10 1. Abelian Varieties: 10/10/03 notes by W. Stein

1.4 A Summary of Duality and Polarizations

Suppose A is an abelian variety over an arbitrary field k. In this section we summarize the most important properties of the dual abelian variety A^{\vee} of A. First we review the language of sheaves on a scheme X, and define the Picard group of X as the group of invertible sheaves on X. The dual of A is then a variety whose points correspond to elements of the Picard group that are algebraically equivalent to 0. Next, when the ground field is **C**, we describe how to view A^{\vee} as a complex torus in terms of a description of A as a complex torus. We then define the Néron-Severi group of A and relate it to polarizations of A, which are certain homomorphisms $A \to A^{\vee}$. Finally we observe that the dual is functorial.

1.4.1 Sheaves

We will use the language of sheaves, as in [1], which we now quickly recall. A pre-sheaf of abelian groups \mathcal{F} on a scheme X is a contravariant functor from the category of open sets on X (morphisms are inclusions) to the category of abelian groups. Thus for every open set $U \subset X$ there is an abelian group $\mathcal{F}(U)$, and if $U \subset V$, then there is a restriction map $\mathcal{F}(V) \to \mathcal{F}(U)$. (We also require that $\mathcal{F}(\emptyset) = 0$, and the map $\mathcal{F}(U) \to \mathcal{F}(U)$ is the identity map.) A sheaf is a pre-sheaf whose sections are determined locally (for details, see [1, §II.1]).

Every scheme X is equipped with its structure sheaf \mathcal{O}_X , which has the property that if $U = \operatorname{Spec}(R)$ is an affine open subset of X, then $\mathcal{O}_X(U) = R$. A sheaf of \mathcal{O}_X -modules is a sheaf \mathcal{M} of abelian groups on X such that each abelian group has the structure of \mathcal{O}_X -module, such that the restriction maps are module morphisms. A locally-free sheaf of \mathcal{O}_X -modules is a sheaf \mathcal{M} of \mathcal{O}_X -modules, such that X can be covered by open sets U so that $\mathcal{M}|_U$ is a free \mathcal{O}_X -module, for each U.

1.4.2 The Picard Group

An *invertible sheaf* is a sheaf \mathcal{L} of \mathcal{O}_X -modules that is locally free of rank 1. If \mathcal{L} is an invertible sheaf, then the sheaf-theoretic Hom, $\mathcal{L}^{\vee} = \mathcal{H}om(\mathcal{L}, \mathcal{O}_X)$ has the property that $\mathcal{L}^{\vee} \otimes \mathcal{L} = \mathcal{O}_X$. The group $\operatorname{Pic}(X)$ of invertible sheaves on a scheme X is called *the Picard group* of X. See [1, §II.6] for more details.

Let A be an abelian variety over a field k. An invertible sheaf \mathcal{L} on A is algebraically equivalent to 0 if there is a connected variety T over k, an invertible sheaf \mathcal{M} on $A \times_k T$, and $t_0, t_1 \in T(k)$ such that $\mathcal{M}_{t_0} \cong \mathcal{L}$ and $\mathcal{M}_{t_1} \cong \mathcal{O}_A$. Let $\operatorname{Pic}^0(A)$ be the subgroup of elements of $\operatorname{Pic}(A)$ that are algebraically equivalent to 0.

The dual A^{\vee} of A is a (unique up to isomorphism) abelian variety such that for every field F that contains the base field k, we have $A^{\vee}(F) = \text{Pic}^{0}(A_{F})$. For the precise definition of A^{\vee} and a proof that A^{\vee} exists, see [2, §9–10].

1.4.3 The Dual as a Complex Torus

When A is defined over the complex numbers, so $A(\mathbf{C}) = V/L$ for some vector space V and some lattice L, [4, §4] describes a construction of A^{\vee} as a complex torus, which we now describe. Let

$$V^* = \{ f \in \operatorname{Hom}_{\mathbf{R}}(V, \mathbf{C}) : f(\alpha t) = \overline{\alpha} f(t), \text{ all } \alpha \in \mathbf{C}, t \in V \}.$$

Then V^* is a complex vector space of the same dimension as V and the map $\langle f, v \rangle = \text{Im}f(t)$ is an **R**-linear pairing $V^* \times V \to \mathbf{R}$. Let

$$L^* = \{ f \in V^* : \langle f, \lambda \rangle \in \mathbf{Z}, \text{ all } \lambda \in L \}.$$

Since A is an abelian variety, there is a nondegenerate Riemann form H on A. The map $\lambda : V \to V^*$ defined by $\lambda(v) = H(v, \cdot)$ is an isomorphism of complex vector spaces. If $v \in L$, then $\lambda(v) = H(v, \cdot)$ is integer valued on L, so $\lambda(L) \subset L^*$. Thus λ induces an isogeny of complex tori $V/L \to V^*/L^*$, so by Lemma 1.3.7 the torus V^*/L^* possesses a nondegenerate Riemann form (it's a multiple of H). In [4, §4], Rosen describes an explicit isomorphism between V^*/L^* and $A^{\vee}(\mathbf{C})$.

1.4.4 The Néron-Several Group and Polarizations

Let A be an abelian variety over a field k. Recall that Pic(A) is the group of invertible sheaves on A, and $Pic^{0}(A)$ is the subgroup of invertible sheaves that are algebraically equivalent to 0. The *Néron-Severi group* of A is the quotient $Pic(A)/Pic^{0}(A)$, so by definition we have an exact sequence

$$0 \to \operatorname{Pic}^{0}(A) \to \operatorname{Pic}(A) \to \operatorname{NS}(A) \to 0.$$

Suppose \mathcal{L} is an invertible sheaf on A. One can show that the map $A(k) \to \operatorname{Pic}^{0}(A)$ defined by $a \mapsto t_{a}^{*}\mathcal{L} \otimes \mathcal{L}^{-1}$ is induced by homomorphism $\varphi_{\mathcal{L}} : A \to A^{\vee}$. (Here $t_{a}^{*}\mathcal{L}$ is the pullback of the sheaf \mathcal{L} by translation by a.) Moreover, the map $\mathcal{L} \mapsto \varphi_{\mathcal{L}}$ induces a homomorphism from $\operatorname{Pic}(A) \to \operatorname{Hom}(A, A^{\vee})$ with kernel $\operatorname{Pic}^{0}(A)$. The group $\operatorname{Hom}(A, A^{\vee})$ is free of finite rank, so $\operatorname{NS}(A)$ is a free abelian group of finite rank. Thus $\operatorname{Pic}^{0}(A)$ is saturated in $\operatorname{Pic}(A)$ (i.e., the cokernel of the inclusion $\operatorname{Pic}^{0}(A) \to \operatorname{Pic}(A)$ is torsion free).

Definition 1.4.1 (Polarization). A *polarization* on A is a homomorphism $\lambda : A \to A^{\vee}$ such that $\lambda_{\overline{k}} = \varphi_{\mathcal{L}}$ for some $\mathcal{L} \in \operatorname{Pic}(A_{\overline{k}})$. A polarization is *principal* if it is an isomorphism.

When the base field k is algebraically closed, the polarizations are in bijection with the elements of NS(A). For example, when dim A = 1, we have $NS(A) = \mathbf{Z}$, and the polarizations on A are multiplication by n, for each integer n.

1.4.5 The Dual is Functorial

The association $A \mapsto A^{\vee}$ extends to a contravariant functor on the category of abelian varieties. Thus if $\varphi : A \to B$ is a homomorphism, there is a natural choice of homomorphism $\varphi^{\vee} : B^{\vee} \to A^{\vee}$. Also, $(A^{\vee})^{\vee} = A$ and $(\varphi^{\vee})^{\vee} = \varphi$.

Theorem 1.4.2 below describes the kernel of φ^{\vee} in terms of the kernel of φ . If G is a finite group scheme, the *Cartier dual* of G is $\text{Hom}(G, \mathbf{G}_m)$. For example, the Cartier dual of $\mathbf{Z}/m\mathbf{Z}$ is μ_m and the Cartier dual of μ_m is $\mathbf{Z}/m\mathbf{Z}$. (If k is algebraically closed, then the Cartier dual of G is just G again.)

Theorem 1.4.2. If $\varphi : A \to B$ is a surjective homomorphism of abelian varieties with kernel G, so we have an exact sequence $0 \to G \to A \to B \to 0$, then the kernel of φ^{\vee} is the Cartier dual of G, so we have an exact sequence $0 \to G^{\vee} \to B^{\vee} \to A^{\vee} \to 0$.

This is page 13 Printer: Opaque this

References

- [1] R. Hartshorne, *Algebraic Geometry*, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52.
- [2] J.S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, pp. 103–150.
- [3] D. Mumford, Abelian varieties, Published for the Tata Institute of Fundamental Research, Bombay, 1970, Tata Institute of Fundamental Research Studies in Mathematics, No. 5.
- M. Rosen, Abelian varieties over C, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, pp. 79–101.
- H. P. F. Swinnerton-Dyer, Analytic theory of abelian varieties, Cambridge University Press, London, 1974, London Mathematical Society Lecture Note Series, No. 14. MR 51 #3180

A/F: abelian variety over number field

Theorem. If A is principally polarized by a polarization arising from an F-rational divisor, then there is a nondegenerate alternating pairing on $\operatorname{III}(A/F)_{/\operatorname{div}}$, so for all p: $\# \mathrm{III}(A/F)[p^{\infty}]_{/\operatorname{div}} = \Box$

(Same statement away from minimal degree of polarizations.)

Corollary. If dim A = 1 and III(A/F) finite, then #III $(A/F) = \square$

Michael Stoll's Computation

During a grey winter day in 1996, Michael Stoll sat puzzling over a computation in his study on a majestic embassy-peppered hill near Bonn overlooking the Rhine. He had implemented an algorithm

for computing 2-torsion in Shafarevich-Tate groups of Jacobians of hyperelliptic curves. He stared at a curve X for which his computations were in direct contradiction to the previous slide!

> #III(Jac(X)/Q)[2] = 2. What was wrong????

Dear Michael: I think I may have resolved the problem. There is nothing wrong with the paper, or with the calculation. The thing that is wrong is the claim that Sha must have square order!

Poonen-Stoll Theorem

Theorem (Annals, 1999): Suppose J is the Jacobian of a curve and J has finite Shafarevich-Tate group. Then

$\# \coprod (J/F) = \Box \text{ or } 2 \cdot \Box$

Example: The Jacobian of this curve has Sha of order 2

Is Sha Always Square or Twice a Square?

Poonen asked at the Arizona Winter School in 2000, "Is there an abelian variety A with Shafarevich-Tate group of order three?"

In 2002 I finally found Sha of order 3 (times a square):

- $$\begin{split} 0 &= -x_1^2 x_1^2 + (-6x_3x_2 + 3x_3^2)x_1 + (-x_2^2 + 3x_3x_2^2 + (-9x_3^2 2x_3)x_2 \\ &+ (4x_1^3 + x_2^2 + (y_1^2 + y_1 + (2y_{3y_2} y_3^2)))) \\ 0 &= -3x_2x_1^2 + ((-12x_2 2)x_2 + 3x_3^2)x_1 + (-2x_2^2 + 3x_3x_2^2 + (-3x_2^2 4x_3)x_2 + (-9x_3^2 4x_3)x_2 + (-9x_3^2 2x_3))) \\ 0 &= -3x_3x_1^2 + (-3x_2^2 + 6x_3x_2 + (-9x_3^2 2x_3))x_1 + (x_2^2 + (-9x_3 1)x_2^2 + (12x_3^2 + 2x_3)x_2 + (-9x_3^2 2x_3))x_1 + (x_2^2 + (-9x_3 1)x_2^2 + (12x_3^2 + 2x_3)x_2 + (-9x_3^2 3x_3^2 + (2x_3x_3^2 + 2x_3^2)x_2 2(3x_1x_2^2 + 2x_3^2)x_2 + (3x_1x_2^2 16)(3x_1x_2^2x_3 4x_3^2x_2 + 2x_3^2x_3 + 2x_3^2x_3 2(3x_1x_2^2x_2 + 2(3x_1x_2^2)x_2 + (3x_1x_2^2)y_3 140(3x_1x_2x_2y_3^2 40(3x_1x_2x_3^2 + 20x_1x_2x_3^2 2(3x_1x_2^2y_2 + 4(3x_1x_2^2)y_{3y_3} 140(3x_1x_2x_2y_3^2 40)(3x_1x_2x_3 + 50(3x_1x_3^2 + 10(3x_1x_3^2y_2^2 40(3x_1x_2^2y_{3y_3} 8(3x_1x_2x_3^2 + 20x_1x_2x_3^2) 6(3x_1x_2^2x_3 2(3x_2x_3^2)x_2 + 4(3x_1x_3^2)y_{3y_3} + 4(4x_3x_1x_2x_3y_3^2 40)(3x_1x_2x_3y_1 + 1)(9x_2^2 2x_2x_3 + 2(3x_1x_3^2 140)(3x_1x_2^2y_3^2 40(3x_1x_2x_3y_2 40)(3x_1x_2x_3y_3 + 1)(9x_2^2 2x_2x_3 + 2(3x_1x_3^2y_3^2 40)(3x_1x_2x_3y_1 10)(3x_2x_3^2y_3^2 8(3x_1x_2x_3 + 1)(9x_2^2 54(3x_1x_2^2 50)(3x_1x_3^2 10)(3x_1x_3^2y_3^2 + 4x_3)x_1x_2x_3y_2 8(3x_1x_2x_3^2 2(3x_2y_3^2 8(3x_1x_2x_3 + 1)(9x_2^2 2x_2x_3y_2 + 3(3x_1x_2x_3y_2 4(3x_1x_2x_3y_2 4(3x_1x_2x_3y_2 8(3x_1x_2x_3 + 2x_3)x_2 10(3x_1x_2x_3y_3 + 2x_3)x_3 8(3x_1x_2x_3 + 2x_3)x_2 10(3x_1x_2x_3y_3 8(3x_1x_2x_3 + 2x_3)x_2 10(3x_2x_3^2)y_2 8(3y_2x_3y_2 10)(3x_2x_3^2)y_3 8(3y_2x_3 + 1)(9x_2^2 2x_3)x_2 + 1)(9x_2^2 2x_3)x_2 + 3(3x_1x_2x_3)y_2 4(3x_1x_2x_3)y_2 4(3x$$

 - $\begin{array}{c} 1 \\ 8 (9 x_2 x_3 y_2^2 40 (9 x_2 x_3 y_2 y_3 + 4 (9 x_2 x_3 y_3^2 + 6 2 5 (9 x_3^2 + 2 5 0) x_3^2 + 2 5 (9 x_3^2 + 2 5 (9 x_3^2 + 2 5 0) x_3^2 + 2$ $50/9x^3y^2$
 - $-8/9y_2^3y_3 + 10/3y_2^2y_3^2 44/9y_2y_3^3 + 25/9y_3^4$

Plenty of Non-square Sha!

• **Theorem (Stein):** For every prime p < 25000 there is an abelian variety A over **Q** such that

$$\#\mathrm{III}(A/\mathbf{Q}) = p \cdot \Box$$

• Conjecture (Stein): Same statement for all p.

How to Construct Non-square Sha

While attempting to connect groups of points on elliptic curves of high rank to Shafarevich-Tate groups of abelian varieties of rank 0, I found a construction of non-square Shafarevich-Tate groups.

The Main Theorem

Theorem (Stein). Suppose E is an elliptic curve and p an odd prime that satisfies various technical hypothesis. Suppose ℓ is a prime congruent to 1 mod p (and not dividing N_E) such that

 $L(E, \chi_{p,\ell}, 1) \neq 0$ and $a_{\ell}(E) \not\equiv \ell + 1 \pmod{p}$

Here $\chi_{p,\ell} : (\mathbf{Z}/\ell)^* \longrightarrow \mu_p$ *is a Dirichlet character of order p* and conductor ℓ corresponding to an abelian extension K. Then there is a twist A of a product of p - 1 copies of E and an exact sequence

 $0 \to E(\mathbf{Q})/pE(\mathbf{Q}) \to \mathrm{III}(A/\mathbf{Q})[p^{\infty}] \to \mathrm{III}(E/K)[p^{\infty}] \to \mathrm{III}(E/\mathbf{Q})[p^{\infty}] \to 0.$

If E has odd rank and $\operatorname{III}(E/\mathbf{Q})[p^{\infty}]$ is finite then $\operatorname{III}(A/\mathbf{Q})[p^{\infty}]$ has order that is not a perfect square.

for the étale topology) over Z:

 $0 \rightarrow A \rightarrow R \rightarrow E \rightarrow 0.$

To check this, we use that formation of Néron models commutes with unramified base change and Prop. 7.5.3(a) of [Néron Models, 1990].

In general this is not true, but our hypothesis on p and ℓ are exactly strong enough to kill the relevant error terms.

