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Modular Forms of Level 1 (W. Stein, Math 252, 10/27/03)

In this chapter, we view modular forms of level 1 both as holomorphic functions
on the upper half plane and functions on lattices. We then define Hecke operators
on modular forms, and derive explicit formulas for the action of Hecke operators
on q-expansions. An excellent reference for the theory of modular forms of level 1
is Serre [9, Ch. 7].

1.1 The Definition

Let k be an integer. The space Sk = Sk(1) of cusp forms of level 1 and weight k
consists of all functions f that are holomorphic on the upper half plane h and such
that for all

(
a b
c d

)
∈ SL2(Z) one has

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), (1.1.1)

and f vanishes at infinity, in a sense which we will now make precise. The matrix
( 1 1

0 1 ) is in SL2(Z), so f(τ + 1) = f(τ). Thus f passes to a well-defined function
of q(τ) = e2πiτ . Since for τ ∈ h we have |q(τ)| < 1, we may view f = f(q) as a
function of q on the punctured open unit disc {q : 0 < |q| < 1}. The condition
that f(τ) vanishes at infinity means that f(q) extends to a holomorphic function
on the open disc {z : |z| < 1} so that f(0) = 0. Because holomorphic functions are
represented by power series, there is a neighborhood of 0 such that

f(q) =
∞∑

n=1

anqn,

so for all τ ∈ h with sufficiently large imaginary part, f(τ) =
∑∞

n=1 ane2πinτ .
It will also be useful to consider the slightly large space Mk(1) of holomorphic

functions on h that transform as above and are merely required to be holomorphic
at infinity.
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Remark 1.1.1. In fact, the series
∑∞

n=1 ane2πinτ converges for all τ ∈ h. This is
because the Fourier coefficients an are O(nk/2) (see [8, Cor. 2.1.6, pg. 43]).
Remark 1.1.2. In [9, Ch. 7], the weight is defined in the same way, but in the
notation our k is twice his k.

1.2 Some Examples and Conjectures

The space Sk(1) of cusp forms is a finite-dimensional complex vector space. For k
even we have dim Sk(1) = bk/12c if k 6≡ 2 (mod 12) and bk/12c − 1 if k ≡ 2
(mod 12), except when k = 2 in which case the dimension is 0. For even k, the
space Mk(1) has dimension 1 more than the dimension of Sk(1), except when k = 2
when both have dimension 0. (For proofs, see, e.g., [9, Ch. 7, §3].)

By the dimension formula mentioned above, the first interesting example is the
space S12(1), which is a 1-dimensional space spanned by

∆(q) = q
∞∏

n=1

(1− qn)24

= q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − 16744q7 + 84480q8

− 113643q9 − 115920q10 + 534612q11 − 370944q12 − 577738q13 + · · ·

That ∆ lies in S12(1) is proved in [9, Ch. 7, §4.4] by expressing ∆ in terms of
elements of M4(1) and M6(1), and computing the q-expansion of the resulting
expression.

The Ramanujan τ function τ(n) assigns to n the nth coefficient of ∆(q).

Conjecture 1.2.1 (Lehmer). τ(n) 6= 0 for all n ≥ 1.

This conjecture has been verified for n ≤ 22689242781695999 (see Jordan and
Kelly, 1999).

Conjecture 1.2.2 (Edixhoven). Let p be a prime. There a polynomial time
algorithm to compute τ(p), polynomial in the number of digits of p.

Edixhoven has proposed an approach to find such an algorithm. His idea is to
use `-adic cohomology to find an analogue of the Schoof-Elkies-Atkin algorithm
(which counts the number Nq of points on an elliptic curves over a finite field Fq

by computing Nq mod ` for many primes `). Here’s what Edixhoven has to say
about the status of his conjecture (email, October 22, 2003):

I have made a lot of progress on proving that my method runs in
polynomial time, but it is not yet complete. I expect that all should
be completed in 2004. For higher weights [...] you need to compute on
varying curves such as X1(`) for ` up to log(p) say.

An important by-product of my method is the computation of the
mod ` Galois representations associated to ∆ in time polynomial in `.
So, it should be seen as an attempt to make the Langlands correspon-
dence for GL2 over Q available computationally.

If f ∈ Mk(1) and g ∈ Mk′(1), then it is easy to see from the definitions that
fg ∈ Mk+k′(1). Moreover, ⊕k≥0Mk(1) is a commutative graded ring generated
freely by E4 = 1 + 240

∑∞
n=1 σ3(n)qn and E6 = 1 − 504

∑∞
n=1 σ5(n)qn, where

σd(n) is the sum of the dth powers of the positive divisors of n (see [9, Ch.7, §3.2]).
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Example 1.2.3. Because E4 and E6 generate, it is straightforward to write down
a basis for any space Mk(1). For example, the space M36(1) has basis

f1 = 1 + 6218175600q4 + 15281788354560q5 + · · ·
f2 = q + 57093088q4 + 37927345230q5 + · · ·
f3 = q2 + 194184q4 + 7442432q5 + · · ·
f4 = q3 − 72q4 + 2484q5 + · · ·

1.3 Modular Forms as Functions on Lattices

In order to define Hecke operators, it will be useful to view modular forms as
functions on lattices in C.

A lattice L ⊂ C is a subring L = Zω1 + Zω2 for which ω1, ω2 ∈ C are linearly
independent over R. We may assume that ω1/ω2 ∈ h = {z ∈ C : Im(z) > 0}. Let
R be the set of all lattices in C. Let E be the set of isomorphism classes of pairs
(E,ω), where E is an elliptic curve over C and ω ∈ Ω1

E is a nonzero holomorphic
differential 1-form on E. Two pairs (E,ω) and (E′, ω′) are isomorphic if there is
an isomorphism ϕ : E → E′ such that ϕ∗(ω′) = ω.

Proposition 1.3.1. There is a bijection between R and E under which L ∈ R
corresponds to (C/L, dz) ∈ E.

Proof. We describe the maps in each direction, but leave the proof that they
induce a well-defined bijection as an exercise for the reader. Given L ∈ R, by
Weierstrass theory the quotient C/L is an elliptic curve, which is equipped with
the distinguished differential ω induced by the differential dz on C.

Conversely, if E is an elliptic curve over C and ω ∈ Ω1
E is a nonzero differential,

we obtain a lattice L in C by integrating homology classes:

L = Lω =
{∫

γ

ω : γ ∈ H1(E(C),Z)
}

.

Let
B = {(ω1, ω2) : ω1, ω2 ∈ C, ω1/ω2 ∈ h} ,

be the set of ordered basis of lattices in C, ordered so that ω1/ω2 ∈ h. There is a
left action of SL2(Z) on B given by(

a b
c d

)
(ω1, ω2) 7→ (aω1 + bω2, cω1 + dω2)

and SL2(Z)\B ∼= R. (The action is just the left action of matrices on column
vectors, except we write (ω1, ω2) as a row vector since it takes less space.)

Give a modular form f ∈ Mk(1), associate to f a function F : R → C as follows.
First, on lattices of the special form Zτ + Z, for τ ∈ h, let F (Zτ + Z) = f(τ).

In order to extend F to a function on all lattices, suppose further that F satisfies
the homogeneity condition F (λL) = λ−kF (L), for any λ ∈ C and L ∈ R. Then

F (Zω1 + Zω2) = ω−k
2 F (Zω1/ω2 + Z) := ω−k

2 f(ω1/ω2).

That F is well-defined exactly amounts to the transformation condition (1.1.1)
that f satisfies.
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Lemma 1.3.2. The lattice function F : R → C associated to f ∈ Mk(1) is well
defined.

Proof. Suppose Zω1 + Zω2 = Zω′1 + Zω′2 with ω1/ω2 and ω′1/ω′2 both in h. We
must verify that ω−k

2 f(ω1/ω2) = (ω′2)
−kf(ω′1/ω′2). There exists

(
a b
c d

)
∈ SL2(Z)

such that ω′1 = aω1 + bω2 and ω′2 = cω1 + dω2. Dividing, we see that ω′1/ω′2 =(
a b
c d

)
(ω1/ω2). Because f is a weight k modular form, we have

f

(
ω′1
ω′2

)
= f

((
a b
c d

) (
ω1

ω2

))
=

(
c
ω1

ω2
+ d

)k

f

(
ω1

ω2

)
.

Multiplying both sides by ωk
2 yields

ωk
2f

(
ω′1
ω′2

)
= (cω1 + dω2)kf

(
ω1

ω2

)
.

Observing that ω′2 = cω1 + dω2 and dividing again completes the proof.

Since f(τ) = F (Zτ +Z), we can recover f from F , so the map f 7→ F is injective.
Moreover, it is surjective in the sense that if F is homogeneous of degree −k, then
F arises from a function f : h → C that transforms like a modular form. More
precisely, if F : R → C satisfies the homogeneity condition F (λL) = λ−kF (L),
then the function f : h → C defined by f(τ) = F (Zτ+Z) transforms like a modular
form of weight k, as the following computation shows: For any

(
a b
c d

)
∈ SL2(Z) and

τ ∈ h, we have

f

(
aτ + b

cτ + d

)
= F

(
Z

aτ + b

cτ + d
+ Z

)
= F ((cτ + d)−1 (Z(aτ + b) + Z(cτ + d)))

= (cτ + d)kF (Z(aτ + b) + Z(cτ + d))

= (cτ + d)kF (Zτ + Z)

= (cτ + d)kf(τ).

Say that a function F : R → C is holomorphic on h ∪ ∞ if the function f(τ) =
F (Zτ + Z) is. We summarize the above discussion in a proposition.

Proposition 1.3.3. There is a bijection between Mk(1) and functions F : R →
C that are homogeneous of degree −k and holomorphic on h ∪ {∞}. Under this
bijection F : R → C corresponds to f(τ) = F (Zτ + Z).

1.4 Hecke Operators

Define a map Tn from the free abelian group generated by all C-lattices into itself
by

Tn(L) =
∑

L′⊂L
[L:L′]=n

L′,

where the sum is over all sublattices L′ ⊂ L of index n. For any function F : R → C
on lattices, define Tn(F ) : R → C by

(Tn(F ))(L) = nk−1
∑

L′⊂L
[L:L′]=n

F (L′).
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Note that if F is homogeneous of degree −k, then Tn(F ) is also homogeneous
of degree −k.

Since (n, m) = 1 implies TnTm = Tnm and Tpk is a polynomial in Z[Tp] (see [9,
Cor. 1, pg. 99]), the essential case to consider is n prime.

Suppose L′ ⊂ L with [L : L′] = n. Then every element of L/L′ has order
dividing n, so nL ⊂ L′ ⊂ L and

L′/nL ⊂ L/nL ≈ (Z/nZ)2.

Thus the subgroups of (Z/nZ)2 of order n correspond to the sublattices L′ of L of
index n. When n = ` is prime, there are `+1 such subgroups, since the subgroups
correspond to nonzero vectors in F` modulo scalar equivalence, and there are
(`2 − 1)(`− 1) = ` + 1 of them.

Recall from Proposition 1.3.1 that there is a bijection between the set R of
lattices in C and the set E of isomorphism classes of pairs (E,ω), where ω is a
nonzero differential on E.

Suppose F : R → C is homogeneous of degree −k, so F (λL) = λ−kF (L). Then
we may also view T` as a sum over lattices that contain L with index `, as follows.
Suppose L′ ⊂ L is a sublattice of index ` and set L′′ = `−1L′. Then we have a
chain of inclusions

`L ⊂ L′ ⊂ L ⊂ `−1L′ = L′′.

Since [`−1L′ : L′] = `2 and [L : L′] = `, it follows that [L′′ : L] = `. By homogeneity,

T`(F )(L) = `k−1
∑

[L:L′]=`

F (L′) =
1
`

∑
[L′′:L]=`

F (L′′). (1.4.1)

1.5 Hecke Operators Directly on q-expansions

Recall that the nth Hecke operator Tn of weight k is

Tn(L) = nk−1
∑

L′⊂L
[L:L′]=n

L′.

Modular forms of weight k correspond to holomorphic functions on lattices of
degree −k, and Tn extend to an operator on these functions on lattices, so Tn

defines on operator on Mk(1). Recall that Fourier expansion defines an injective
map Mk(1) ⊂ C[[q]]. In this section, we describe Tn(

∑
anqn) explicitly as a q-

expansion.

1.5.1 Explicit Description of Sublattices

In order to describe Tn more explicitly, we explicitly enumerate the sublattices
L′ ⊂ L of index n. More precisely, we give a basis for each L′ in terms of a basis
for L. Note that L/L′ is a group of order n and

L′/nL ⊂ L/nL = (Z/nZ)2.

Write L = Zω1 + Zω2, let Y2 be the cyclic subgroup of L/L′ generated by ω2 and
let d = #Y2. If Y1 = (L/L′)/Y2, then Y1 is generated by the image of ω1, so it is a
cyclic group of order a = n/d. Our goal is to exhibit a basis of L′. Let ω′2 = dω2 ∈ L′
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and use that Y1 is generated by the image of ω1 to write aω1 = ω′1 − bω2 for some
integer b and some ω′1 ∈ L′. Since b is only well-defined modulo d we may assume
0 ≤ b ≤ d− 1. Thus (

ω′1
ω′2

)
=

(
a b
0 d

)(
ω1

ω2

)
and the change of basis matrix has determinant ad = n. Since

Zω′1 + Zω′2 ⊂ L′ ⊂ L = Zω1 + Zω2

and [L : Zω′1 +Zω′2] = n (since the change of basis matrix has determinant n) and
[L : L′] = n we see that L′ = Zω′1 + Zω′2.

Proposition 1.5.1. Let n be a positive integer. There is a one-to-one correspon-
dence between sublattices L′ ⊂ L of index n and matrices

(
a b
0 d

)
with ad = n and

0 ≤ b ≤ d− 1.

Proof. The correspondence is described above. To check that it is a bijection, we
just need to show that if γ =

(
a b
0 d

)
and γ′ =

(
a′ b′

0 d′

)
are two matrices satisfying

the listed conditions, and

Z(aω1 + bω2) + Zdω2 = Z(aω′1 + bω′2) + Zdω′2,

then γ = γ′. Equivalently, if σ ∈ SL2(Z) and σγ = γ′, then σ = 1. To see this, we
compute

σ = γ′γ−1 =
1
n

(
a′d ab′ − a′b
0 ad′

)
.

Since σ ∈ SL2(Z), we have n | a′d, and n | ad′, and aa′dd′ = n2. If a′d > n, then
because aa′dd′ = n2, we would have ad′ < n, which would contradict the fact
that n | ad′; also, a′d < n is impossible since n | a′d. Thus a′d = n and likewise
ad′ = n. Since ad = n as well, it follows that a′ = a and d′ = d, so σ = ( 1 t

0 1 ) for
some t ∈ Z. Then σγ =

(
a b+dt
0 d

)
, which implies that t = 0, since 0 ≤ b ≤ d − 1

and 0 ≤ b + dt ≤ d− 1.

Remark 1.5.2. As mentioned earlier, when n = ` is prime, there are `+1 sublattices
of index `. In general, the number of such sublattices is the sum of the positive
divisors of n (exercise).

1.5.2 Hecke operators on q-expansions

Recall that if f ∈ Mk(1), then f is a holomorphic functions on h ∪ {∞} such that

f(τ) = f

(
aτ + b

cτ + d

)
(cτ + d)−k

for all
(

a b
c d

)
∈ SL2(Z). Using Fourier expansion we write

f(τ) =
∞∑

m=0

cme2πiτm,

and say f is a cusp form if c0 = 0. Also, there is a bijection between modular
forms f of weight k and holomorphic lattice functions F : R → C that satisfy
F (λL) = λ−kF (L); under this bijection F corresponds to f(τ) = F (Zτ + Z).
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Now assume f(τ) =
∑∞

m=0 cmqm is a modular form with corresponding lattice
function F . Using the explicit description of sublattices from Section 1.5.1 above,
we can describe the action of the Hecke operator Tn on the Fourier expansion of
f(τ), as follows:

TnF (Zτ + Z) = nk−1
∑
a,b,d
ab=n

0≤b≤d−1

F ((aτ + b)Z + dZ)

= nk−1
∑

d−kF

(
aτ + b

d
Z + Z

)
= nk−1

∑
d−kf

(
aτ + b

d

)
= nk−1

∑
a,d,b,m

d−kcme2πi( aτ+b
d )m

= nk−1
∑

a,d,m

d1−kcme
2πiamτ

d
1
d

d−1∑
b=0

(
e

2πim
d

)b

= nk−1
∑

ad=n
m′≥0

d1−kcdm′e2πiam′τ

=
∑

ad=n
m′≥0

ak−1cdm′qam′
.

In the second to the last expression we let m = dm′ for m′ ≥ 0, then used that
the sum 1

d

∑d−1
b=0 (e

2πim
d )b is only nonzero if d | m.

Thus
Tnf(q) =

∑
ad=n
m≥0

ak−1cdmqam

and if µ ≥ 0 then the coefficient of qµ is∑
a|n
a|µ

ak−1cnµ

a2
.

(To see this, let m = a/µ and d = n/a and substitute into the formula above.)

Remark 1.5.3. When k ≥ 1 the coefficients of qµ for all µ belong to the Z-module
generated by the cm.

Remark 1.5.4. Setting µ = 0 gives the constant coefficient of Tnf which is∑
a|n

ak−1c0 = σk−1(n)c0.

Thus if f is a cusp form so is Tnf . (Tnf is holomorphic since its original definition
is as a finite sum of holomorphic functions.)

Remark 1.5.5. Setting µ = 1 shows that the coefficient of q in Tnf is
∑

a|1 1k−1cn =
cn. As an immediate corollary we have the following important result.

Corollary 1.5.6. If f is a cusp form such that Tnf has 0 as coefficient of q for
all n ≥ 1, then f = 0.
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When n = p is prime, the action action of Tp on the q-expansion of f is given
by the following formula:

Tpf =
∑
µ≥0

∑
a|n
a|µ

ak−1cnµ

a2
qµ.

Since n = p is prime, either a = 1 or a = p. When a = 1, cpµ occurs in the
coefficient of qµ and when a = p, we can write µ = pλ and we get terms pk−1cλ in
qλp. Thus

Tpf =
∑
µ≥0

cpµqµ + pk−1
∑
λ≥0

cλqpλ.
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