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Modular Forms (W. Stein, Math 252, 10/22/03)

1.1 Modular Forms of Level 1

In this section, we view modular forms of level 1 both as holomorphic functions
on the upper half plane and functions on lattices. We then define Hecke operators
on modular forms, and derive explicit formulas for the action of Hecke operators
on q-expansions. An excellent reference for the theory of modular forms of level 1
is Serre [10, Ch. 7].

1.1.1 The Definition

Let k be an integer. The space Sk = Sk(1) of cusp forms of level 1 and weight k
consists of all functions f that are holomorphic on the upper half plane h and such
that for all

(
a b
c d

)
∈ SL2(Z) one has

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ),

and f vanishes at infinity, in a sense which we will now make precise. The matrix
( 1 1

0 1 ) is in SL2(Z), so f(τ + 1) = f(τ). Thus f passes to a well-defined function
of q(τ) = e2πiτ . Since for τ ∈ h we have |q(τ)| < 1, we may view f = f(q) is a
function of q on the punctured open unit disc {q : 0 < |q| < 1}. The condition
that f(τ) vanishes at infinity means that f(q) extends to a holomorphic function
on the open disc {z : |z| < 1} so that f(0) = 0. Because holomorphic functions are
represented by power series, there is a neighborhood of 0 such that

f(q) =
∞∑

n=1

anqn,

so for all τ ∈ h with sufficiently large imaginary part, f(τ) =
∑∞

n=1 ane2πiτ .
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It will also be useful to consider the slightly large space Mk(1) of holomorphic
functions on h that transform as above and are merely required to be holomorphic
at infinity.

Remark 1.1.1. In fact, the series
∑∞

n=1 ane2πiτ converges for all τ ∈ h. This is
because the Fourier coefficients an are O(nk/2) (see [7, Cor. 2.1.6, pg. 43]).

Remark 1.1.2. In [10, Ch. 7], the weight is defined in the same way, but in the
notation our k is twice his k.

1.1.2 Some Examples and Conjectures

The space Sk(1) of cusp forms is a finite-dimensional complex vector space. For k
even we have dim Sk(1) = bk/12c if k 6≡ 2 (mod 12) and bk/12c − 1 if k ≡ 2
(mod 12), except when k = 2 in which case the dimension is 0. For even k, the
space Mk(1) has dimension 1 more than the dimension of Sk(1), except when k = 2
when both have dimension 0. (For proofs, see, e.g., [10, Ch. 7, §3].)

By the dimension formula mentioned above, the first interesting example is the
space S12(1), which is a 1-dimensional space spanned by

∆(q) = q
∞∏

n=1

(1− qn)24

= q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − 16744q7 + 84480q8

− 113643q9 − 115920q10 + 534612q11 − 370944q12 − 577738q13 + · · ·

That ∆ lies in S12(1) is proved in [10, Ch. 7, §4.4] by expressing ∆ in terms of
elements of M4 and M6, and computing the q-expansion of the resulting expression.

The Ramanujan τ function τ(n) assigns to n the nth coefficient of ∆(q).

Conjecture 1.1.3 (Lehmer). τ(n) 6= 0 for all n ≥ 1.

This conjecture has been verified for n ≤ 22689242781695999 (see Jordan and
Kelly, 1999).

Conjecture 1.1.4 (Edixhoven). Let p be a prime. There a polynomial time
algorithm to compute τ(p), polynomial in the number of digits of p.

Edixhoven has proposed an approach to find such an algorithm. His idea is to
use `-adic cohomology to find an analogue of the Schoof-Elkies-Atkin algorithm
(which counts the number Nq of points on an elliptic curves over a finite field Fq

by computing Nq mod ` for many primes `). Here’s what Edixhoven has to say
about the status of his conjecture (email, October 22, 2003):

I have made a lot of progress on proving that my method runs in
polynomial time, but it is not yet complete. I expect that all should
be completed in 2004. For higher weights [...] you need to compute on
varying curves such as X1(`) for ` up to log(p) say.

An important by-product of my method is the computation of the
mod ` Galois representations associated to ∆ in time polynomial in `.
So, it should be seen as an attempt to make the Langlands correspon-
dence for GL2 over Q available computationally.
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If f ∈ Mk(1) and g ∈ Mk′(1), then it is easy to see from the definitions that
fg ∈ Mk+k′(1). Moreover, ⊕k≥0Mk(1) is a commutative graded ring generated
freely by E4 = 1 + 240

∑∞
n=1 σ3(n)qn and E6 = 1 − 504

∑∞
n=1 σ5(n)qn, where

σd(n) is the sum of the dth powers of the positive divisors of n (see [10, Ch.7,
§3.2]).
Example 1.1.5. Because E4 and E6 generate, it is straightforward to write down
a basis for any space Mk(1). For example, the space M36(1) has basis

f1 = 1 + 6218175600q4 + 15281788354560q5 + · · ·
f2 = q + 57093088q4 + 37927345230q5 + · · ·
f3 = q2 + 194184q4 + 7442432q5 + · · ·
f4 = q3 − 72q4 + 2484q5 + · · ·

1.1.3 Modular Forms as Functions on Lattices

In order to define Hecke operators, it will be useful to view modular forms as
functions on lattices in C.

A lattice L ⊂ C is a subring L = Zω1 + Zω2 for which ω1, ω2 ∈ C are linearly
independent over R. We may assume that ω1/ω2 ∈ h = {z ∈ C : Im(z) > 0}. Let
R be the set of all lattices in C.

Proposition 1.1.6. The elements of R are in bijection with pairs (E,ω), where E
is an elliptic curve over C and ω ∈ Ω1

E is a nonzero holomorphic differential 1-form
on E.

Proof. Given L ∈ R, by Weierstrass theory the quotient C/L is an elliptic curve,
which is equipped with the distinguished differential ω induced by the differential
dz on C.

Conversely, if E is an elliptic curve over C and ω ∈ Ω1
E is a nonzero differential,

we obtain a lattice L in C by integrating all homology classes:

L =
{∫

γ

ω : γ ∈ H1(E(C),Z)
}

.

Note that the differential induced by dz on C/L corresponds to the differential ω
on E, since for α ∈ L = H1(C/L,Z), we have∫ α

0

dz = [z]α0 = α− 0 = α,

and a differential is determined by the map it induces on homology.

Let
B = {(ω1, ω2) : ω1, ω2 ∈ C, ω1/ω2 ∈ h} ,

be the set of ordered basis of lattices in C, ordered so that ω1/ω2 ∈ h. There is a
left action of SL2(Z) on B given by(

a b
c d

)
(ω1, ω2) 7→ (aω1 + bω2, cω1 + dω2)

and SL2(Z)\B ∼= R. (The action is just the left action of matrices on column
vectors, except we write (ω1, ω2) as a row vector since it takes less space.)
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Given f : h → C, associate to f define function F : R → C as follows. On
lattices of the special form Zτ + Z, for τ ∈ h, let F (Zτ + Z) = f(τ). In order to
extend F uniquely to a function on all lattices, suppose further that F satisfies
the homogeneity condition F (λL) = λ−kF (L), for any λ ∈ C and L ∈ R. Then

F (Zω1 + Zω2) = ω−k
2 F (Zω1/ω2 + Z) = ω−k

2 f(ω1/ω2).

Since f(τ) = F (Zτ + Z), the map f 7→ F is injective.
If F : R → C is any function that satisfies the homogeneity condition F (λL) =

λ−kF (L) then the function f : h → C defined by f(τ) = F (Zτ + Z) transforms
like a modular form, as the following computation shows: For any

(
a b
c d

)
∈ SL2(Z)

and τ ∈ h, we have

f

(
aτ + b

cτ + d

)
= F

(
Z

aτ + b

cτ + d
+ Z

)
= F ((cτ + d)−1 (Z(aτ + b) + Z(cτ + d)))

= (cτ + d)kF (Z(aτ + b) + Z(cτ + d))

= (cτ + d)kF (Zτ + Z)

= (cτ + d)kf(τ).

Thus the elements of Mk(1) are in bijection with functions F : R → C the are
homogeneous of degree −k and satisfy an appropriate holomorphy condition.

1.1.4 Hecke Operators

Define a map Tn from the free abelian group generated by all C-lattices into itself
by

Tn(L) =
∑

(L:L′)=n

L′,

where the sum is over all sublattices L′ ⊂ L of index n. For any function F : R → C
on lattices, define Tn(F ) : R → C by

(Tn(F ))(L) = nk−1
∑

(L:L′)=n

F (L′).
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