14

Hecke operators as correspondences:

W. Stein, Math 252, 10/31/03

Our goal is to view the Hecke operators T_{n} and $\langle d\rangle$ as objects defined over \mathbf{Q} that act in a compatible way on modular forms, modular Jacobians, and homology. In order to do this, we will define the Hecke operators as correspondences.

14.1 The Definition

Definition 14.1.1 (Correspondence). Let C_{1} and C_{2} be curves. A correspondence $C_{1} \rightsquigarrow C_{2}$ is a curve C together with nonconstant morphisms $\alpha: C \rightarrow C_{1}$ and $\beta: C \rightarrow C_{2}$. We represent a correspondence by a diagram

Given a correspondence $C_{1} \rightsquigarrow C_{2}$ the dual correspondence $C_{2} \rightsquigarrow C_{1}$ is obtained by looking at the diagram in a mirror

In defining Hecke operators, we will focus on the simple case when the modular curve is $X_{0}(N)$ and Hecke operator is T_{p}, where $p \nmid N$. We will view T_{p} as a correspondence $X_{0}(N) \rightsquigarrow X_{0}(N)$, so there is a curve $C=X_{0}(p N)$ and maps α and β fitting into a diagram

The maps α and β are degeneracy maps which forget data. To define them, we view $X_{0}(N)$ as classifying isomorphism classes of pairs (E, C), where E is an elliptic curve and C is a cyclic subgroup of order N (we will not worry about what happens at the cusps, since any rational map of nonsingular curves extends uniquely to a morphism). Similarly, $X_{0}(p N)$ classifies isomorphism classes of pairs (E, G) where $G=C \oplus D, C$ is cyclic of order N and D is cyclic of order p. Note that since $(p, N)=1$, the group G is cyclic of order $p N$ and the subgroups C and D are uniquely determined by G. The map α forgets the subgroup D of order p, and β quotients out by D :

$$
\begin{align*}
\alpha:(E, G) & \mapsto(E, C) \tag{14.1.1}\\
\beta:(E, G) & \mapsto(E / D,(C+D) / D) \tag{14.1.2}
\end{align*}
$$

We translate this into the language of complex analysis by thinking of $X_{0}(N)$ and $X_{0}(p N)$ as quotients of the upper half plane. The first map α corresponds to the map

$$
\Gamma_{0}(p N) \backslash \mathfrak{h} \rightarrow \Gamma_{0}(N) \backslash \mathfrak{h}
$$

induced by the inclusion $\Gamma_{0}(p N) \hookrightarrow \Gamma_{0}(N)$. The second map β is constructed by composing the isomorphism

$$
\Gamma_{0}(p N) \backslash \mathfrak{h} \xrightarrow{\sim}\left(\begin{array}{ll}
p & 0 \tag{14.1.3}\\
0 & 1
\end{array}\right) \Gamma_{0}(p N)\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right)^{-1} \backslash \mathfrak{h}
$$

with the map to $\Gamma_{0}(N) \backslash \mathfrak{h}$ induced by the inclusion

$$
\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right) \Gamma_{0}(p N)\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right)^{-1} \subset \Gamma_{0}(N)
$$

The isomorphism (14.1.3) is induced by $z \mapsto\left(\begin{array}{cc}p & 0 \\ 0 & 1\end{array}\right) z=p z$; explicitly, it is

$$
\Gamma_{0}(p N) z \mapsto\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right) \Gamma_{0}(p N)\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right)^{-1}\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right) z
$$

(Note that this is well-defined.)
The maps α and β induce pullback maps on differentials

$$
\alpha^{*}, \beta^{*}: \mathrm{H}^{0}\left(X_{0}(N), \Omega^{1}\right) \rightarrow \mathrm{H}^{0}\left(X_{0}(p N), \Omega^{1}\right)
$$

We can identify $S_{2}\left(\Gamma_{0}(N)\right)$ with $H^{0}\left(X_{0}(N), \Omega^{1}\right)$ by sending the cusp form $f(z)$ to the holomorphic differential $f(z) d z$. Doing so, we obtain two maps

$$
\alpha^{*}, \beta^{*}: S_{2}\left(\Gamma_{0}(N)\right) \rightarrow S_{2}\left(\Gamma_{0}(p N)\right)
$$

Since α is induced by the identity map on the upper half plane, we have $\alpha^{*}(f)=$ f, where we view $f=\sum a_{n} q^{n}$ as a cusp form with respect to the smaller group $\Gamma_{0}(p N)$. Also, since β^{*} is induced by $z \mapsto p z$, we have

$$
\beta^{*}(f)=p \sum_{n=1}^{\infty} a_{n} q^{p n}
$$

The factor of p is because

$$
\beta^{*}(f(z) d z)=f(p z) d(p z)=p f(p z) d z
$$

Let X, Y, and C be curves, and α and β be nonconstant holomorphic maps, so we have a correspondence

By first pulling back, then pushing forward, we obtain induced maps on differentials

$$
H^{0}\left(X, \Omega^{1}\right) \xrightarrow{\alpha^{*}} H^{0}\left(C, \Omega^{1}\right) \xrightarrow{\beta_{*}} H^{0}\left(Y, \Omega^{1}\right)
$$

The composition $\beta_{*} \circ \alpha^{*}$ is a map $H^{0}\left(X, \Omega^{1}\right) \rightarrow H^{0}\left(Y, \Omega^{1}\right)$. If we consider the dual correspondence, which is obtained by switching the roles of X and Y, we obtain a map $H^{0}\left(Y, \Omega^{1}\right) \rightarrow H^{0}\left(X, \Omega^{1}\right)$.

Now let α and β be as in (14.1.1). Then we can recover the action of T_{p} on modular forms by considering the induced map

$$
\beta_{*} \circ \alpha^{*}: H^{0}\left(X_{0}(N), \Omega^{1}\right) \rightarrow H^{0}\left(X_{0}(N), \Omega^{1}\right)
$$

and using that $S_{2}\left(\Gamma_{0}(N)\right) \cong H^{0}\left(X_{0}(N), \Omega^{1}\right)$.

14.2 Maps induced by correspondences

In this section we will see how correspondences induce maps on divisor groups, which in turn induce maps on Jacobians.

Suppose $\varphi: X \rightarrow Y$ is a morphism of curves. Let $\Gamma \subset X \times Y$ be the graph of φ. This gives a correspondence

We can reconstruct φ from the correspondence by using that $\varphi(x)=\beta\left(\alpha^{-1}(x)\right)$. [draw picture here]

More generally, suppose Γ is a curve and that $\alpha: \Gamma \rightarrow X$ has degree $d \geq 1$. View $\alpha^{-1}(x)$ as a divisor on Γ (it is the formal sum of the points lying over x, counted with appropriate multiplicities). Then $\beta\left(\alpha^{-1}(x)\right)$ is a divisor on Y. We thus obtain a map

$$
\operatorname{Div}^{n}(X) \xrightarrow{\beta \circ \alpha^{-1}} \operatorname{Div}^{d n}(Y)
$$

where $\operatorname{Div}^{n}(X)$ is the group of divisors of degree n on X. In particular, setting $d=0$, we obtain a map $\operatorname{Div}^{0}(X) \rightarrow \operatorname{Div}^{0}(Y)$.

We now apply the above construction to T_{p}. Recall that T_{p} is the correspondence

where α and β are as in Section 14.1 and the induced map is

$$
(E, C) \stackrel{\alpha^{*}}{\mapsto} \sum_{D \in E[p]}(E, C \oplus D) \stackrel{\beta_{*}}{\mapsto} \sum_{D \in E[p]}(E / D,(C+D) / D)
$$

Thus we have a map $\operatorname{Div}\left(X_{0}(N)\right) \rightarrow \operatorname{Div}\left(X_{0}(N)\right)$. This strongly resembles the first definition we gave of T_{p} on level 1 forms, where T_{p} was a correspondence of lattices.

14.3 Induced maps on Jacobians of curves

Let X be a curve of genus g over a field k. Recall that there is an important association

$$
\{\text { curves } X / k\} \longrightarrow\{\text { Jacobians } \operatorname{Jac}(X)=J(X) \text { of curves }\}
$$

between curves and their Jacobians.
Definition 14.3.1 (Jacobian). Let X be a curve of genus g over a field k. Then the Jacobian of X is an abelian variety of dimension g over k whose underlying group is functorially isomorphic to the group of divisors of degree 0 on X modulo linear equivalence. (For a more precise definition, see Section ?? (Jacobians section).)

There are many constructions of the Jacobian of a curve. We first consider the Albanese construction. Recall that over \mathbf{C}, any abelian variety is isomorphic to \mathbf{C}^{g} / L, where L is a lattice (and hence a free \mathbf{Z}-module of rank $2 g$). There is an embedding

$$
\begin{aligned}
\iota: \mathrm{H}_{1}(X, \mathbf{Z}) & \hookrightarrow \mathrm{H}^{0}\left(X, \Omega^{1}\right)^{*} \\
\gamma & \mapsto \int_{\gamma} \bullet
\end{aligned}
$$

Then we realize $\operatorname{Jac}(X)$ as a quotient

$$
\operatorname{Jac}(X)=\mathrm{H}^{0}\left(X, \Omega^{1}\right)^{*} / \iota\left(\mathrm{H}_{1}(X, \mathbf{Z})\right)
$$

In this construction, $\operatorname{Jac}(X)$ is most naturally viewed as covariantly associated to X, in the sense that if $X \rightarrow Y$ is a morphism of curves, then the resulting map $\mathrm{H}^{0}\left(X, \Omega^{1}\right)^{*} \rightarrow \mathrm{H}^{0}\left(Y, \Omega^{1}\right)^{*}$ on tangent spaces induces a map $\operatorname{Jac}(X) \rightarrow \operatorname{Jac}(Y)$.

There are other constructions in which $\operatorname{Jac}(X)$ is contravariantly associated to X. For example, if we view $\operatorname{Jac}(X)$ as $\operatorname{Pic}^{0}(X)$, and $X \rightarrow Y$ is a morphism, then pullback of divisor classes induces a map $\operatorname{Jac}(Y)=\operatorname{Pic}^{0}(Y) \rightarrow \operatorname{Pic}^{0}(X)=\operatorname{Jac}(X)$.

If $F: X \rightsquigarrow Y$ is a correspondence, then F induces an a map $\operatorname{Jac}(X) \rightarrow \operatorname{Jac}(Y)$ and also a map $\operatorname{Jac}(Y) \rightarrow \operatorname{Jac}(X)$. If $X=Y$, so that X and Y are the same, it can often be confusing to decide which duality to use. Fortunately, for T_{p}, with p prime to N, it does not matter which choice we make. But it matters a lot if $p \mid N$ since then we have non-commuting confusable operators and this has resulted in mistakes in the literature.

