
6 1. Abelian Varieties

1.3 Abelian Varieties as Complex Tori
(10/08/03 notes for Math 252 by William Stein)

In this section we introduce extra structure on a complex torus T = V/L that will
enable us to understand whether or not T is isomorphic to A(C), for some abelian
variety A over C. When dimT = 1, the theory of the Weierstrass ℘ function
implies that T is always E(C) for some elliptic curve. In contrast, the generic
torus of dimension > 1 does not arise from an abelian variety.

In this section we introduce the basic structures on complex tori that are needed
to understand which tori arise from abelian varieties, to construct the dual of an
abelian variety, to see that End0(A) is a semisimple Q-algebra, and to understand
the polarizations on an abelian variety. For proofs, including extensive motivation
from the one-dimensional case, read the beautifully written book [4] by Swinnerton-
Dyer, and for another survey that strongly influenced the discussion below, see
Rosen’s [3].

1.3.1 Hermitian and Riemann Forms

Let V be a finite-dimensional complex vector space.

Definition 1.3.1 (Hermitian form). A Hermitian form is a conjugate-symmetric
pairing

H : V × V → C

that is C-linear in the first variable and C-antilinear in the second. Thus H is
R-bilinear, H(iu, v) = iH(u, v) = H(u, iv), and H(u, v) = H(v, u).

Write H = S + iE, where S,E : V × V → R are real bilinear pairings.

Proposition 1.3.2. Let H, S, and E be as above.

1. We have that S is symmetric, E is antisymmetric, and

S(u, v) = E(iu, v), S(iu, iv) = S(u, v), E(iu, iv) = E(u, v).

2. Conversely, if E is a real-valued antisymmetric bilinear pairing on V such
that E(iu, iv) = E(u, v), then H(u, v) = E(iu, v) + iE(u, v) is a Hermitian
form on V . Thus there is a bijection between the Hermitian forms on V and
the real, antisymmetric bilinear forms E on V such that E(iu, iv) = E(u, v).

Proof. To see that S is symmetric, note that 2S = H+H and H+H is symmetric
because H is conjugate symmetric. Likewise, E = (H −H)/(2i), so

E(v, u) =
1
2i

(
H(v, u)−H(v, u)

)
=

1
2i

(
H(u, v)−H(u, v)

)
= −E(u, v),

which implies that E is antisymmetric. To see that S(u, v) = E(iu, v), rewrite both
S(u, v) and E(iu, v) in terms of H and simplify to get an identity. The other two
identities follow since

H(iu, iv) = iH(u, iv) = iiH(u, v) = H(u, v).

Suppose E : V × V → R is as in the second part of the proposition. Then

H(iu, v) = E(i2u, v) + iE(iu, v) = −E(u, v) + iE(iu, v) = iH(u, v),
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and the other verifications of linearity and antilinearity are similar. For conjugate
symmetry, note that

H(v, u) = E(iv, u) + iE(v, u) = −E(u, iv)− iE(u, v)
= −E(iu,−v)− iE(u, v) = H(u, v).

Note that the set of Hermitian forms is a group under addition.

Definition 1.3.3 (Riemann form). A Riemann form on a complex torus T =
V/L is a Hermitian form H on V such that the restriction of E = Im(H) to L is
integer valued. If H(u, u) ≥ 0 for all u ∈ V then H is positive semi-definite and if
H is positive and H(u, u) = 0 if and only if u = 0, then H is nondegenerate.

Theorem 1.3.4. Let T be a complex torus. Then T is isomorphic to A(C), for
some abelian variety A, if and only if there is a nondegenerate Riemann form on T .

This is a nontrivial theorem, which we will not prove here. It is proved in [4, Ch.2]
by defining an injective map from positive divisors on T = V/L to positive semi-
definite Riemann forms, then constructing positive divisors associated to theta
functions on V . If H is a nondegenerate Riemann form on T , one computes the
dimension of a space of theta functions that corresponds to H in terms of the
determinant of E = Im(H). Since H is nondegenerate, this space of theta functions
is nonzero, so there is a corresponding nondegenerate positive divisor D. Then a
basis for

L(3D) = {f : (f) + 3D is positive } ∪ {0}

determines an embedding of T in a projective space.
Why the divisor 3D instead of D above? For an elliptic curve y2 = x3 + ax+ b,

we could take D to be the point at infinity. Then L(3D) consists of the functions
with a pole of order at most 3 at infinity, which contains 1, x, and y, which have
poles of order 0, 2, and 3, respectively.
Remark 1.3.5. (Copied from page 39 of [4].) When n = dimV > 1, however, a
general lattice L will admit no nonzero Riemann forms. For if λ1, . . . , λ2n is a
base for L then E as an R-bilinear alternating form is uniquely determined by
the E(λi, λj), which are integers; and the condition E(z, w) = E(iz, iw) induces
linear relations with real coefficients between E(λi, λj), which for general L have
no nontrivial integer solutions.

1.3.2 Complements, Quotients, and Semisimplicity of the
Endomorphism Algebra

Lemma 1.3.6. If T possesses a nondegenerate Riemann form and T ′ ⊂ T is a
subtorus, then T ′ also possesses a nondegenerate Riemann form.

Proof. If H is a nondegenerate Riemann form on a torus T and T ′ is a subtorus
of T , then the restriction of H to T ′ is a nondegenerate Riemann form on T ′ (the
restriction is still nondegenerate because H is positive definite).

Lemma 1.3.6 and Lemma 1.2.3 together imply that the kernel of a homomor-
phism of abelian varieties is an extension of an abelian variety by a finite group.
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Lemma 1.3.7. If T possesses a nondegenerate Riemann form and T → T ′ is an
isogeny, then T ′ also possesses a nondegenerate Riemann form.

Proof. Suppose T = V/L and T ′ = V ′/L′. Since the isogeny is induced by an
isomorphism V → V ′ that sends L into L′, we may assume for simplicity that V =
V ′ and L ⊂ L′. If H is a nondegenerate Riemann form on V/L, then E = Re(H)
need not be integer valued on L′. However, since L has finite index in L′, there
is some integer d so that dE is integer valued on L′. Then dH is a nondegenerate
Riemann form on V/L′.

Note that Lemma 1.3.7 implies that the quotient of an abelian variety by a finite
subgroup is again an abelian variety.

Theorem 1.3.8 (Poincare Reducibility). Let A be an abelian variety and sup-
pose A′ ⊂ A is an abelian subvariety. Then there is an abelian variety A′′ ⊂ A
such that A = A′ +A′′ and A′ ∩A′′ is finite. (Thus A is isogenous to A′ ×A′′.)

Proof. We have A(C) ≈ V/L and there is a nondegenerate Riemann form H
on V/L. The subvariety A′ is isomorphic to V ′/L′, where V ′ is a subspace of V
and L′ = V ′ ∩ L. Let V ′′ be the orthogonal complement of V ′ with respect to H,
and let L′′ = L∩V ′′. To see that L′′ is a lattice in V ′′, it suffices to show that L′′ is
the orthogonal complement of L′ in L with respect to E = Im(H), which, because
E is integer valued, will imply that L′′ has the correct rank. First, suppose that
v ∈ L′′; then, by definition, v is in the orthogonal complement of L′ with respect
to H, so for any u ∈ L′, we have 0 = H(u, v) = S(u, v) + iE(u, v), so E(u, v) = 0.
Next, suppose that v ∈ L satisfies E(u, v) = 0 for all u ∈ L′. Since V ′ = RL′ and E
is R-bilinear, this implies E(u, v) = 0 for any u ∈ V ′. In particular, since V ′ is a
complex vector space, if u ∈ L′, then S(u, v) = E(iu, v) = 0, so H(u, v) = 0.

We have shown that L′′ is a lattice in V ′′, so A′′ = V ′′/L′′ is an abelian subvariety
of A. Also L′+L′′ has finite index in L, so there is an isogeny V ′/L′⊕V ′′/L′′ → V/L
induced by the natural inclusions.

Proposition 1.3.9. Suppose A′ ⊂ A is an inclusion of abelian varieties. Then
the quotient A/A′ is an abelian variety.

Proof. Suppose A = V/L and A′ = V ′/L′, where V ′ is a subspace of V . Let
W = V/V ′ and M = L/(L ∩ V ′). Then, W/M is isogenous to the complex torus
V ′′/L′′ of Theorem 1.3.8 via the natural map V ′′ → W . Applying Lemma 1.3.7
completes the proof.

Definition 1.3.10. An abelian variety A is simple if it has no nonzero proper
abelian subvarieties.

Proposition 1.3.11. The algebra End0(A) is semisimple.

Proof. Using Theorem 1.3.8 and induction, we can find an isogeny

A ' An1
1 ×An2

2 × · · · ×Anr
r

with each Ai simple. Since End0(A) = End(A)⊗Q is unchanged by isogeny, and
Hom(Ai, Aj) = 0 when i 6= j, we have

End0(A) = End0(An1
1 )× End0(An2

2 )× · · · × End0(Anr
r )
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Each of End0(Ani
i ) is isomorphic to Mni

(Di), where Di = End0(Ai). By Schur’s
Lemma, Di = End0(Ai) is a division algebra over Q (proof: any nonzero endomor-
phism has trivial kernel, and any injective linear transformation of a Q-vector space
is invertible), so End0(A) is a product of matrix algebras over division algebras
over Q, which proves the proposition.

1.3.3 Theta Functions

Suppose T = V/L is a complex torus.

Definition 1.3.12 (Theta function). Let M : V × L → C and J : L → C be
set-theoretic maps such that for each λ ∈ L the map z 7→ M(z, λ) is C-linear. A
theta function of type (M,J) is a function θ : V → C such that for all z ∈ V and
λ ∈ L, we have

θ(z + λ) = θ(z) · exp(2πi(M(z, λ) + J(λ))).

Suppose that θ(z) is a nonzero holomorphic theta function of type (M,J). The
M(z, λ), for various λ, cannot be unconnected. Let F (z, λ) = 2πi(M(z, λ)+J(λ)).

Lemma 1.3.13. For any λ, λ′ ∈ L, we have

F (z, λ+ λ′) = F (z + λ, λ′) + F (z, λ) (mod 2πi).

Thus
M(z, λ+ λ′) = M(z, λ) +M(z, λ′), (1.3.1)

and
J(λ+ λ′)− J(λ)− J(λ′) ≡M(λ, λ′) (mod Z).

Proof. Page 37 of [4].

Using (1.3.1) we see that M extends uniquely to a function M̃ : V × V → C
which is C-linear in the first argument and R-linear in the second. Let

E(z, w) = M̃(z, w)−M(w, z),

H(z, w) = E(iz, w) + iE(z, w).

Proposition 1.3.14. The pairing H is Riemann form on T with real part E.

We call H the Riemann form associated to θ.

1.3.4 Example: Complex Tori that are not Abelian Varieties
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