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3.3 Hecke Operators

In this section we will only consider the modular curve X0(N) associated to the
subgroup Γ0(N) of SL2(Z) of matrices that are upper triangular modulo N . Much
of what we say will also be true, possibly with slight modification, for X1(N), but
not for arbitrary finite-index subgroups.

There is a commutative ring

T = Z[T1, T2, T3, . . .]

of Hecke operators that acts on H1(X0(N),R). We will frequently revisit this ring,
which also acts on the Jacobian J0(N) of X0(N), and on modular forms. The ring
T is generated by Tp, for p prime, and as a free Z-module T is isomorphic to Zg,
where g is the genus of X0(N). We will not prove these facts here (see ).

Suppose
{α, β} ∈ H1(X0(N),R),

is a modular symbol, with α, β ∈ P1(Q). For g ∈ M2(Z), write g({α, β}) =
{g(α), g(β)}. This is not a well-defined action of M2(Z) on H1(X0(N),R), since
{α′, β′} = {α, β} ∈ H1(X0(N),R) does not imply that {g(α′), g(β′)} = {g(α), g(β)}.
Example 3.3.1. Using Magma we see that the homology H1(X0(11),R) is gener-
ated by {−1/7, 0} and {−1/5, 0}.
> M := ModularSymbols(11); // Homology relative to cusps,

// with Q coefficients.
> S := CuspidalSubspace(M); // Homology, with Q coefficients.
> Basis(S);
[ {-1/7, 0}, {-1/5, 0} ]

Also, we have 5{0,∞} = {−1/5, 0}.
> pi := ProjectionMap(S); // The natural map M --> S.
> M.3;
{oo, 0}
> pi(M.3);
-1/5*{-1/5, 0}

Let g = ( 2 0
0 1 ). Then 5{g(0), g(∞)} is not equal to {g(−1/5), g(0)}, so g does not

define a well-defined map on H1(X0(11),R).

> x := 5*pi(M!<1,[Cusps()|0,Infinity()]>);
> y := pi(M!<1,[-2/5,0]>);
> x;
{-1/5, 0}
> y;
-1*{-1/7, 0} + -1*{-1/5, 0}
> x eq y;
false

Definition 3.3.2 (Hecke operators). We define the Hecke operator Tp on
H1(X0(N),R) as follows. When p is a prime with p - N , we have

Tp({α, β}) =
(

p 0
0 1

)
({α, β}) +

p−1∑
r=0

(
1 r
0 p

)
({α, β}).
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When p | N , the formula is the same, except that the first summand, which involves(
p 0
0 1

)
, is omitted.

Example 3.3.3. We continue with Example 3.3.1. If we apply the Hecke operator
T2 to both 5{0,∞} and {−1/5, 0}, the “non-well-definedness” cancels out.

> x := 5*pi(M!<1,[Cusps()|0,Infinity()]> +
M!<1,[Cusps()|0,Infinity()]> + M!<1,[Cusps()|1/2,Infinity()]>);

> x;
-2*{-1/5, 0}
> y := pi(M!<1,[-2/5,0]>+ M!<1,[-1/10,0]> + M!<1,[2/5,1/2]>);
> y;
-2*{-1/5, 0}

Examples 3.3.1 shows that it is not clear that the definition of Tp given above
makes sense. For example, if {α, β} is replaced by an equivalent modular symbol
{α′, β′}, why does the formula for Tp give the same answer? We will not address
this question further here, but will revisit it later when we have a more natural
and intrinsic definition of Hecke operators. We only remark that Tp is induced by
a “correspondence” from X0(N) to X0(N), so Tp preserve H1(X0(N),Z).

3.4 Modular Symbols and Rational Homology

In this section we sketch a beautiful proof, due to Manin, of a result that is crucial
to our understanding of rationality properties of special values of L-functions. For
example, Mazur and Swinnerton-Dyer write in [5, §6], “The modular symbol is
essential for our theory of p-adic Mellin transforms,” right before discussing this
rationality result. Also, as we will see in the next section, this result implies that if
E is an elliptic curve over Q, then L(E, 1)/ΩE ∈ Q, which confirms a consequence
of the Birch and Swinnerton-Dyer conjecture.

Theorem 3.4.1 (Manin). For any α, β ∈ P1(Q), we have

{α, β} ∈ H1(X0(N),Q).

Proof (sketch). Since {α, β} = {α,∞}−{β,∞}, it suffices to show that {α,∞} ∈
H1(X0(N),Q) for all α ∈ Q. We content ourselves with proving that {0,∞} ∈
H1(X0(N),Z), since the proof for general {0, α} is almost the same.

We will use that the eigenvalues of Tp on H1(X0(N),R) have absolute value
bounded by 2

√
p, a fact that was proved by Deligne. Let p - N be a prime. Then

Tp({0,∞}) = {0,∞}+
p−1∑
r=0

{
r

p
,∞

}
= (1 + p){0,∞}+

p−1∑
r=0

{
r

p
, 0

}
,

so

(1 + p− Tp)({0,∞}) =
p−1∑
r=0

{
0,

r

p

}
.

Since p - N , the cusps 0 and r/p are equivalent (use the Euclidean algorithm
to find a matrix in SL2(Z) of the form ( r ∗

p ∗ )), so the modular symbols {0, r/p},
for r = 0, 1, . . . , p − 1 all lie in H1(X0(N),Z). Since the eigenvalues of Tp have
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absolute value at most 2
√

p, the linear transformation 1 + p− Tp of H1(X0(N),Z)
is invertible. It follows that some integer multiple of {0,∞} lies in H1(X0(N),Z),
as claimed.

There are general theorems about the denominator of {α, β} in some cases.
Example 3.3.1 above demonstrated the following theorem in the case N = 11.

Theorem 3.4.2 (Ogg [7]). Let N be a prime. Then the image

[{0,∞}] ∈ H1(X0(N),Q)/ H1(X0(N),Z)

has order equal to the numerator of (N − 1)/12.

3.5 Special Values of L-functions

This section is a preview of one of the central arithmetic results we will discuss in
more generality later in this book.

The celebrated modularity theorem of Wiles et al. asserts that there is a cor-
respondence between isogeny classes of elliptic curves E of conductor N and nor-
malized new modular eigenforms f =

∑
anqn ∈ S2(Γ0(N)) with an ∈ Z. This

correspondence is characterized by the fact that for all primes p - N , we have
ap = p + 1−#E(Fp).

Recall that a modular form for Γ0(N) of weight 2 is a holomorphic function
f : h → C that is “holomorphic at the cusps” and such that for all

(
a b
c d

) ∈ Γ0(N),

f

(
az + b

cz + d

)
= (cz + d)2f(z).

Suppose E is an elliptic curve that corresponds to a modular form f . If L(E, s)
is the L-function attached to E, then

L(E, s) = L(f, s) =
∑ an

ns
,

so, by a theorem of Hecke which we will prove [later], L(f, s) is holomorphic on
all C. Note that L(f, s) is the Mellin transform of the modular form f :

L(f, s) = (2π)sΓ(s)−1

∫ i∞

0

(−iz)sf(z)
dz

z
. (3.5.1)

The Birch and Swinnerton-Dyer conjecture concerns the leading coefficient of
the series expansion of L(E, s) about s = 1. A special case is that if L(E, 1) 6= 0,
then

L(E, 1)
ΩE

=
∏

cp ·#X(E)
#E(Q)2tor

.

Here ΩE = | ∫
E(R)

ω|, where ω is a “Néron” differential 1-form on E, i.e., a gen-
erator for H0(E , Ω1

E/Z), where E is the Néron model of E. (The Néron model of
E is the unique, up to unique isomorphism, smooth group scheme E over Z, with
generic fiber E, such that for all smooth schemes S over Z, the natural map
HomZ(S, E) → HomQ(S×Spec(Q), E) is an isomorphism.) In particular, the con-
jecture asserts that for any elliptic curve E we have L(E, 1)/ΩE ∈ Q.
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Theorem 3.5.1. Let E be an elliptic curve over Q. Then L(E, 1)/ΩE ∈ Q.

Proof (sketch). By the modularity theorem of Wiles et al., E is modular, so there
is a surjective morphism πE : X0(N) → E, where N is the conductor of E. This
implies that there is a newform f that corresponds to (the isogeny class of) E, with
L(f, s) = L(E, s). Also assume, without loss of generality, that E is “optimal” in
its isogeny class, which means that if X0(N) → E′ → E is a sequence of morphism
whose composition is πE and E′ is an elliptic curve, then E′ = E.

By Equation 3.5.1, we have

L(E, 1) = 2π

∫ i∞

0

−izf(z)dz/z. (3.5.2)

If q = e2πiz, then dq = 2πiqdz, so 2πif(z)dz = dq/q, and (3.5.2) becomes

L(E, 1) = −
∫ i∞

0

f(q)dq.

Recall that ΩE = | ∫
E(R)

ω|, where ω is a Néron differential on E. The expression
f(q)dq defines a differential on the modular curve X0(N), and there is a rational
number c, the Manin constant, such that π∗Eω = cf(q)dq. More is true: Edixhoven
proved (as did Ofer Gabber) that c ∈ Z; also Manin conjectured that c = 1 and
Edixhoven proved (unpublished) that if p | c, then p = 2, 3, 5, 7.

A standard fact is that if

L =
{∫

γ

ω : γ ∈ H1(E,Z)
}

is the period lattice of E associated to ω, then E(C) ∼= C/L. Note that ΩE is
either the least positive real element of L or twice this least positive element (if
E(R) has two real components).

The next crucial observation is that by Theorem 3.4.1, there is an integer n such
that n{0,∞} ∈ H1(X0(N),Z). This is relevant because if

L′ =
{∫

γ

f(q)dq : γ ∈ H1(X0(N),Z)
}
⊂ C.

then L = 1
cL′ ⊂ L′. This assertion follows from our hypothesis that E is optimal

and standard facts about complex tori and Jacobians, which we will prove later
[in this course/book].

One can show that L(E, 1) ∈ R, for example, by writing down an explicit real
convergent series that converges to L(E, 1). This series is used in algorithms to
compute L(E, 1), and the derivation of the series uses properties of modular forms
that we have not yet developed. Another approach is to use complex conjugation
to define an involution ∗ on H1(X0(N),R), then observe that {0,∞} is fixed by
∗. (The involution ∗ is given on modular symbols by ∗{α, β} = {−α,−β}.)

Since L(E, 1) ∈ R, the integral

∫

n{0,∞}
f(q)dq = n

∫ i∞

0

f(q)dq = −nL(E, 1) ∈ L′
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lies in the subgroup (L′)+ of elements fixed by complex conjugation. If c is the
Manin constant, we have cnL(E, 1) ∈ L+. Since ΩE is the least nonzero element of
L+ (or twice it), it follows that 2cnL(E, 1)/ΩE ∈ Z, which proves the proposition.
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