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Abelian Varieties(10/06/03: Math 252, by W. Stein)

This chapter provides foundational background about abelian varieties and Ja-
cobians, with an aim toward what we will need later when we construct abelian
varieties attached to modular forms. We will not give complete proofs of very much,
but will try to give precise references whenever possible, and many examples.

We will follow the articles by Rosen [3] and Milne [1] on abelian varieties. We will
try primarily to explain the statements of the main results about abelian varieties,
and prove results when the proofs are not too technical and enhance understanding
of the statements.

1.1 Abelian Varieties

Definition 1.1.1 (Variety). A variety X over a field k is a finite-type separated
scheme over k that is geometrically integral.

The condition that X be geometrically integral means that Xk is reduced (no
nilpotents in the structure sheaf) and irreducible.

Definition 1.1.2 (Group variety). A group variety is a group object in the
category of varieties. More precisely, a group variety X over a field k is a variety
equipped with morphisms

m : X ×X → X and i : X → X

and a point 1X ∈ A(k) such that m, i, and 1X satisfy the axioms of a group; in
particular, for every k-algebra R they give X(R) a group structure that depends
in a functorial way on R.

Definition 1.1.3 (Abelian Variety). An abelian variety A over a field k is a
complete group variety.

Theorem 1.1.4. Suppose A is an abelian variety. Then
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1. The group law on A is commutative.

2. A is projective, i.e., there is an embedding from A into Pn for some n.

3. If k = C, then A(k) is analytically isomorphic to V/L, where V is a finite-
dimensional complex vector space and L is a lattice in V . (A lattice is a free
Z-module of rank equal to 2 dimV such that RL = V .)

Proof. Part 1 is not too difficult, and can be proved by showing that every mor-
phism of abelian varieties is the composition of a homomorphism with a translation,
then applying this result to the inversion map (see [1, Cor. 2.4]). Part 2 is proved
with some effort in [1, §7]. Part 3 is proved in [2, §I.1] using the exponential map
from Lie theory from the tangent space at 0 to A.

1.2 Complex Tori

Let A be an abelian variety over C. By Theorem 1.1.4, there is a complex vector
space V and a lattice L in V such that A(C) = V/L, that is to say, A(C) is a
complex torus.

More generally, if V is any complex vector space and L is a lattice in V , we call
the quotient T = V/L a complex torus. In this section, we prove some results about
complex tori that will help us to understand the structure of abelian varieties, and
will also be useful in designing algorithms for computing with abelian varieties.

The differential 1-forms and first homology of a complex torus are easy to un-
derstand in terms of T . If T = V/L is a complex torus, the tangent space to
0 ∈ T is canonically isomorphic to V . The C-linear dual V ∗ = HomC(V,C) is
isomorphic to the C-vector space Ω(T ) of holomorphic differential 1-forms on T .
Since V → T is the universal covering of T , the first homology H1(T,Z) of T is
canonically isomorphic to L.

1.2.1 Homomorphisms

Suppose T1 = V1/L1 and T2 = V2/L2 are two complex tori. If ϕ : T1 → T2 is a
(holomorphic) homomorphism, then ϕ induces a C-linear map from the tangent
space of T1 at 0 to the tangent space of T2 at 0. The tangent space of Ti at 0 is
canonically isomorphic to Vi, so ϕ induces a C-linear map V1 → V2. This maps
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sends L1 into L2, since Li = H1(Ti,Z). We thus have the following diagram:

0

��

0

��
L1

ρZ(ϕ) //

��

L2

��
V1

ρC(ϕ) //

��

L2

��
T1

ϕ //

��

T2

��
0 0

(1.2.1)

We obtain two faithful representations of Hom(T1, T2),

ρC : Hom(T1, T2) → HomC(V1, V2)

ρZ : Hom(T1, T2) → HomZ(L1, L2).

Suppose ψ ∈ HomZ(L1, L2). Then ψ = ρZ(ϕ) for some ϕ ∈ Hom(T1, T2) if and
only if there is a complex linear homomorphism f : V1 → V2 whose restriction to
L1 is ψ. Note that f = ψ⊗R is uniquely determined by ψ, so ψ arises from some
ϕ precisely when f is C-linear. This is the case if and only if fJ1 = J2f , where
Jn : Vn → Vn is the R-linear map induced by multiplication by i =

√
−1 ∈ C.

Example 1.2.1.

1. Suppose L1 = Z + Zi ⊂ V1 = C. Then with respect to the basis 1, i, we
have J1 =

(
0 −1
1 0

)
. One finds that Hom(T1, T1) is the free Z-module of rank 2

whose image via ρZ is generated by J1 and ( 1 0
0 1 ). As a ring Hom(T1, T1) is

isomorphic to Z[i].

2. Suppose L1 = Z + Zαi ⊂ V1 = C, with α3 = 2. Then with respect to
the basis 1, αi, we have J1 =

(
0 −α

1/α 0

)
. Only the scalar integer matrices

commute with J1.

Proposition 1.2.2. Let T1 and T2 be complex tori. Then Hom(T1, T2) is a free
Z-module of rank at most 4 dimT1 · dimT2.

Proof. The representation ρZ is faithful (injective) because ϕ is determined by its
action on L1, since L1 spans V1. Thus Hom(T1, T2) is isomorphic to a subgroup of
HomZ(L1, L2) ∼= Zd, where d = 2dimV1 · 2 dimV2.

Lemma 1.2.3. Suppose ϕ : T1 → T2 is a homomorphism of complex tori. Then
the image of ϕ is a subtorus of T2 and the connected component of ker(ϕ) is a
subtorus of T1 that has finite index in ker(ϕ).
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Proof. Let W = ker(ρC(ϕ)). Then the following diagram, which is induced by ϕ,
has exact rows and columns:

0

��

0

��

0

��
0 // L1 ∩W

��

// L1
//

��

L2
//

��

L2/ϕ(L1) //

��

0

0 // W

��

// V1
//

��

V2
//

��

V2/ϕ(V1) //

��

0

0 // ker(ϕ) // T1
//

��

T2
//

��

T2/ϕ(T1) //

��

0

0 0 0

Using the snake lemma, we obtain an exact sequence

0 → L1 ∩W →W → ker(ϕ) → L2/ϕ(L1) → V2/ϕ(V1) → T2/ϕ(T1) → 0.

Note that T2/ϕ(T1) is compact because it is the continuous image of a compact
set, so the cokernel of ϕ is a torus (it is given as a quotient of a complex vector
space by a lattice).

The kernel ker(ϕ) ⊂ T1 is a closed subset of the compact set T1, so is compact.
Thus L1∩W is a lattice inW . The map L2/ϕ(L1) → V2/ϕ(V1) has kernel generated
by the saturation of ϕ(L1) in L2, so it is finite, so the torus W/(L1 ∩W ) has finite
index in ker(ϕ).

Remark 1.2.4. The category of complex tori is not an abelian category because
kernels need not be in the category.

1.2.2 Isogenies

Definition 1.2.5 (Isogeny). An isogeny ϕ : T1 → T2 of complex tori is a surjec-
tive morphism with finite kernel. The degree deg(ϕ) of ϕ is the order of the kernel
of ϕ.

Note that deg(ϕ ◦ ϕ′) = deg(ϕ) deg(ϕ′).

Lemma 1.2.6. Suppose that ϕ is an isogeny. Then the kernel of ϕ is isomorphic
to the cokernel of ρZ(ϕ).

Proof. (This is essentially a special case of Lemma 1.2.3.) Apply the snake lemma
to the morphism (1.2.1) of short exact sequences, to obtain a six-term exact se-
quence

0 → KL → KV → KT → CL → CV → CT → 0,

where KX and CX are the kernel and cokernel of X1 → X2, for X = L, V, T ,
respectively. Since ϕ is an isogeny, the induced map V1 → V2 must be an isomor-
phism, since otherwise the kernel would contain a nonzero subspace (modulo a
lattice), which would be infinite. Thus KV = CV = 0. It follows that KT

∼= CL, as
claimed.



1.3 Abelian Varieties as Complex Tori 5

One consequence of the lemma is that if ϕ is an isogeny, then

deg(ϕ) = [L1 : ρZ(ϕ)(L1)] = |det(ρZ(ϕ))|.

Proposition 1.2.7. Let T be a complex torus of dimension d, and let n be a
positive integer. Then multiplication by n, denoted [n], is an isogeny T → T with
kernel T [n] ∼= (Z/nZ)2d and degree n2d.

Proof. By Lemma 1.2.6, T [n] is isomorphic to L/nL, where T = V/L. Since L ≈
Z2d, the proposition follows.

We can now prove that isogeny is an equivalence relation.

Proposition 1.2.8. Suppose ϕ : T1 → T2 is a degree m isogeny of complex tori
of dimension d. Then there is a unique isogeny ϕ̂ : T2 → T1 of degree m2d−1 such
that ϕ̂ ◦ ϕ = ϕ ◦ ϕ̂ = [m].

Proof. Since ker(ϕ) ⊂ ker([m]), the map [m] factors through ϕ, so there is a
morphism ϕ̂ such that ϕ̂ ◦ ϕ = [m]:

T1
ϕ //

[m]   A
AA

AA
AA

T2

ϕ̂

��
T1

We have

(ϕ ◦ ϕ̂− [m]) ◦ϕ = ϕ ◦ ϕ̂ ◦ φ− [m] ◦ϕ = ϕ ◦ ϕ̂ ◦ φ−ϕ ◦ [m] = ϕ ◦ (ϕ̂ ◦ φ− [m]) = 0.

This implies that ϕ ◦ ϕ̂ = [m], since ϕ is surjective. Uniqueness is clear since the
difference of two such morphisms would vanish on the image of ϕ. To see that ϕ̂
has degree m2d−1, we take degrees on both sides of the equation ϕ̂ ◦ ϕ = [m].

1.2.3 Endomorphisms

The ring End(T ) = Hom(T, T ) is called the endomorphism ring of the complex
torus T . The endomorphism algebra of T is End0(T ) = End(T )⊗Z Q.

Definition 1.2.9 (Characteristic polynomial). The characteristic polynomial
of ϕ ∈ End(T ) is the characteristic polynomial of the ρZ(ϕ). Thus the characteristic
polynomial is a monic polynomial of degree 2 dimT .

1.3 Abelian Varieties as Complex Tori
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