Introduction to Modular

Symbols

Math 252
September 26, 2003

William A. Stein

 $274346420 *$ a^3 - $1743458092745 / 109739564 *$ * 10
 $109738568 *{ }^{2} \wedge 14-10943407 / 219477136 * a \wedge 18-1181088779575941 / 274346420 * a$

$38568 * a^{\wedge} 2-395835387 / 68586606$
$3210 * a^{\wedge} 17-3911580261 / 274346<$
Examples

$86605 * a^{\wedge} 9-127672839145 / 13717321 *{ }^{\wedge} \wedge 8+263943432849 / 274346420 * * 7+$

Motivation

Modular forms give order to the mysterious world of elliptic curves and abelian varieties.

Birch and Swinnerton-Dyer

- In the 1960s, B. Birch and H.P.F. Swinnerton- Dyer computed amazing data about elliptic curves, which lead to a fundamental conjecture.
- The conjecture is still very much open! For more details, see Wiles's paper at the Clay Math Institute Millenial Problems web page.

The BSD Conjecture

Let E be an elliptic curve over \mathbf{Q}, and let $L(E, s)$ be the associated L-function. Then

$$
\operatorname{ord}_{s=1} L(E, s)=\operatorname{rank} E(\mathbf{Q})
$$

and

$$
\frac{L^{(r)}(E, 1)}{r!}=\frac{\prod c_{p} \cdot \Omega_{E} \cdot \operatorname{Reg}_{E} \cdot \# \amalg_{E}}{\# E(\mathbf{Q})_{\text {tor }}^{2}}
$$

Birch first introduced modular symbols

- While gather data towards the conjecture, Birch introduced modular symbols.
- Yuri Manin and Barry Mazur independently developed a systematic theory.
- John Cremona later used modular symbols to enumerate the > 30000 elliptic curves of conductor up to 6000 .

How can we compute with objects attached to subgroups of the modular group?

Modular Curves

The quotient of $\mathfrak{h} \cup \mathbf{Q} \cup\{\infty\}$ by the action of $\Gamma_{0}(N)$ is a compact Riemann surface $X_{0}(N)$.

Modular curve for $\mathrm{N}=3$:

Helena Verrill

Modular curve X (37):

Group: Gamma_0(37)
Genus: 2
Cusps: 2: $\quad \frac{-1}{0}$ widths:

Modular Forms

A modular form for $\Gamma_{0}(N)$ (of weight 2) is a holomorphic function $f(z)$ on \mathfrak{h} such that

$$
f(\gamma(z)) d(\gamma(z))=f(z) d z
$$

for all $\gamma \in \Gamma_{0}(N)$.
Since $\gamma=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in \Gamma_{0}(N)$,

$$
f(z+1)=f(z)
$$

so $f(z)$ has a Fourier expansion

$$
f(z)=a_{0}+a_{1} q+a_{2} q^{2}+a_{3} q^{3}+\cdots
$$

where $q=e^{2 \pi i z}$.

Ribet

Examples of modular forms

Use Magma to compute some modular forms:
> qEigenform(ModularSymbols("11A"),7);
> qEigenform(ModularSymbols("23A"),6);
> qEigenform(ModularSymbols("37A"),7);

$$
\begin{aligned}
& q-2 q^{2}-q^{3}+2 q^{4}+q^{5}+2 q^{6}+\cdots \\
& q+\frac{\sqrt{5}-1}{2} q^{2}-\sqrt{5} q^{3}-\frac{\sqrt{5}+1}{2} q^{4}+(\sqrt{5}-1) q^{5}+\cdots \\
& q-2 q^{2}-3 q^{3}+2 q^{4}-2 q^{5}+6 q^{6}+\cdots
\end{aligned}
$$

Modular Symbols

A modular symbol $\{a, b\}$ is the homology class (relative to cusps) of the image of a geodesic path from the cusp a to the cusp b.

The three modular symbols to the right, denoted $\{-1,00\},\{0,1 / 5\}$, and $\{0,1 / 7\}$,
 are a basis for the space of modular symbols for Gamma_0(11).

Compute some examples using MAGMA.

Computing the space of modular symbols

Assume for simplicity that $\mathrm{N}=\mathrm{p}$ is prime.

Let r_{o}, \ldots, r_{p} be coset representatives for $\Gamma_{0}(p)$ in $\mathrm{SL}_{2}(\mathrm{Z})$. So

$$
\mathrm{SL}_{2}(\mathbf{Z})=\Gamma_{0}(p) r_{o} \cup \Gamma_{0}(p) r_{1} \cup \cdots \cup \Gamma_{0}(p) r_{p} .
$$

E.g.,
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right), \ldots,\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.

Explicit presentation of modular symbols

Let V be the $p+1$-dimensional vector space with basis

$$
x_{0}, x_{1}, \ldots, x_{p}
$$

Theorem (Manin). There is an isomorphism

$$
V / R=\operatorname{ModSym}\left(\Gamma_{0}(p)\right),
$$

where x_{i} maps to $r_{i}\{0, \infty\}=\left\{r_{i}(0), r_{i}(\infty)\right\}$, and the relations R are described explicitly below.

Relations

The subspace R of relations is the subspace generated by

$$
\begin{gathered}
x_{i}+x_{i} S \\
x_{i}+x_{i} T+x_{i} T^{2}
\end{gathered}
$$

where

$$
S=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \quad \text { and } T=\left(\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right)
$$

and $i=0, \ldots, p$.

Example: $\mathrm{N}=11$

Generating modular symbols:
$\{0, \infty\},\{0,1\},\{0,1 / 2\}, \ldots,\{0,1 / 10\},\{\infty, 0\}$
Doing the linear algebra, we find that $\{0, \infty\}$, $\{0,1 / 5\},\{0,1 / 7\}$ are a basis. And, e.g.,

$$
\begin{aligned}
& \{0,1 / 2\}=-\{0,1 / 5\} \\
& \{0,1 / 3\}=-\{0,1 / 7\} \\
& \{0,1 / 4\}=\{0,1 / 5\}-\{0,1 / 7\}
\end{aligned}
$$

Manins Trick

Manin's trick: Writes any symbol $\{\alpha, \beta\}$ as a linear combination of generating symbols of the form $r_{i}\{0, \infty\}$.

The trick implies that the symbols $r_{i}\{0, \infty\}$ generate

The trick:

Suffices to consider $\{0, b / a\}$. Expand b / a as a continued fraction and consider the successive convergents in lowest terms:

$$
\frac{b}{a}=\frac{b_{n}}{a_{n}}, \quad \frac{b_{n-1}}{a_{n-1}}, \ldots, \quad \frac{b_{0}}{a_{0}}=\frac{b_{0}}{1}, \quad \frac{b_{-1}}{a_{-1}}=\frac{1}{0}, \quad \frac{b_{-2}}{a_{-2}}=\frac{0}{1}
$$

(the last two are added formally).

The trick:

Suffices to consider $\{0, b / a\}$. Expand b / a as a continued fraction and consider the successive convergents in lowest terms:
$\frac{b}{a}=\frac{b_{n}}{a_{n}}, \quad \frac{b_{n-1}}{a_{n-1}}, \ldots, \quad \frac{b_{0}}{a_{0}}=\frac{b_{0}}{1}, \quad \frac{b_{-1}}{a_{-1}}=\frac{1}{0}, \quad \frac{b_{-2}}{a_{-2}}=\frac{0}{1}$
(the last two are added formally).

Then

$$
b_{k} a_{k-1}-b_{k-1} a_{k}=(-1)^{k-1}
$$

so that

$$
g_{k}=\left(\begin{array}{cc}
b_{k} & (-1)^{k-1} b_{k-1} \\
a_{k} & (-1)^{k-1} a_{k-1}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})
$$

Hence

$$
\left\{\frac{b_{k-1}}{a_{k-1}}, \frac{b_{k}}{a_{k}}\right\}=g_{k}\{0, \infty\}=r_{i}\{0, \infty\}
$$

for some i, is of the required special form.

Example

Example: Let $N=11$, and consider $\{0,4 / 7\}$.
We have

$$
\frac{4}{7}=0+\frac{1}{1+\frac{1}{1+\frac{1}{3}}}
$$

so partial convergents are
$\frac{b_{-2}}{a_{-2}}=\frac{0}{1}, \quad \frac{b_{-1}}{a_{-1}}=\frac{1}{0}, \quad \frac{b_{0}}{a_{0}}=\frac{0}{1}, \quad \frac{b_{1}}{a_{1}}=\frac{1}{1}, \quad \frac{b_{2}}{a_{2}}=\frac{1}{2}, \quad \frac{b_{3}}{a_{3}}=\frac{4}{7}$.

Thus

$$
\begin{aligned}
\{0,4 / 7\} & =\{0, \infty\}+\{\infty, 0\}+\{0,1\}+\{1,1 / 2\}+\{1 / 2,4 / 7\} \\
& =\left(\begin{array}{cc}
1 & -1 \\
2 & -1
\end{array}\right)\{0, \infty\}+\left(\begin{array}{ll}
4 & 1 \\
7 & 2
\end{array}\right)\{0, \infty\} \\
& =2 \cdot\left[\left(\begin{array}{ll}
1 & 4 \\
1 & 5
\end{array}\right)\{0, \infty\}\right]
\end{aligned}
$$

The connection with modular forms

There is an amazing sequence $T_{1}, T_{2}, T_{3}, \ldots$ of commuting linear maps on modular symbols.
The corresponding systems of eigenvalues

$$
\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}
$$

are the coefficients a_{n} of the q-expansions of modular forms.

When $n=p$ is prime to N, we have

$$
T_{p}(\{\alpha, \beta\})=\left[\left(\begin{array}{cc}
p & 0 \\
0 & 1
\end{array}\right)+\sum_{r \bmod p}\left(\begin{array}{ll}
1 & r \\
0 & p
\end{array}\right)\right]\{\alpha, \beta\}
$$

Example

Example: $N=11$

$$
\begin{aligned}
T_{2}(\{0,1 / 5\}) & =\{0,2 / 5\}+\{0,1 / 10\}+\{1 / 2,3 / 5\} \\
& =-2\{0,1 / 5\} \\
& =a_{2}\{0,1 / 5\}
\end{aligned}
$$

Consequently, the modular form of level 11 is

$$
f=q+a_{2} q^{2}+a_{3} q^{3}+\cdots,
$$

where $T_{\ell}(\{0,1 / 5\})=a_{\ell}\{0,1 / 5\}$.
There is a deep connection with elliptic curves (due to Shimura):

$$
a_{\ell}=\ell+1-\# E\left(\mathbf{F}_{\ell}\right)
$$

where E is $y^{2}+y=x^{3}-x^{2}-10 x-20$.

Some Applications of Modular Symbols

- Enumerate all elliptic curves of given conductor.
- Compute basis of modular forms of given weight and level.
- Proving theorems towards the BSD conjecture; e.g., that $L(E, 1) / O m e g a$ is a rational number.

Some References

- Manin: Parabolic points and zeta-functions of modular curves, 1972.
- Mazur: Courbes elliptiques et symboles modulaires, 1972.
- Cremona: Algorithms for modular elliptic curves, 1997.

My modular symbols package in Magma.

