

generated by T �p , � n � � (respectively, by
�
Tp � � , � n � � ) is identified with T1

�
N � via its

� � � -
action (respectively, via its

� � � -action) and using

(5.6) lim� � Pic0
X1 � N � � Z � 1

N �
� � n � � Q � �� T
 � Pic0

X1 � N � an �

(using Q � C) endows our “analytic” V
 � N � with a canonical continuous action of GQ
�

Gal
�
Q � Q � unramified at all p � N

�
(via Néron-Ogg-Shafarevich) and commuting with the

action of T1
�
N � (via either the

� � � -action or the
� � � -action). We also have an endomor-

phism wζ
� w �ζ

� �
wζ � � on Pic0

X1 � N � � Z � 1
N � ζN �

and it is easy to see that

�
g 	 1 � � wg � ζ � g � � wζ

on Q-points, where g
� Gal

�
Q � Q � and g � denotes the natural action of g on Q-points

(corresponding to base change of degree 0 line bundles on X1
�
N � � Q). Since wζ

� wζ � 1 (as�
E � P � �� �

E � � P � via � 1), we see that wζ is defined over the real subfield Q
�
ζN � � . By

étale descent, the operator wζ is defined over Z � 1
N � ζN � � .

In any case, wζ acts on V
 � N � , recovering the operator in Section 5.1, and so this
conjugates the

� � � -action to the
� � � -action, taking each T � T1

�
N � (for either action on

V
 � N � ) to its Weil pairing adjoint, via the canonical principal polarization of the abelian
scheme Pic0

X1 � N � � Z � 1
N �

. Using Corollary 5.3 and (5.6) we obtain

Lemma 5.11. Let T1
�
N � act on V
 � N � through either the

� � � -action or the
� � � -action.

Then ρN � 
 : GQ � Aut
�
V
 � N � � �� GL

�
2 � Q 
 � T1

�
N � � is a continuous representation, un-

ramified at p � N
�
.

The main result we are after is

Theorem 5.12. Let T1
�
N � act on Pic0

X1 � N � � Z � 1
N �

via the
� � � -action. For any p � N

�
, the

characteristic polynomial of ρN � 

�
Frobp � is

X2 � �
Tp � � X

�
p � p � �

relative to the Q 
 � T1
�
N � -module structure on V
 � N � , where Frobp denotes an arithmetic

Frobenius element at p.

The proof of Theorem 5.12 will make essential use of the wζ operator. For the
remainder of this section, we admit Theorem 5.12 and deduce its consequences. Let
f

�
S2
�
Γ1
�
N � � C � be a newform of level N. Let K f � C be the number field generated

by ap
�
f � for all p � N, where f � ∑an

�
f � qn, so by weak multiplicity one an

�
f � �

K f for all
n � 1 and the Nebentypus character χ f has values in K f . Let � f � T1

�
N � be the minimal

prime corresponding to f (i.e., the kernel of the map T1
�
N � � K f sending each T

� T1
�
N �

to its eigenvalue on f ).
We now require T1

�
N � to act on Pic0

X1 � N � � Z � 1
N �

via its
� � � -action.

Definition 5.13. A f is the quotient of Pic0
X1 � N � � Q

by � f � T1
�
N � .
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By construction, A f has good reduction over Z � 1
N � and the action of T1

�
N � on Pic0

X1 � N � � Q

induces an action of T1
�
N � ��� on A f , hence an action of K f �

� �
T1
�
N � � � � � Z Q on A f in

the “up-to-isogeny” category.

Theorem 5.14 (Shimura). We have dimA f
� �K f : Q � and V
 � A f � is free of rank 2 over

Q 
 � Q K f , with Frobp having characteristic polynomial

X2 � �
1 � ap

�
f � � X �

1 � pχ f
�
p �

for all p � N
�
.

Proof. By Lemma 5.11 and Theorem 5.12, we just have to check that the Q 
 � T1
�
N � -

linear map

V
 � Pic0
X1 � N � � Q

� � V
 � A f �
identifies the right hand side with the quotient of the left hand side by � f . More generally,
for any exact sequence

B
� � B � A � 0

of abelian varieties over a field of characteristic prime to
�
, we claim

V
 � B � � � V
 � B � � V
 � A ��� 0

is exact. We may assume the base field is algebraically closed, and then may appeal to
Poincaré reducibility (see [77, pg. 173]).

�

Choosing a place λ of K f over
�

and using the natural realization of K f � λ as a factor of
Q 
 � K f , we deduce from Theorem 5.14:

Corollary 5.15. Let f
�

S2
�
Γ1
�
N � � C � be a newform and λ a place of K f over

�
. There

exists a continuous representation

ρ f � λ : GQ � GL
�
2 � K f � λ �

unramified at all p � N
�
, with Frobp having characteristic polynomial

X2 � ap
�
f � X �

pχ f
�
p � �

K f � λ � X � �

5.3. Proof of Theorem 5.12

Fix p � N and let

Jp
� Pic0

X1 � N � � Fp
�� Pic0

X1 � N � � Z � 1
N �

� Z � 1
N � Fp

with T1
�
N � acting through the

� � � -action. Fix a choice of Frobp, or more specifically fix
a choice of place in Q over p. Note that this determines a preferred algebraic closure Fp

as a quotient of the ring of algebraic integers, and in particular a map Z � 1 � N � ζN � � Fp.
Thus, we may view wζ as inducing an endomorphism of the abelian variety Jp � Fp Fp over
Fp (whereas the elements in T1

�
N � induce endomorphisms of Jp over Fp). The canonical

isomorphism

V
 � Pic0
X1 � N � � Q

� �� V
 � Pic0
X1 � N � � Z � 1

N �
� �� V
 � Jp �

identifies the Frobp-action on Q-points on the left hand side with the (arithmetic) Frobenius
action on Fp-points on the right hand side. Obviously V
 � Jp � is a module over the ring
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Q 
 � T1
�
N � and is free of rank 2 as such. For any Fp-schemes Z, Z

�
and any Fp-map

f : Z � Z
�
the diagram

(5.7) Z
f

//

FZ

��

Z
�

FZ �
��

Z
f

// Z
�

commutes, where columns are absolute Frobenius. Taking Z � SpecFp, Z
� � Jp, we see

that the Frobp action of V
 � Jp � through Fp-points is identical to the action induced by the
intrinsic absolute Frobenius morphism F : Jp � Jp over Fp. Here is the essential input, to
be proven later.

Theorem 5.16 (Eichler-Shimura). In EndFp

�
Jp � ,

�
Tp � �

� F
� � p � � F

� � w 	 1
ζ Fwζ

� � p � 	 1
� F

where F
�

denotes the dual morphism.

The extra relation involving wζ is crucial. The interested reader should compare this
with [108, Cor. 7.10].

Let us admit Theorem 5.16 and use it to prove Theorem 5.12. We will then prove
Theorem 5.16. Using an Fp-rational base point P (e.g., the cusp 0), we get a commutative
diagram

X1
�
N � � Fp

� � //

FX1 � N �
��

Jp

F

��

X1
�
N � � Fp

� � // Jp

where FX1 � N � denotes the absolute Frobenius morphism of X1
�
N � � Fp , so by Albanese func-

toriality F � Alb
�
FX1 � N � � . Thus

FF
� � Alb

�
FX1 � N � � � Pic0 � FX1 � N � �� deg
�
FX1 � N � � � p

as X1
�
N � � Fp is a smooth curve. We conclude from

�
Tp � �

� F
� � p � � F

�
that

F2 � �
Tp � � F

�
p � p � �

� 0

on Jp, hence in V
 � Jp � . Thus, ρN � 

�
Frobp � satisfies the expected quadratic polynomial

X2 � �
Tp � � X

�
p � p � �

� 0 �
Let X2 � aX

�
b be the true characteristic polynomial, which ρN � 


�
Frobp � must also satisfy,

by Cayley-Hamilton. We must prove that a � �
Tp � � , and then b � p � p � � is forced. It is this

matter which requires the second relation.
We want trQ ��� T1 � N �

�
ρN � 


�
Frobp � � �

�
Tp � � or equivalently

trQ � � T1 � N �
�
V
 � F � � � �

Tp � � �
Using the modified Weil pairing

� x � y � 
 � �
x � wζy �	
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and using the fact that V
 � Jp � �� V
 � Pic0
X1 � N � � Q

� respects Weil pairings (by invoking the

relativization of this concept, here over Z � 1
N � ) we may identify (via Theorem 5.8 and a

choice Q 
 � 1 � �� Q 
 as Q 
 -vector spaces)

V
 � Jp � �� HomQ � � V
 � Jp � � Q 
 � : � V
 � Jp � �

as Q 
 � T1
�
N � -modules, but taking the F-action over to the � p � � F

�
-action, since adjoints

with respect to Weil pairings are dual morphisms and w 	 1
ζ F

�
wζ is dual to w 	 1

ζ Fwζ
�

� p � 	 1
� F � F � p � 	 1

� (absolute Frobenius commutes with all morphisms of Fp-schemes!)
Since V
 � Jp � is free of rank 2 over Q 
 � T1

�
N � and HomQ� � Q 
 � T1

�
N � � Q 
 � is free of

rank 1 over Q 
 � T1
�
N � , by Corollary 5.9, we conclude

trQ ��� T1 � N �
�
F 
V
 � Jp � � � trQ ��� T1 � N �

� � p � � F
� 
V
 � Jp � � ���

We wish to invoke the following applied to the Q 
 -algebra Q 
 � T1
�
N � and the Q 
 � T1

�
N � -

module V
 � Jp � :
Lemma 5.17. Let O be a commutative ring, A a finite locally free O-algebra with HomO

�
A � O �

a locally free A-module
�
necessarily of rank 1 � . Let M be a finite locally free A-module,

M � � HomO
�
M � O � , so M � is finite and locally free over A with the same rank as M. For

any A-linear map f : M � M with O-dual f � : M � � M � , automatically A-linear,

char
�
f � � char

�
f � �

in A � T � � these are the characteristic polynomials � .
Proof. Without loss of generality O is local, so A is semilocal. Making faithfully flat base
change to the henselization of O (or the completion if O is noetherian or if we first reduce
to the noetherian case), we may assume that A is a product of local rings. Without loss of
generality, A is then local, so

M � � Aei

if free, and HomO
�
A � O � is free of rank 1 over A. Choose an isomorphism

h : A �� HomO
�
A � O �

as A-modules, so the projections

πi : M � Aei �
� A

satisfy e �i
� h

�
i � � πi in M � . These e �i are an A-basis of M � and we compute matrices over A:

Mat � ei �
�
f � � Mat � e �i �

�
f � � t �

�

We conclude that

trQ��� T1 � N �
�
F 
V
 � Jp � � � trQ��� T1 � N �

� � p � � f
� 
V
 � Jp � � �

By Theorem 5.16, we have

2
�
Tp � �

� tr
� �

Tp � � 
V

�
Jp � �

� tr
�
F
� � p � � F

� 
V
 � Jp � �
� 2tr

�
F 
V
 � Jp � ���

This proves that tr
�
F 
V
 � Jp � � �

�
Tp � � , so indeed X2 � �

Tp � � X
�

p � p � � is the characteristic
polynomial. Finally, there remains
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Proof of Theorem 5.16. It suffices to check the maps coincide on a Zariski dense subset
of Jp

�
Fp � � Pic0 � X1

�
N � � Fp

� . If g is the genus of X1
�
N � � Z � 1

N � and we fix an Fp-rational base

point, we get an induced surjective map

X1
�
N � g� Fp

� Jp � Fp
�

so for any dense open U � X1
�
N � Fp

, Ug � �
Jp � � Fp

hits a Zariski dense subset of Fp-
points. Taking U to be the ordinary locus of Y1

�
N � � Fp

, it suffices to study what happens

to a difference
�
x ��� �

x
� � for x � x � �

Y1
�
N � � Fp � corresponding to

�
E � P � , � E � � P � � over Fp

with E and E
�
ordinary elliptic curves.

By the commutative diagram (5.7), the map

Jp
�
Fp ��� Jp

�
Fp �

induced by F is the same as the map induced by the pth power map in Fp. By definition
of Pic0 functoriality, this corresponds to base change of an invertible sheaf on X1

�
N � � Fp

by the absolute Frobenius on Fp. By definition of Y1
�
N � � Fp

as a universal object, such

base change induces on Y1
�
N � � Fp � exactly “base change by absolute Frobenius” on elliptic

curves with a point of exact order N over Fp. We conclude

F
� �

x � � �
x
� � � � �

E � p � � P � p � � � � �
E
� � � p � � P � p � �

where
� � � p � denotes base change by absolute Frobenius on Fp.

Since p � FF
� � F

�
F and F is bijective on Fp-points, we have

F
� � �

x � � �
x
� � � � pF 	 1 � � x � � �

x
� � �

� p
� �

E � p � 1 � � P � p � 1 � � � � �
E
� � � p � 1 � � � P � � � p � 1 � � � �

Thus,

� p � � F
� � �

x � � �
x
� � � � p

�
E � p � 1 � � pP � p � 1 � � � p

� �
E
� � � p � 1 � � p � P � � � p � 1 � �

so
�
F
� � p � � F

� � � � x � � �
x
� � � � �

E � p � � P � p � � � p
�
E � p � 1 � � pP � p � 1 � �

� � �
E
� � � p � � � P � � � p � � � p

� �
E
� � � p � 1 � � p � P � � � p � 1 � ���

Computing
�
Tp � � on Jp

� Pic0
X1 � N � � Z � 1

N �
� Z � 1

N � Fp is more subtle because
�
Tp � � was de-

fined over Z � 1
N p � (or over Q) as

�
π2 � � π �1 and was extended over Z � 1

N � by the Néronian
property. That is, we do not have a direct definition of

�
Tp � � in characteristic p, so we will

need to lift to characteristic 0 to compute. It is here that the ordinariness assumption is
crucial, for we shall see that, in some sense,

�
Tp � �

� �
x � � �

x
� � � � �

F
� � p � � F

� � � � x � � �
x
� � �

as divisors for ordinary points x, x
�
. This is, of course, much stronger than the mere linear

equivalence that we need to prove.
Before we dive into the somewhat subtle calculation of

�
Tp � �

� �
x � � � x � � � , let’s quickly

take care of the relation w 	 1
ζ Fwζ

� � p � 	 1
� F , or equivalently,

Fwζ
� wζ � p 	 1 � � F �
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All maps here are induced by maps on X1
�
N � � Fp

, with F � Alb
�
FX1 � N � � , wζ

� Alb
�
wζ � X1 � N � � ,� p 	 1 � �

� Alb
�
Ip � 1 � . Thus, it suffices to show

FX1 � N � � wζ
� wζIp � 1FX1 � N �

on X1
�
N � � Fp

, and we can check by studying x � �
E � P � �

Y1
�
N � � Fp � :

FX1 � N � wζ
�
x � � FX1 � N �

�
E � P� P � � � �

E � p � � P � p � � � P � � � p � �
where � P� P � � N

� ζ, so � P � p � � � P � � � p � � N
� ζp by compatibility of the (relative) Weil pairing

with respect to base change. Meanwhile,

wζIp � 1FX1 � N �
�
x � � wζ

�
E � p � � p 	 1P � p � � � �

E � p � � � p 	 1P � p � � � Q �
where � p 	 1P � p � � Q � N

� ζ, or equivalently � P � p � � Q � � ζp. Since Q � �
P
� � � p � is such a point,

this second relation is established.
Now we turn to the problem of computing�

Tp � �
� �

x � � �
x
� � �

for “ordinary points” x � �
E � P � , x

� � �
E
� � P � � as above. Let R � Zun

p , W
�
Fp � , or more

generally any henselian (e.g., complete) discrete valuation ring with residue field Fp and
fraction field K of characteristic 0. Since p � N, R is a Z � 1

N � -algebra. Since Y1
�
N � is smooth

over Z � 1
N � , we conclude from the (strict) henselian property that Y1

�
N � � R � � Y1

�
N � � Fp �

is surjective. Of course, this can be seen “by hand”: if
�
E � P � is given over Fp, choose a

Weierstrass model E � � P2
R lifting E (this is canonically an elliptic curve, by [62, Ch 2]).

The finite étale group scheme E �N � is constant since R is strictly henselian. Thus there
exists a unique closed immersion of group schemes Z � NZ � � E �N � lifting P : Z � NZ � �
E �N � .

Let
�
E � P � , � E � � P � � over R lift x, x

�
respectively. We view these sections to X1

�
N � � R �

SpecR as relative effective Cartier divisors of degree 1. Using the reduction map

Pic0
X1 � N � � Z � 1

N �

�
R ��� Jp

�
Fp �

and the definition of
�
Tp � � , we see that

�
Tp � �

� �
x ��� �

x
� � � is the image of

�
Tp � �

� �
E � P ����

E
� � P � � � . Now R is NOT a Z � 1

N p � -algebra but K is, and we have an injection (even bijec-
tion)

Pic0
X1 � N � � Z � 1

N �

�
R � � � Pic0

X1 � N � � Z � 1
N �

�
K � �

as Pic0
X1 � N � � Z � 1

N �
� SpecZ � 1

N � is separated (even proper).

Thus, we will first compute
�
Tp � �

� �
x � � � x � � � by working with K-points, where K is an

algebraic closure of K. Since p � N, we have
�
π2 � � π �1

� �
E � P � � K � � ∑

C

�
EK � C � PK mod C �

where C runs through all p
�

1 order-p subgroups of E � K . Since E � SpecR has ordinary
reduction, and R is strictly henselian, the connected-étale sequence of E � p � is the short
exact sequence of finite flat R-group schemes

0 � µp � E � p � � Z � pZ � 0 �
Enlarging R to a finite extension does not change the residue field Fp, so we may

assume that
E � p � � K �� Z � pZ � Z � pZ �
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Taking the scheme-theoretic closure in E � p � of the p
�

1 distinct subgroups of E � p � � K gives
p
�

1 distinct finite flat subgroup schemes C � E realizing the p
�

1 distinct C’s over K.
Exactly one of these C ’s is killed by E � p � � Z � pZ over R, as this can be checked on

the generic fiber, so it must be µp � � E � p � . For the remaining C ’s, the map C � Z � pZ is
an isomorphism on the generic fiber. We claim these maps

C � Z � pZ

over R are isomorphisms. Indeed, if C is étale this is clear, yet C � � E � p � is a finite flat
closed subgroup-scheme of order p, so a consideration of the closed fiber shows that if C
is not étale then it is multiplicative. But E � p � has a unique multiplicative subgroup-scheme
since

E � p � � �� E � p �
by Cartier-Nishi duality and E � p � has a unique order-p étale quotient (as any such quotient
must kill the µp we have inside E � p � .)

Thus,
�
π2 � � π �1

� �
E � P � � K � � ∑

C

�
E � C � P mod C � � ∑

C �
�
E
� � C � � P � mod C

� �
� Pic0

X1 � N � � Z � 1
N �

�
R �

coincides with
�
Tp � �

� �
E � P � � � E � � P � � � as both induce the same K-point. Passing to closed

fibers,
�
Tp � �

� �
x � � �

x
� � � � �

E � µp � P mod µp � � p
�
E � Z � pZ

� � P mod Z � pZ �
� �

E
� � µp � P

�
mod µp � � p

�
E
� � Z � pZ � P � mod Z � pZ �

where E � p � �� µp � Z � pZ and E
� � p � �� µp � Z � pZ are the canonical splittings of the connected-

étale sequence over the perfect field Fp.
Now consider the relative Frobenius morphism

FE � Fp
: E � E � p � �

which sends O to O (and P to P � p � ) and so is a map of elliptic curves over Fp. Recall that
in characteristic p, for any map of schemes X � S we define the relative Frobenius map
FX � S : X � X � p � to be the unique S-map fitting into the diagram

X
FX � S

//

!!D
DD

DD
DD

DD

FX

((
X � p � //

��

X

��

S
FS

// S

where FS, FX are the absolute Frobenius maps. Since E � SpecFp is smooth of pure
relative dimension 1, FE � Fp

is finite flat of degree p1 � p. It is bijective on points, so
ker

�
FE � Fp

� must be connected of order p.
The only such subgroup-scheme of E is µp � � E � p � by the ordinariness. Thus

E � µp �
� E � p �

is easily seen to take P mod µp to P � p � .
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Similarly, we have

E
FE � Fp

//

p

((
E � p �

F �E � Fp

// E

so F
�

E � Fp
is étale of degree p and base extension by Frob 	 1 : Fp � Fp gives

E � p � 1 � //

p
**

E // E � p � 1 �

P � p � 1 � � // P
� // p � P � p � 1 � �

As the second map in this composite is étale of degree p, we conclude
�
E � Z � pZ � P mod Z � pZ � �� �

E � p � 1 � � pP � p � 1 � � �
Thus, in Pic0

X1 � N �
�
Fp � ,

�
Tp � �

� �
x � � �

x
� � � � �

E � p � � P � p � � � p �

�
E � p � 1 � � p � P � p � 1 � �

� � �
E
� � � p � � � P � � � p � � � p �

� �
E
� � � p � 1 � � p �

�
P
� � � p � 1 � �

which we have seen is equal to
�
F
� � p � � F

� � � � x � � �
x
� � � .

�


