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1.5.3 The Hecke Algebra and Eigenforms

Definition 1.5.7 (Hecke Algebra). The Hecke algebra T associated to Mk(1)
is the subring of End(Mk(1)) generated by the operators Tn for all n. Similarly,
the Hecke algebra associated to Sk(1) is the subring of End(Sk(1)) generated by
all Hecke operators Tn.

The Hecke algebra is commutative (e.g., when (n, m) = 1 we have TnTm =
Tnm = Tmn = TmTn) of finite rank over Z.

Definition 1.5.8 (Eigenform). An eigenform f ∈ Mk(1) is a nonzero element
such that f is an eigenvector for every Hecke operator Tn. If f ∈ Sk(1) is an
eigenform, then f is normalized if the coefficient of q in the q-expansion of f is 1.
We sometimes called a normalized cuspidal eigenform a newform.

If f =
∑∞

n=1 cnqn is a normalized eigenform, then Remark 1.5.5 implies that
Tn(f) = cnf . Thus the coefficients of a newform are exactly the system of eigen-
values of the Hecke operators acting on the newform.

Remark 1.5.9. It follows from Victor Miller’s thesis that T1, . . . , Tn generate T ⊂
Sk(1), where n = dim Sk(1).

1.5.4 Examples

> M := ModularForms(1,12);
> HeckeOperator(M,2);
[ 2049 196560]
[ 0 -24]
> S := CuspidalSubspace(M);
> HeckeOperator(S,2);
[-24]
> Factorization(CharacteristicPolynomial(HeckeOperator(M,2)));
[

<x - 2049, 1>,
<x + 24, 1>

]
> M := ModularForms(1,40);
> M;
Space of modular forms on Gamma_0(1) of weight 40 and dimension 4
over Integer Ring.
> Basis(M);
[

1 + 1250172000*q^4 + 7541401190400*q^5 + 9236514405888000*q^6
+ 3770797689077760000*q^7 + O(q^8),
q + 19291168*q^4 + 37956369150*q^5 + 14446985236992*q^6 +
1741415886056000*q^7 + O(q^8),
q^2 + 156024*q^4 + 57085952*q^5 + 1914094476*q^6 -
27480047616*q^7 + O(q^8),
q^3 + 168*q^4 - 12636*q^5 + 392832*q^6 - 7335174*q^7 + O(q^8)

]
> HeckeOperator(M,2);
[549755813889 0 1250172000 9236514405888000]
[0 0 549775105056 14446985236992]
[0 1 156024 1914094476]
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[0 0 168 392832]
> Factorization(CharacteristicPolynomial(HeckeOperator(M,2)));
[

<x - 549755813889, 1>,
<x^3 - 548856*x^2 - 810051757056*x + 213542160549543936, 1>

]

1.6 Two Conjectures about Hecke Operators on Level 1
Modular Forms

1.6.1 Maeda’s Conjecture

Conjecture 1.6.1 (Maeda). Let k be a positive integer such that Sk(1) has
positive dimension and let T ⊂ End(Sk(1)) be the Hecke algebra. Then there is
only one Gal(Q/Q) orbit of normalized eigenforms of level 1.

There is some numerical evidence for this conjecture. It is true for k ≤ 2000,
according to [3]. Buzzard shows in [1] that for the weights k ≤ 228 with k/12 a
prime, the Galois group of the characteristic polynomial of T2 is the full symmetric
group.

Possible student project: I have computed the characteristic polynomial of
T2 for all weights k ≤ 3000:

http://modular.fas.harvard.edu/Tables/charpoly level1/t2/

However, I never bothered to try to prove that these are all irreducible, which
would establish Maeda’s conjecture for k ≤ 3000. The MathSciNet reviewer of [3]
said “In the present paper the authors take a big step forward towards proving
Maeda’s conjecture in the affirmative by establishing that the Hecke polynomial
Tp,k(x) is irreducible and has full Galois group over Q for k ≤ 2000 and p < 2000, p
prime.” Thus stepping forward to k ≤ 3000, at least for p = 2, might be worth
doing.

1.6.2 The Gouvea-Mazur Conjecture

Fix a prime p, and let Fp,k ∈ Z[x] be the characteristic polynomial of Tp acting on
Mk(1). The slopes of Fp,k are the p-adic valuations ordp(α) ∈ Q of the roots α ∈ Qp

of Fp,k. They can be computed easily using Newton polygons. For example, the
p = 5 slopes for F5,12 are 0, 1, 1, for F5,12+4·5 they are 0, 1, 1, 4, 4, and for F5,12+4·52

they are 0, 1, 1, 5, 5, 5, 5, 5, 5, 10, 10, 11, 11, 14, 14, 15, 15, 16, 16.

> function s(k,p)
return NewtonSlopes(CharacteristicPolynomial(

HeckeOperator(ModularForms(1,k),p)),p);
end function;

> s(12,5);
[* 0, 1 *]
> s(12+4*5,5);
[* 0, 1, 4 *]
> s(12+4*5^2,5);
[* 0, 1, 5, 5, 5, 10, 11, 14, 15, 16 *]
> s(12+4*5^3,5);
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[* 0, 1, 5, 5, 5, 10, 11, 14, 15, 16, 20, 21, 24, 25, 27, 30, 31,
34, 36, 37, 40, 41, 45, 46, 47, 50, 51, 55, 55, 55, 59, 60, 63,
64, 65, 69, 70, 73, 74, 76, 79, 80, 83 *]

Let d(k, α, p) be the multiplicity of α as a slope of Fp,k.

Conjecture 1.6.2 (Gouvea-Mazur, 1992). Fix a prime p and a nonnegative
rational number α. Suppose k1 and k2 are integers with k1, k2 ≥ 2α+2, and k1 ≡ k2

(mod pn(p− 1)) for some n ≥ α. Then d(k1, α, p) = d(k2, α, p).

Notice that the above examples, with p = 5 and k1 = 12, are consistent with
this conjecture. However, the conjecture is false in general. Frank Calegari and
Kevin Buzzard recently found the first counterexample, when p = 59, k1 = 16,
α = 1, and k2 = 16 + 59 · 58 = 3438. We have d(16, 0, 59) = 0d(16, 1, 59) = 1,
d(16, α, 59) = 0 for all other α. However, initial computations strongly suggest
(but do not prove!) that d(3438, 1, 59) = 2. (This was incorrect in the version
of the notes from Friday.) It is a finite, but difficult, computation to decide
what d(3438, 1, 59) really is (see Section 1.7). Potential student project: Show
that d(3438, 1, 59) = 2! Also, look at higher level, where the computations
are easier. Using a trace formula, Calegari and Buzzard at least showed that
either d(3438, 1, 59) ≥ 2 or there exists α < 1 such that d(3438, α, 59) > 0, both of
which contradict Conjecture 1.6.2.

There are many theorems about more general formulations of the Gouvea-Mazur
conjecture, and a whole geometric theory “the Eigencurve” [2] that helps explain
it, but discussing this further is beyond the scope of this book.

1.7 A Modular Algorithm for Computing Characteristic
Polynomials of Hecke Operators

In computational investigations, it is frequently useful to compute the charac-
teristic polynomial Tp,k of the Hecke operator Tp acting on Sk(1). This can be
accomplished in several ways, each of which has advantages. The Eichler-Selberg
trace formula (see Zagier’s appendix to [6, Ch. III]), can be used to compute the
trace of Tn,k, for n = 1, p, p2, . . . , pd−1, where d = dim Sk(1), and from these
traces it is straightforward to recover the characteristic polynomial of Tp,k. Using
the trace formula, the time required to compute Tr(Tn,k) grows “very quickly” in n
(though not in k), so this method becomes unsuitable when the dimension is large
or p is large, since pd−1 is huge. Another alternative is to use modular symbols
of weight k, as in [7], but if one is only interested in characteristic polynomials,
little is gained over more naive methods (modular symbols are most useful for
investigating special values of L-functions).

In this section, we describe an algorithm to compute the characteristic polyno-
mial of the Hecke operator Tp,k, which is adapted for the case when p > 2. It could
be generalized to modular forms for Γ1(N), given a method to compute a basis
of q-expansions to “low precision” for the space of modular forms of weight k and
level N . By “low precision” we mean to precision O(qdp+1), where T1, T2, . . . , Td

generate the Hecke algebra T as a ring. The algorithm described here uses nothing
more than the basics of modular forms and some linear algebra; in particular, no
trace formulas or modular symbols are involved.
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1.7.1 Review of Basic Facts About Modular Forms

We briefly recall the background for this section. Fix an even integer k. Let Mk(1)
denote the space of weight k modular forms for SL2(Z) and Sk(1) the subspace of
cusp forms. Thus Mk(1) is a C-vector space that is equipped with a ring

T = Z[. . . Tp,k . . .] ⊂ End(Mk(1))

of Hecke operators. Moreover, there is an injective q-expansion map Mk(1) ↪→
C[[q]]. For example, when k ≥ 4 there is an Eisenstein series Ek, which lies in
Mk(1). The first two Eisenstein series are

E4(q) =
1

240
+

∑
n≥1

σ3(n)qn and E6(q) =
1

504
+

∑
n≥1

σ5(n)qn,

where q = e2πiz, σk−1(n) is the sum of the k − 1st power of the positive divisors.
For every prime number p, the Hecke operator Tp,k acts on Mk(1) by

Tp,k

∑
n≥0

anqn

 =
∑
n≥0

anpq
n + pk−1anqnp. (1.7.1)

Proposition 1.7.1. The set of modular forms Ea
4Eb

6 is a basis for Mk(1), where a
and b range through nonnegative integers such that 4a+6b = k. Moreover, Sk(1) is
the subspace of Mk(1) of elements whose q-expansions have constant coefficient 0.

1.7.2 The Naive Approach

Let k be an even positive integer and p be a prime. Our goal is to compute the
characteristic polynomial of the Hecke operator Tp,k acting on Sk(1). In practice,
when k and p are both reasonably large, e.g., k = 886 and p = 59, then the co-
efficients of the characteristic polynomial are huge (the roots of the characteristic
polynomial are O(pk/2−1)). A naive way to compute the characteristic polynomial
of Tp,k is to use (1.7.1) to compute the matrix [Tp,k] of Tp,k on the basis of Propo-
sition 1.7.1, where E4 and E6 are computed to precision p dim Mk(1), and to then
compute the characteristic polynomial of [Tp,k] using, e.g., a modular algorithm
(compute the characteristic polynomial modulo many primes, and use the Chinese
Remainder Theorem). The difficulty with this approach is that the coefficients
of the q-expansions of Ea

4Eb
6 to precision p dim Mk(1) quickly become enormous,

so both storing them and computing with them is costly, and the components of
[Tp,k] are also huge so the characteristic polynomial is difficult to compute. See
Example 1.2.3 above, where the coefficients of the q-expansions are already large.

1.7.3 The Eigenform Method

We now describe another approach to computing characteristic polynomials, which
gets just the information required. Recall Maeda’s conjecture from Section 1.6.1,
which asserts that Sk(1) is spanned by the Gal(Q/Q)-conjugates of a single eigen-
form f =

∑
bnqn. For simplicity of exposition below, we assume this conjecture,

though the algorithm can probably be modified to deal with the general case. We
will refer to this eigenform f , which is well-defined up to Gal(Q/Q)-conjugacy, as
Maeda’s eigenform.
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Lemma 1.7.2. The characteristic polynomial of the pth coefficient bp of Maeda’s
eigenform f , in the field Q(b1, b2, . . .), is equal to the characteristic polynomial of
Tp,k acting on Sk(1).

Proof. The map T⊗Q → Q(b1, b2, . . .) that sends Tn → bn is an isomorphism of
Q-algebras.

Victor Miller shows in his thesis that Sk(1) has a unique basis f1, . . . , fd ∈ Z[[q]]
with ai(fj) = δij , i.e., the first d × d block of coefficients is the identity matrix.
Again, in the general case, the requirement that there is such a basis can be avoided,
but for simplicity of exposition we assume there is such a basis. We refer to the
basis f1, . . . , fd as Miller’s basis.

Algorithm 1.7.3. We assume in the algorithm that the characteristic polynomial
of T2 has no multiple roots (this is easy to check, and if false, you’ve found on
interesting counterexample to the conjecture that the characteristic polynomial of
T2 has Galois group the full symmetric group).

1. Using Proposition 1.7.1 and Gauss elimination, we compute Miller’s basis
f1, . . . , fd to precision O(q2d+1), where d = dim Sk(1). This is exactly the
precision needed to compute the matrix of T2.

2. Using (1.7.1), we compute the matrix [T2] of T2 with respect to Miller’s basis
f1, . . . , fd.

3. Using Algorithm 1.7.5 below we write down an eigenvector e = (e1, . . . , ed) ∈
Kd for [T2]. In practice, the components of T2 are not very large, so the
numbers involved in computing e are also not very large.

4. Since e1f1 + · · ·+edfd is an eigenvector for T2, our assumption that the char-
acteristic polynomial of T2 is square free (and the fact that T is commutative)
implies that e1f1 + · · ·+ edfd is also an eigenvector for Tp. Normalizing, we
see that up to Galois conjugacy,

bp =
d∑

i=1

ei

e1
· ap(fi),

where the bp are the coefficients of Maeda’s eigenform f . For example, since
the fi are Miller’s basis, if p ≤ d then

bp =
ep

e1
if p ≤ d,

since ap(fi) = 0 for all i 6= p and ap(fp) = 1. Once we have computed bp, we
can compute the characteristic polynomial of Tp, because it is the minimal
polynomial of bp. We spend the rest of this section discussing how to make
this step practical.

Computing bp directly in step 4 is extremely costly because the divisions ei/e1

lead to massive coefficient explosion, and the same remark applies to computing
the minimal polynomial of bp. Instead we compute the reductions bp modulo `
and the characteristic polynomial of bp modulo ` for many primes `, then recover
only the characteristic polynomial of bp using the Chinese Remainder Theorem.
Deligne’s bound on the magnitude of Fourier coefficients tells us how many primes
we need to work modulo (we leave this analysis to the reader).
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More precisely, the reduction modulo ` steps are as follows. The field K can be
viewed as Q[x]/(f(x)) where f(x) ∈ Z[x] is the characteristic polynomial of T2.
We work only modulo primes such that

1. f(x) has no repeated roots modulo `,

2. ` does not divide any denominator involved in our representation of e, and

3. the image of e1 in F`[x]/(f(x)) is invertible.

For each such prime, we compute the image bp of bp in the reduced Artin ring
F`[x]/(f(x)). Then the characteristic polynomial of Tp modulo ` equals the char-
acteristic polynomial of bp. This modular arithmetic is fast and requires negligible
storage. Most of the time is spent doing the Chinese Remainder Theorem com-
putations, which we do each time we do a few computations of the characteristic
polynomial of Tp modulo `.

Remark 1.7.4. If k is really large, so that steps 1 and 2 of the algorithm take too
long or require too much memory, steps 1 and 2 can be performed modulo the
prime `. Since the characteristic polynomial of Tp,k modulo ` does not depend on
any choices, we will still be able to recover the original characteristic polynomial.

1.7.4 How to Write Down an Eigenvector over an Extension Field

The following algorithm, which was suggested to the author by H. Lenstra, pro-
duces an eigenvector defined over an extension of the base field.

Algorithm 1.7.5. Let A be an n×n matrix over an arbitrary field k and suppose
that the characteristic polynomial f(x) = xn + · · ·+ a1x + a0 of A is irreducible.
Let α be a root of f(x) in an algebraic closure k of k. Factor f(x) over k(α) as
f(x) = (x − α)g(x). Then for any element v ∈ kn the vector g(A)v is either 0 or
it is an eigenvector of A with eigenvalue α. The vector g(A)v can be computed by
finding Av, A(Av), A(A(Av)), and then using that

g(x) = xn−1 + cn−2x
n−2 + · · ·+ c1x + c0,

where the coefficients ci are determined by the recurrence

c0 = −a0

α
, ci =

ci−1 − ai

α
.

We prove below that g(A)v 6= 0 for all vectors v not in a proper subspace of
kn. Thus with high probability, a “randomly chosen” v will have the property that
g(A)v 6= 0. Alternatively, if v1, . . . vn form a basis for kn, then g(A)vi must be
nonzero for some i.

Proof. By the Cayley-Hamilton theorem [5, XIV.3] we have that f(A) = 0. Conse-
quently, for any v ∈ kn, we have (A− α)g(A)v = 0 so that Ag(A)v = αv. Since f
is irreducible it is the polynomial of least degree satisfied by A and so g(A) 6= 0.
Therefore g(A)v 6= 0 for all v not in the proper closed subspace ker(g(A)).



1.7 A Modular Algorithm for Computing Characteristic Polynomials of Hecke Operators 15

1.7.5 Simple Example: Weight 36, p = 3

We compute the characteristic polynomial of T3 acting on S36(1) using the algo-
rithm described above. A basis for M36(1) to precision 6 = 2 dim(S36(1)) is

E9
4 = 1 + 2160q + 2093040q2 + 1198601280q3 + 449674832880q4

+ 115759487504160q5 + 20820305837344320q6 + O(q7)

E6
4E2

6 = 1 + 432q − 353808q2 − 257501376q3 − 19281363984q4

+ 28393576094880q5 + 11565037898063424q6 + O(q7)

E3
4E4

6 = 1− 1296q + 185328q2 + 292977216q3 − 52881093648q4

− 31765004621280q5 + 1611326503499328q6 + O(q7)

E6
6 = 1− 3024q + 3710448q2 − 2309743296q3 + 720379829232q4

− 77533149038688q5 − 8759475843314112q6 + O(q7)

The reduced row-echelon form (Miller) basis is:

f0 = 1 + 6218175600q4 + 15281788354560q5 + 9026867482214400q6 + O(q7)

f1 = q + 57093088q4 + 37927345230q5 + 5681332472832q6 + O(q7)

f2 = q2 + 194184q4 + 7442432q5 − 197264484q6 + O(q7)

f3 = q3 − 72q4 + 2484q5 − 54528q6 + O(q7)

The matrix of T2 with respect to the basis f1, f2, f3 is

[T2] =

 0 34416831456 5681332472832
1 194184 −197264484
0 −72 −54528


This matrix has (irreducible) characteristic polynomial

g = x3 − 139656x2 − 59208339456x− 1467625047588864.

If a is a root of this polynomial, then one finds that

e = (2a + 108984, 2a2 + 108984a, a2 − 394723152a + 11328248114208)

is an eigenvector with eigenvalue a. The characteristic polynomial of T3 is then
the characteristic polynomial of e3/e1, which we can compute modulo ` for any
prime ` such that g ∈ F`[x] is square free. For example, when ` = 11,

e3

e1
=

a2 + a + 3
2a2 + 7

= 9a2 + 2a + 3,

which has characteristic polynomial

3 + 10x2 + 8x + 2.

If we repeat this process for enough primes ` and use the Chinese remainder
theorem, we find that the characteristic polynomial of T3 acting on S36(1) is

x3 + 104875308x2 − 144593891972573904x− 21175292105104984004394432.
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