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3
Modular Symbols
These are 10/01/03 notes for Math 252 by William Stein.

This chapter is about how to explicitly compute the homology of modular curves
using modular symbols.

We assume the reader is familiar with basic notions of algebraic topology, in-
cluding homology groups of surfaces and triangulation. We also assume that the
reader has read XXX about the fundamental domain for the action of PSL2(Z) on
the upper half plane, and XXX about the construction of modular curves.

Some standard references for modular symbols are [4] [3, IV], [1], and [5]. Sec-
tions 3.1–3.2 below very closely follow Section 1 of Manin’s paper [4].

For the rest of this chapter, let Γ = PSL2(Z) and let G be a subgroup of Γ
of finite index. Note that we do not require G to be a congruence subgroup. The
quotient X(G) = G\h∗ of h∗ = h ∪ P1(Q) by G has an induced structure of
compact Riemann surface. Let π : h∗ → X(G) denote the natural projection. The
matrices

s =

(

0 −1
1 0

)

and t =

(

1 −1
1 0

)

together generate Γ; they have orders 2 and 3, respectively.

3.1 Modular symbols

Let H0(X(G),Ω1) denote the complex vector space of holomorphic 1-forms on
X(G). Integration of differentials along homology classes defines a perfect pairing

H1(X(G),R) × H0(X(G),Ω1) → C,

hence an isomorphism

H1(X(G),R) ∼= HomC(H0(X(G),Ω1),C).

For more details, see [3, §IV.1].



18 3. Modular SymbolsThese are 10/01/03 notes for Math 252 by William Stein.

Given two elements α, β ∈ h∗, integration from α to β induces a well-defined
element of HomC(H0(X(G),Ω1),C), hence an element

{α, β} ∈ H1(X(G),R).

Definition 3.1.1 (Modular symbol). The homology class {α, β} ∈ H1(X(G),R)
associated to α, β ∈ h∗ is called the modular symbol attached to α and β.

Proposition 3.1.2. The symbols {α, β} have the following properties:

1. {α, α} = 0, {α, β} = −{β, α}, and {α, β} + {β, γ} + {γ, α} = 0.

2. {g(α), g(β)} = {α, β} for all g ∈ G

3. If X(G) has nonzero genus, then {α, β} ∈ H1(X(G),Z) if and only if G(α) =
G(β) (i.e., the cusps α and β are equivalent).1 1

Remark 3.1.3. We only have {α, β} = {β, α} if {α, β} = 0, so the modular symbols
notation, which suggests “unordered pairs”, is actively misleading.

Proposition 3.1.4. For any α ∈ h∗, the map G → H1(X(G),Z) that sends g to
{α, gα} is a surjective group homomorphism that does not depend on the choice
of α.

Proof. If g, h ∈ G and α ∈ h∗, then

{α, gh(α)} = {α, gα} + {gα, ghα} = {α, gα} + {α, hα},

so the map is a group homomorphism. To see that the map does not depend on
the choice of α, suppose β ∈ h∗. By Proposition 3.1.2, we have {α, β} = {gα, gβ}.
Thus

{α, gα} + {gα, β} = {gα, β} + {β, gβ},

so cancelling {gα, β} from both sides proves the claim.
The fact that the map is surjective follows from general facts from algebraic

topology. Let h0 be the complement of Γi ∪ Γρ in h, fix α ∈ h0, and let X(G)0 =
π(h0). The map h0 → X(G)0 is an unramified covering of (noncompact) Riemann
surfaces with automorphism group G. Thus α determines a group homomorphism
π1(X(G)0, π(α)) → G. When composed with the morphism G → H1(X(G),Z)
above, the composition

π1(X(G)0, π(α)) → G→ H1(X(G),Z)

is the canonical map from the fundamental group of X(G)0 to the homology of
the corresponding compact surface, which is surjective. This forces the map G →
H1(X(G),Z) to be surjective, which proves the claim.

3.2 Manin symbols

We continue to assume that G is a finite-index subgroup of Γ = PSL2(Z), so the
set G\Γ = {Gg1, . . . Ggd} of right cosets of G in Γ is finite.

1Say more about this one.
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3.2.1 Using continued fractions to obtain surjectivity

Let R = G\Γ be the set of right cosets of G in Γ. Define

[ ] : R→ H1(X(G),R)

by [r] = {r0, r∞}, where r0 means the image of 0 under any element of the coset
r (it doesn’t matter which). For g ∈ Γ, we also write [g] = [gG].

Proposition 3.2.1. Any element of H1(X(G),Z) is a sum of elements of the form
[r], and the representation

∑

nr{αr, βr} of h ∈ H1(X(G),Z) can be chosen so that
∑

nr(π(βr) − π(αr)) = 0 ∈ Div(X(G)).

Proof. By Proposition 3.1.4, every element h of H1(X(G),Z) is of the form {0, g(0)}
for some g ∈ G. If g(0) = ∞, then h = [G] and π(∞) = π(0), so we may assume
g(0) = a/b 6= ∞, with a/b in lowest terms and b > 0. Also assume a > 0, since the
case a < 0 is treated in the same way. Let

0 =
p−2

q−2

=
0

1
,
p−1

q−1

=
1

0
,
p0

1
=
p0

q0
,
p1

q1
,
p2

q2
, . . . ,

pn

qn
=
a

b

denote the continued fraction convergents of the rational number a/b. Then

pjqj−1 − pj−1qj = (−1)j−1 for − 1 ≤ j ≤ n.

If we let gj =

(

(−1)j−1pj pj−1

(−1)j−1qj qj−1

)

, then gj ∈ SL2(Z) and

{

0,
a

b

}

=

n
∑

j=−1

{

pj−1

qj−1

,
pj

qj

}

=
n

∑

j=−1

{gj0, gj∞})

=
r

∑

j=−1

[gj ].

For the assertion about the divisor sum equaling zero, notice that the endpoints
of the successive modular symbols cancel out, leaving the difference of 0 and g(0)
in the divisor group, which is 0.

Lemma 3.2.2. If x =
∑t

j=1
nj{αj , βj} is a Z-linear combination of modular

symbols for G and
∑

nj(π(βj)− π(αj)) = 0 ∈ Div(X(G)), then x ∈ H1(X(G),Z).

Proof. We may assume that each nj is ±1 by allowing duplication. We may further
assume that each nj = 1 by using that {α, β} = −{β, α}. Next reorder the sum so
π(βj) = π(αj+1) by using that the divisor is 0, so every βj must be equivalent to
some αj′ , etc. The lemma should now be clear.
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FIGURE 3.2.1.

3.2.2 Triangulating X(G) to obtain injectivity

Let C be the abelian group generated by symbols (r) for r ∈ G\Γ, subject to the
relations

(r) + (rs) = 0, and (r) = 0 if r = rs.

For (r) ∈ C, define the boundary of (r) to be the difference π(r∞) − π(r0) ∈
Div(X(G)). Since s swaps 0 and ∞, the boundary map is a well-defined map on
C. Let Z be its kernel.

Let B be the subgroup of C generated by symbols (r), for all r ∈ G\Γ that
satisfy r = rt, and by (r) + (rt) + (rt2) for all other r. If r = rt, then rt(0) = r(0),
so r(∞) = r(0), so (r) ∈ Z. Also, using (3.2.1) below, we see that for any r, the
element (r) + (rt) + (rt2) lies in Z.

The map G\Γ → H1(X(G),R) that sends (r) to [r] induces a homomorphism
C → H1(X(G),R), so by Proposition 3.2.1 we obtain a surjective homomorphism

ψ : Z/B → H1(X(G),Z).

Theorem 3.2.3 (Manin). The map ψ : Z/B → H1(X(G),Z) is an isomorphism.

Proof. We only have to prove that ψ is injective. Our proof follows the proof of
[4, Thm. 1.9] very closely. We compute the homology H1(X(G),Z) by triangulat-
ing X(G) to obtain a simplicial complex L with homology Z1/B1, then embed
Z/B in the homology Z1/B1 of X(G). Most of our work is spent describing the
triangulation L.

Let E denote the interior of the triangle with vertices 0, 1, and ∞, as illustrated
in Figure 3.2.1. Let E′ denote the union of the interior of the region bounded by
the path from i to ρ = eπi/3 to 1+ i to ∞ with the indicated path from i to ρ, not
including the vertex i.

When reading the proof below, it will be helpful to look at the following ta-
ble, which illustrates what s =

(

0 −1

1 0

)

, t =
(

1 −1

1 0

)

, and t2 do to the vertices in
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Figure 3.2.1:

1 0 1 ∞ i 1 + i (1 + i)/2 ρ

s ∞ −1 0 i (−1 + i)/2 −1 + i −ρ

t ∞ 0 1 1 + i (1 + i)/2 i ρ

t2 1 ∞ 0 (1 + i)/2 i 1 + i ρ

(3.2.1)

Note that each of E′, tE′, and t2E′ is a fundamental domain for Γ, in the sense
that every element of the upper half plane is conjugate to exactly one element in
the closure of E′ (except for identifications along the boundaries). For example,
E′ is obtained from the standard fundamental domain for Γ, which has vertices
ρ2, ρ, and ∞, by chopping it in half along the imaginary axis, and translating the
piece on the left side horizontally by 1.

If (0,∞) is the path from 0 to ∞, then t(0,∞) = (∞, 1) and t2(0,∞) = (1, 0).
Also, s(0,∞) = (∞, 0). Thus each half side of E is Γ-conjugate to the side from
i to ∞. Also, each 1-simplex in Figure 3.2.1, i.e., the sides that connected two
adjacent labeled vertices such as i and ρ, maps homeomorphically into X(Γ). This
is clear for the half sides, since they are conjugate to a path in the interior of the
standard fundamental domain for Γ, and for the medians (lines from midpoints to
ρ) since the path from i to ρ is on an edge of the standard fundamental domain
with no self identifications.

We now describe our triangulation L of X(G):

0-cells The 0 cells are the cusps π(P1(Q)) and i-elliptic points π(Γi). Note that
these are the images under π of the vertices and midpoints of sides of the
triangles gE, for all g ∈ Γ.

1-cells The 1 cells are the images of the half-sides of the triangles gE, for g ∈ Γ,
oriented from the edge to the midpoint (i.e., from the cusp to the i-elliptic
point). For example, if r = Gg is a right coset, then

e1(r) = π(g(∞), g(i)) ∈ X(G)

is a 1 cell in L. Since, as we observed above, every half side is Γ-conjugate
to e1(G), it follows that every 1-cell is of the form e(r) for some right coset
r ∈ G\Γ.

Next observe that if r 6= r′ then

e1(r) = e1(r
′) implies r′ = rs. (3.2.2)

Indeed, if π(g(∞), g(i)) = π(g′(∞), g′(i)), then ri = r′i (note that the end-
points of a path are part of the definition of the path). Thus there exists
h, h′ ∈ G such that hg(i) = h′g′(i). Since the only nontrivial element of Γ
that stabilizes i is s, this implies that (hg)−1h′g′ = s. Thus h′g′ = hgs, so
Gg′ = Ggs, so r′ = rs.

2-cells There are two types of 2-cells, those with 2 sides and those with 3.

2-sided: The 2-sided 2-cells e2(r) are indexed by the cosets r = Gg such
that rt = r. Note that for such an r, we have π(rE′) = π(rtE′) = π(rt2E′).
The 2-cell e2(r) is π(gE′). The image g(ρ, i) of the half median maps to a
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line from the center of e2(r) to the edge π(g(i)) = π(g(1 + i)). Orient e2(r)
in a way compatible with the e1. Since Ggt = Gg,

π(g(1 + i), g(∞)) = π(gt2(1 + i), gt2(∞)) = π(g(i), g(0)) = π(gs(i), gs(∞)),

so

e1(r)−e1(rs) = π(g(∞), g(i))+π(gs(i), gs(∞)) = π(g(∞), g(i))+π(g(1+i), g(∞)).

Thus
∂e2(r) = e1(r) − e1(rs).

Finally, note that if r′ 6= r also satisfies r′t = r′, then e2(r) 6= e2(r
′) (to see

this use that E′ is a fundamental domain for Γ).

3-sided: The 3-sided 2-cells e2(r) are indexed by the cosets r = Gg such
that rt 6= r. Note that for such an r, the three triangles rE′, rtE′, and rt2E′

are distinct (since they are nontrivial translates of a fundamental domain).
Orient e2(r) in a way compatible with the e1 (so edges go from cusps to
midpoints). Then

∂e2(r) =

2
∑

n=0

(e1(rt
n) − e1(rt

ns)) .

We have now defined a complex L that is a triangulation of X(G). Let C1, Z1,
and B1 be the group of 1-chains, 1-cycles, and 1-boundaries of the complex L.
Thus C1 is the abelian group generated by the paths e1(r), the subgroup Z1 is the
kernel of the map that sends e1(r) = π(r(∞), r(0)) to π(r(0)) − π((∞)), and B1

is the subgroup of Z1 generated by boundaries of 2-cycles.
Let C,Z,B be as defined before the statement of the Theorem 3.2.3. We have

H1(X(G),Z) ∼= Z1/B1, and would like to prove that Z/B ∼= Z1/B1.
Define a map ϕ : C → C1 by (r) 7→ e1(rs) − e1(r). The map ϕ is well defined

because if r = rs, then clearly (r) 7→ 0, and (r) + (rs) maps to e1(rs) − e1(r) +
e1(r) − e1(rs) = 0. To see that f is injective, suppose

∑

nr(r) 6= 0. Since in C
we have the relations (r) = −(rs) and (r) = 0 if rs = r, we may assume that
nrnrs = 0 for all r. We have

ϕ
(

∑

nr(r)
)

=
∑

nr(e1(rs) − e1(r)).

If nr 6= 0 then r 6= rs, so (3.2.2) implies that e1(r) 6= e1(rs). If nr 6= 0 and nr′ 6= 0
with r′ 6= r, then r 6= rs and r′ 6= r′s, so e1(r), e1(rs), e1(r

′), e1(r
′s) are all distinct.

We conclude that
∑

nr(e1(rs) − e1(r)) 6= 0, which proves that ϕ is injective.
Suppose (r) ∈ C. Then

ϕ(r) +B1 = ψ(r) = {r(0), r(∞)} ∈ H1(X(G),Z) = C1/B1,

since

ϕ(r) = e1(rs)−e1(r) = π(rs(∞), rs(i))−π(r(∞), r(i)) = π(r(0), r(i))−π(r(∞), r(i))

belongs to the homology class {r(0), r(∞)}. Extending linearly, we have, for any
z ∈ C, that ϕ(z) +B1 = ψ(z).
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The generators for B1 are the boundaries of 2-cells e2(r). As we saw above, these
have the form ϕ(r) for all r such that r = rt, and ϕ(r) + ϕ(rt) + ϕ(rt2) for the
r such that rt 6= r. Thus B1 = ϕ(B) ⊂ ϕ(Z), so the map ϕ induces an injection
Z/B →֒ Z1/B1. This completes the proof of the theorem.
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