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1.5.4 Every abelian variety is a quotient of a Jacobian

Over an infinite field, every abelin variety can be obtained as a quotient of a
Jacobian variety. The modular abelian varieties that we will encounter later are,
by definition, exactly the quotients of the Jacobian J1(N) of X1(N) for some N .
In this section we see that merely being a quotient of a Jacobian does not endow
an abelian variety with any special properties.

Theorem 1.5.4 (Matsusaka). Let A be an abelian variety over an algebraically
closed field. Then there is a Jacobian J and a surjective map J → A.

This was originally proved in On a generating curve of an abelian variety, Nat.
Sc. Rep. Ochanomizu Univ. 3 (1952), 1–4. Here is the Math Review by P. Samuel:

An abelian variety A is said to be generated by a variety V (and a
mapping f of V into A) if A is the group generated by f(V ). It is proved
that every abelian variety A may be generated by a curve defined over
the algebraic closure of def(A). A first lemma shows that, if a variety
V is the carrier of an algebraic system (X(M))M∈U of curves (X(M)
being defined, non-singular and disjoint from the singular bunch of V
for almost all M in the parametrizing variety U) if this system has a
simple base point on V , and if a mapping f of V into an abelian variety
is constant on some X(M0), then f is a constant; this is proved by
specializing on M0 a generic point M of U and by using specializations
of cycles [Matsusaka, Mem. Coll. Sci. Kyoto Univ. Ser. A. Math. 26,
167–173 (1951); these Rev. 13, 379]. Another lemma notices that, for a
normal projective variety V , a suitable linear family of plane sections
of V may be taken as a family (X(M)). Then the main result follows
from the complete reducibility theorem. This result is said to be the
basic tool for generalizing Chow’s theorem (”the Jacobian variety of a
curve defined over k is an abelian projective variety defined over k”).

Milne [2, §10] proves the theorem under the weaker hypothesis that the base field
is infinite. We briefly sketch his proof now. If dimA = 1, then A is the Jacobian
of itself, so we may assume dimA > 1. Embed A into Pn, then, using the Bertini
theorem, cut A ⊂ Pn by hyperplane sections dim(A)− 1 times to obtain a nonsin-
gular curve C on A of the form A ∩ V , where V is a linear subspace of Pn. Using
standard arguments from Hartshorne [1], Milne shows (Lemma 10.3) that if W is
a nonsingular variety and π : W → A is a finite morphism, then π−1(C) is geomet-
rically connected (the main point is that the pullback of an ample invertible sheaf
by a finite morphism is ample). (A morphism f : X → Y is finite if for every open
affine subset U = Spec(R) ⊂ Y , the inverse image f−1(U) ⊂ X is an affine open
subset Spec(B) with B a finitely generated R-module. Finite morphisms have
finite fibers, but not conversely.) We assume this lemma and deduce the theorem.

Let J be the Jacobian of C; by the universal property of Jacobians there is
a unique homomorphism f : J → A coming from the inclusion C ↪→ A. The
image A1 = f(J) is an abelian subvariety since images of homomorphisms of
abelian varieties are abelian varieties. By the Poincare reducibility theorem (we
only proved this over C, but it is true in general), there is an abelian subvariety
A2 ⊂ A such that A1 +A2 = A and A1∩A2 is finite. The isogeny g : A1×A2 → A
given by g(x, y) = x+ y ∈ A is a finite morphism (any isogeny of abelian varieties
is finite, flat, and surjective by Section 8 of [2]). The inverse image g−1(A1) is a
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union of #(A1 ∩A2) irreducible components; if this intersection is nontrivial, then
likewise g−1(C) is reducible, which is a contradiction. This does not complete the
proof, since it is possible that g is an isomorphism, so we use one additional trick.
Suppose n is a positive integer coprime to the residue characteristic, and let

h = 1× [n] : A1 ×A2 → A1 ×A2

be the identity map on the first factor and multiplication by n on the second.
Then h is finite and (h ◦ g)−1(A1) is a union of n2 dimA2 = deg(h) irreducible
components, hence (h ◦ g)−1(C) is reducible, a contradiction.

Question 1.5.5. Is Theorem 1.5.4 false for some abelian variety A over some
finite field k?

Question 1.5.6 (Milne). Using the theorem we can obtain a sequence of Jaco-
bian varieties J1, J2, . . . that form a complex

. . .→ J2 → J1 → A→ 0.

(In each case the image of Ji+1 is the connected component of the kernel of Ji →
Ji−1.) Is it possible to make this construction in such a way that the sequence
terminates in 0?

Question 1.5.7 (Yau). Let A be an abelian variety. What can be said about
the minimum of the dimensions of all Jacobians J such that there is a surjective
morphism J → A?

Remark 1.5.8. Brian Conrad has explained to the author that if A is an abelian
variety over an infinite field, then A can be embedded in a Jacobian J . This does
not follow directly from Theorem 1.5.4 above, since if J →→ A∨, then the dual map
A→ J need not be injective.

1.6 Néron Models

The main references for Néron models are as follows:

1. [AEC2]: Silverman, Advanced Topics in the Arithmetic of Elliptic Curves.
Chapter IV of this book contains an extremely well written and motivated
discussion of Néron models of elliptic curves over Dedekind domains with
perfect residue field. In particular, Silverman gives an almost complete con-
struction of Néron models of elliptic curves. Silverman very clearly really
wants his reader to understand the construction. Highly recommended.

2. [BLR]: Bosch, Lütkebohmert, Raynaud, Néron Models. This is an excellent
and accessible book that contains a complete construction of Néron models
and some of their generalizations, a discussion of their functorial properties,
and a sketch of the construction of Jacobians of families of curves. The goal
of this book was to redo in scheme-theoretic language Néron original paper,
which is written in a language that was ill-adapted to the subtleties of Néron
models.

3. Artin, Néron Models, in Cornell-Silverman. This is the first-ever exposition
of Néron’s original paper in the language of schemes.
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1.6.1 What are Néron Models?

Suppose E is an elliptic curve over Q. If ∆ is the minimal discriminant of E,
then E has good reduction at p for all p - ∆, in the sense that E extends to an
abelian scheme E over Zp (i.e., a “smooth” and “proper” group scheme). One can
not ask for E to extend to an abelian scheme over Zp for all p | ∆. One can,
however, ask whether there is a notion of “good” model for E at these bad primes.
To quote [BLR, page 1], “It came as a surprise for arithmeticians and algebraic
geometers when A. Néron, relaxing the condition of properness and concentrating
on the group structure and the smoothness, discovered in the years 1961–1963 that
such models exist in a canonical way.”

Before formally defining Néron models, we describe what it means for a mor-
phism f : X → Y of schemes to be smooth. A morphism f : X → Y is finite type
if for every open affine U = Spec(R) ⊂ Y there is a finite covering of f−1(U) by
open affines Spec(S), such that each S is a finitely generated R-algebra.

Definition 1.6.1. A finite-type morphism f : X → Y is smooth at x ∈ X if there
are open affine neighborhoods Spec(A) ⊂ X of x and Spec(R) ⊂ Y of f(x) such
that

A ∼= R[t1, . . . , tn+r]/(f1, . . . , fn)

for elements f1, . . . , fn ∈ R[t1, . . . , tn+r] and all n×nminors of the Jacobian matrix
(≤ fi/∂tj) generate the unit ideal of A. The morphism f is étale if, in addition,
r = 0.

Smooth morphisms behave well. For example, if f and g are smooth and f ◦ g
is defined then f ◦ g is automatically smooth. Also, smooth morphisms are closed
under base extension: if f : X → Y is a smooth morphism over S, and S′ is
a scheme over S, then the induced map X ×S S′ → Y ×S S′ is smooth. (By
the way, if you’ve never seen products of schemes, it’ll be helpful to know that
Spec(R)×Spec(S) = Spec(R⊗S). Read Hartshorne or ask me for more information
about fiber products, which aren’t too hard, and provide a nice geometric way to
think about tensor products.)

We are now ready for the definition. Suppose R is a Dedekind domain with field
of fractions K (e.g., R = Z and K = Q).

Definition 1.6.2 (Néron model). Let A be an abelian variety over K. The
Néron model A of A is a smooth commutative group scheme over R such that for
any smooth S → Spec(R) the natural map

Hom(S,A) → Hom(S ×R K,A)

is a bijection.

Taking S = A in the definition we see that A is unique, up to a unique isomor-
phism.

It is a deep theorem that Néron models exist. Fortunately, Bosch, Lütkebohmert,
and Raynaud devoted much time to create a carefully written book that explains
the construction in modern language. Also, in the case of elliptic curves, Silver-
man’s second book is extremely helpful.

The basic idea of the construction is to first observe that if we can construct
a Néron model at each localization Rp at a nonzero prime ideal of R, then each
of these local models can be glued to obtain a global Néron model (this uses that
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there are only finitely many primes of bad reduction). Thus we may assume that
R is a discrete valuation ring.

The next step is to pass to the “strict henselization” R′ of R. A local ring R with
maximal ideal ℘ is henselian if “every simple root lifts uniquely”; more precisely,
if whenever f(x) ∈ R[x] and α ∈ R is such that f(α) ≡ 0 (mod ℘) and f ′(α) 6≡ 0
(mod ℘), there is a unique element α̃ ∈ R such that α̃ ≡ α (mod ℘) and f(α̃) = 0.
The strict henselization of a discrete valuation ring R is an extension of R that
is henselian and for which the residue field of R′ is the separable closure of the
residue field of R (when the residue field is finite, the separable close is just the
algebraic closure). The strict henselization is not too much bigger than R, though
it is typically not finitely generated over R. It is, however, much smaller than
the completion of R (e.g., Zp is uncountable). The main geometric property of
a strictly henselian ring R with residue field k is that if X is a smooth scheme
over R, then the reduction map X(R) → X(k) is surjective.

Working over the strict henselization, we resolve singularities and use a gener-
alization of the theorem that Weil used to construct Jacobians by passing from
a birational group law to an actual group law on a related object to obtain the
Néron model of the strict henselization. Finally, we use Grothendieck’s faithfully
flat descent to obtain a Néron model over the original discrete valuation ring.

When A is the Jacobian of a curve there is an alternative approach. For example,
when A is an elliptic curve, it is the Jacobian of itself, and the Néron model can
be constructed in terms of the “minimal proper regular” model X of A as follows.
In general, X → R is not be smooth. Let X ′ be the smooth locus of X → R,
which is obtained by removing from each closed fiber XFp

=
∑
niCi all irreducible

components with multiplicity ni ≥ 2 and all singular points on each Ci, and all
points where at least two Ci intersect each other. Then the group structure on A
extends to a group structure on X ′, and X ′ equipped with this group structure is
the Néron model of A.

Explicit determination of the possibilities for the minimal proper regular model
of an elliptic curve was carried out by Kodaira, then Néron, and finally in a
very explicit form by Tate. Tate codified a way to find the model in what’s
called “Tate’s Algorithm” (see Antwerp IV, which is available on my web page:
http://modular.fas.harvard.edu/scans/antwerp/, and look at Silverman, chap-
ter IV, which also has important implementation advice).

Néron models exist. In the next sections, we’ll see some ways in which they will
be directly relevant to this course.

1.6.2 Some Motivation: The Birch and Swinnerton-Dyer Conjecture

The Real Volume

Étale Cohomology and the Shafarevich-Tate Group

Tamagawa Numbers

1.6.3 Functorial Properties of Neron Models
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