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1.4 A Summary of Duality and Polarizations

Suppose A is an abelian variety over an arbitrary field k. In this section we sum-
marize the most important properties of the dual abelian variety A∨ of A. First we
review the language of sheaves on a scheme X, and define the Picard group of X as
the group of invertible sheaves on X. The dual of A is then a variety whose points
correspond to elements of the Picard group that are algebraically equivalent to 0.
Next, when the ground field is C, we describe how to view A∨ as a complex torus
in terms of a description of A as a complex torus. We then define the Néron-Severi
group of A and relate it to polarizations of A, which are certain homomorphisms
A→ A∨. Finally we observe that the dual is functorial.

1.4.1 Sheaves

We will use the language of sheaves, as in [1], which we now quickly recall. A
pre-sheaf of abelian groups F on a scheme X is a contravariant functor from the
category of open sets on X (morphisms are inclusions) to the category of abelian
groups. Thus for every open set U ⊂ X there is an abelian group F(U), and if
U ⊂ V , then there is a restriction map F(V ) → F(U). (We also require that
F(∅) = 0, and the map F(U) → F(U) is the identity map.) A sheaf is a pre-sheaf
whose sections are determined locally (for details, see [1, §II.1]).

Every scheme X is equipped with its structure sheaf OX , which has the property
that if U = Spec(R) is an affine open subset of X, then OX(U) = R. A sheaf of
OX-modules is a sheaf M of abelian groups on X such that each abelian group has
the structure of OX -module, such that the restriction maps are module morphisms.
A locally-free sheaf of OX -modules is a sheaf M of OX -modules, such that X can
be covered by open sets U so that M|U is a free OX -module, for each U .

1.4.2 The Picard Group

An invertible sheaf is a sheaf L of OX -modules that is locally free of rank 1. If L
is an invertible sheaf, then the sheaf-theoretic Hom, L∨ = Hom(L,OX) has the
property that L∨⊗L = OX . The group Pic(X) of invertible sheaves on a scheme X
is called the Picard group of X. See [1, §II.6] for more details.

Let A be an abelian variety over a field k. An invertible sheaf L on A is alge-
braically equivalent to 0 if there is a connected variety T over k, an invertible sheaf
M on A×k T , and t0, t1 ∈ T (k) such that Mt0

∼= L and Mt1
∼= OA. Let Pic0(A)

be the subgroup of elements of Pic(A) that are algebraically equivalent to 0.
The dual A∨ of A is a (unique up to isomorphism) abelian variety such that for

every field F that contains the base field k, we have A∨(F ) = Pic0(AF ). For the
precise definition of A∨ and a proof that A∨ exists, see [2, §9–10].

1.4.3 The Dual as a Complex Torus

When A is defined over the complex numbers, so A(C) = V/L for some vector
space V and some lattice L, [4, §4] describes a construction of A∨ as a complex
torus, which we now describe. Let

V ∗ = {f ∈ HomR(V,C) : f(αt) = αf(t), all α ∈ C, t ∈ V }.



1.4 A Summary of Duality and Polarizations 11

Then V ∗ is a complex vector space of the same dimension as V and the map
〈f, v〉 = Imf(t) is an R-linear pairing V ∗ × V → R. Let

L∗ = {f ∈ V ∗ : 〈f, λ〉 ∈ Z, all λ ∈ L}.

Since A is an abelian variety, there is a nondegenerate Riemann form H on A.
The map λ : V → V ∗ defined by λ(v) = H(v, ·) is an isomorphism of complex
vector spaces. If v ∈ L, then λ(v) = H(v, ·) is integer valued on L, so λ(L) ⊂ L∗.
Thus λ induces an isogeny of complex tori V/L→ V ∗/L∗, so by Lemma 1.3.7 the
torus V ∗/L∗ possesses a nondegenerate Riemann form (it’s a multiple of H). In
[4, §4], Rosen describes an explicit isomorphism between V ∗/L∗ and A∨(C).

1.4.4 The Néron-Several Group and Polarizations

Let A be an abelian variety over a field k. Recall that Pic(A) is the group of
invertible sheaves on A, and Pic0(A) is the subgroup of invertible sheaves that
are algebraically equivalent to 0. The Néron-Severi group of A is the quotient
Pic(A)/Pic0(A), so by definition we have an exact sequence

0 → Pic0(A) → Pic(A) → NS(A) → 0.

Suppose L is an invertible sheaf on A. One can show that the map A(k) →
Pic0(A) defined by a 7→ t∗aL ⊗ L−1 is induced by homomorphism ϕL : A →
A∨. (Here t∗aL is the pullback of the sheaf L by translation by a.) Moreover, the
map L 7→ ϕL induces a homomorphism from Pic(A) → Hom(A,A∨) with kernel
Pic0(A). The group Hom(A,A∨) is free of finite rank, so NS(A) is a free abelian
group of finite rank. Thus Pic0(A) is saturated in Pic(A) (i.e., the cokernel of the
inclusion Pic0(A) → Pic(A) is torsion free).

Definition 1.4.1 (Polarization). A polarization on A is a homomorphism λ :
A→ A∨ such that λk = ϕL for some L ∈ Pic(Ak). A polarization is principal if it
is an isomorphism.

When the base field k is algebraically closed, the polarizations are in bijection
with the elements of NS(A). For example, when dimA = 1, we have NS(A) = Z,
and the polarizations on A are multiplication by n, for each integer n.

1.4.5 The Dual is Functorial

The association A 7→ A∨ extends to a contravariant functor on the category of
abelian varieties. Thus if ϕ : A→ B is a homomorphism, there is a natural choice
of homomorphism ϕ∨ : B∨ → A∨. Also, (A∨)∨ = A and (ϕ∨)∨ = ϕ.

Theorem 1.4.2 below describes the kernel of ϕ∨ in terms of the kernel of ϕ.
If G is a finite group scheme, the Cartier dual of G is Hom(G,Gm). For example,
the Cartier dual of Z/mZ is µm and the Cartier dual of µm is Z/mZ. (If k is
algebraically closed, then the Cartier dual of G is just G again.)

Theorem 1.4.2. If ϕ : A→ B is a surjective homomorphism of abelian varieties
with kernel G, so we have an exact sequence 0 → G → A → B → 0, then the
kernel of ϕ∨ is the Cartier dual of G, so we have an exact sequence 0 → G∨ →
B∨ → A∨ → 0.
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The Dual Abelian Variety
The dual of A is an abelian variety isogenous to 
A that parametrizes classes of invertible sheaves
on A that are algebraically equivalent to zero.

The dual is functorial:

Polarized Abelian 
Varieties

A polarization of A is an isogeny (homomorphism) from A
to its dual that is induced by a divisor on A.   A polarization 
of degree 1 is called a principal polarization.

Theorem. If A is the Jacobian of a curve, then A is 
canonically principally polarized.  For example, elliptic
curves are principally polarized.

Cassels-Tate Pairing

Assume                       is finite.  Overly optimistic literature:

What if the abelian variety 
A is not an elliptic curve?

• Page 306 of [Tate, 1963]:  If A is a Jacobian then

• Page 149 of [Swinnerton-Dyer, 1967]: Tate proved that

Michael Stoll’s 
Computation

During a grey winter day in 1996, 
Michael Stoll sat puzzling over a 
computation in his study on a 
majestic embassy-peppered hill
near Bonn overlooking the Rhine. 
He had implemented an algorithm 
for computing 2-torsion in Shafarevich-Tate groups of Jacobians 
of hyperelliptic curves.  He stared at a curve X for which his 
computations were in direct contradiction to the previous slide!

What was wrong????

Poonen-Stoll

From: Michael Stoll (9 Dec 1996)
Dear Bjorn, Dear Ed:
[...] your results would imply that Sha[2] = Z/2Z
in contradiction to the fact that the order of Sha[2] should
be a square (always assuming, as everybody does, that Sha is finite).
So my question is (of course): What is wrong ?

From: Bjorn Pooenen (9 Dec 96)
Dear Michael:
Thanks for your e-mails. I'm glad someone is actually taking the time
to think about our paper critically! [...]
I would really like to resolve the apparent contradiction,
because I am sure it will end with us learning something!
(And I don't think that it will be that Sha[2] can have odd dimension!)

From: Bjorn Poonen (11 hours later)
Dear Michael:
I think I may have resolved the problem. There is nothing wrong with
the paper, or with the calculation.  The thing that is wrong is the
claim that Sha must have square order!
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Poonen-Stoll Theorem

Theorem (Annals, 1999): Suppose J is the Jacobian of a curve
and J has finite Shafarevich-Tate group.  Then 

Example: The Jacobian of this curve has Sha of order 2

Is Sha Always Square or 
Twice a Square?

Poonen asked at the Arizona Winter 
School in 2000, “Is there an abelian 
variety A with Shafarevich-Tate group 
of order three?”

In 2002 I finally found Sha of order 3 
(times a square):

Plenty of Non-square Sha!

• Theorem (Stein): For every prime 
p < 25000 there is an abelian variety
A over Q such that

• Conjecture (Stein): Same statement for all p.

How to Construct
Non-square Sha

While attempting to connect groups of points on 
elliptic curves of high rank to Shafarevich-Tate groups 
of abelian varieties of rank 0, I found a construction of 
non-square Shafarevich-Tate groups.

The Main Theorem

Theorem (Stein). Suppose E is an elliptic curve and p an odd 
prime that satisfies various technical hypothesis.   Suppose l  is a 
prime congruent to 1 mod p (and not dividing NE ) such that 

Here                                          is a Dirichlet character of order p
and conductor l  corresponding to an abelian extension K.   Then 
there is a twist A of a product of p - 1 copies of E and an exact 
sequence

If E has odd rank and                        is finite then 
has order that is not a perfect square.
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Proof Uses the Weil Restriction 
of Scalars What is the Abelian Variety A?

Let R be the Weil restriction of scalars of E from K down to Q, so R 
is an abelian variety over Q of dimension p (i.e., the degree of K).  
Then A is the kernel of the map induced by trace:

Note that
• A has dimension p – 1
• A is isomorphic over K to a product of copies of E
• Our hypothesis on    and Kato’s finiteness theorems imply that

A(Q) and                        are both finite.
• Is isogenous to Af where f is a twist of newform attached to E.  

Proof Sketch (1): Exact 
Sequence of Neron Models

Proof (2): Mazur’s Etale
Cohomology Sha Theorem

Mazur's Rational Points of Abelian Varieties 
with Values in Towers of Number Fields:

In general this is not true, but our hypothesis on p and l   
are exactly strong enough to kill the relevant error terms.

Proof (3): Long Exact Sequence

The long exact sequence of étale cohomology begins

Take the p-power torsion in this exact sequence then use 
Mazur’s theorem.   Next analyze the cokernel of δ…

Proof (4): Apply Kato’s 
Finiteness Theorems

Both of these steps use Kato’s finiteness theorem in an essential way.
Putting everything together yields the claimed exact sequence

(To see this requires chasing some diagrams.)




