2.4 Points on modular curves parameterize elliptic curves with extra structure

2.4.1 Elliptic curves over the complex numbers

The classical theory of the Weierstass \wp-function sets up a bijection between isomorphism classes of elliptic curves over \mathbf{C} and isomorphism classes of one-dimensional complex tori \mathbf{C} / Λ. Here Λ is a lattice in \mathbf{C}, i.e., a free abelian group of rank 2 such that $\mathbf{R} \Lambda=\mathbf{C}$.

Any homomorphism φ of complex tori $\mathbf{C} / \Lambda_{1} \rightarrow \mathbf{C} / \Lambda_{2}$ is determined by a \mathbf{C}-linear map $T: \mathbf{C} \rightarrow \mathbf{C}$ that sends Λ_{1} into Λ_{2}.

Lemma 2.4.1. Suppose $\varphi: \mathbf{C} / \Lambda_{1} \rightarrow \mathbf{C} / \Lambda_{2}$ is nonzero. Then the kernel of φ is isomorphic to $\Lambda_{2} / T\left(\Lambda_{1}\right)$.

Proof. Use the snake lemma applied to the morphism from the short exact sequence $0 \rightarrow \Lambda_{1} \rightarrow \mathbf{C} \rightarrow E_{1} \rightarrow 0$ to the short exact sequence $0 \rightarrow \Lambda_{2} \rightarrow$ $\mathbf{C} \rightarrow E_{2} \rightarrow 0$.

Lemma 2.4.2. Two complex tori \mathbf{C} / Λ_{1} and \mathbf{C} / Λ_{2} are isomorphic if and only if there is a complex number α such that $\alpha \Lambda_{1}=\Lambda_{2}$.

Proof. Any \mathbf{C}-linear map $\mathbf{C} \rightarrow \mathbf{C}$ is multiplication by a scalar $\alpha \in \mathbf{C}$.
Suppose $\Lambda=\mathbf{Z} \omega_{1}+\mathbf{Z} \omega_{2}$ is a lattice in \mathbf{C}, and let $\tau=\omega_{1} / \omega_{2}$. Then $\Lambda_{\tau}=\mathbf{Z} \tau+\mathbf{Z}$ defines an elliptic curve that is isomorphic to the elliptic curve determined by Λ. By replacing ω_{1} by $-\omega_{1}$, if necessary, we may assume that $\tau \in \mathfrak{h}$. Thus each point $\tau \in \mathfrak{h}$ determines an elliptic curve

$$
E_{\tau}=\mathbf{C} / \Lambda_{\tau}
$$

and every elliptic curve is of this form.
Proposition 2.4.3. Suppose $\tau, \tau^{\prime} \in \mathfrak{h}$. Then $E_{\tau} \cong E_{\tau^{\prime}}$ if and only if there exists $g \in \mathrm{SL}_{2}(\mathbf{Z})$ such that $\tau=g\left(\tau^{\prime}\right)$.

Proof. Suppose $E_{\tau} \cong E_{\tau^{\prime}}$. Then there exists $\lambda \in \mathbf{C}$ such that $\lambda \Lambda_{\tau}=\Lambda_{\tau^{\prime}}$, so $\lambda \tau=a \tau^{\prime}+b$ and $\lambda 1=c \tau^{\prime}+d$, where $a, b, c, d \in \mathbf{Z}$. The matrix $g=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ has nonzero integer determinant, and this determinant is positive because $g\left(\tau^{\prime}\right)=\tau$ and $\tau, \tau^{\prime} \in \mathfrak{h}$. Thus $\operatorname{det}(g)=1$, so $g \in \mathrm{SL}_{2}(\mathbf{Z})$.

Conversely, suppose $\tau, \tau^{\prime} \in \mathfrak{h}$ and $g=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})$ is such that $\tau=g\left(\tau^{\prime}\right)$. Let $\lambda=c \tau^{\prime}+d$, so $\lambda \tau=a \tau^{\prime}+b$. Since $\operatorname{det}(g)=1$, the scalar λ defines an isomorphism from Λ_{τ}^{\prime} to Λ_{τ}, so $E_{\tau} \cong E_{\tau}^{\prime}$, as claimed.

Let $E=\mathbf{C} / \Lambda$ be an elliptic curve over \mathbf{C} and N a positive integer. Using Lemma 2.4.1, we see that

$$
E[N]:=\{x \in E: N x=0\} \cong\left(\frac{1}{N} \Lambda\right) / \Lambda \cong(\mathbf{Z} / N \mathbf{Z})^{2} .
$$

If $\Lambda=\Lambda_{\tau}=\mathbf{Z} \tau+\mathbf{Z}$, this means that τ / N and $1 / N$ are a basis for $E[N]$.
Suppose $\tau \in \mathfrak{h}$ and recall that $E_{\tau}=\mathbf{C} / \Lambda_{\tau}=\mathbf{C} /(\mathbf{Z} \tau+\mathbf{Z})$. To τ, we associate three "level N structures". First, let C_{τ} be the subgroup of E_{τ} generated by $1 / N$. Second, let P_{τ} be the point of order N in E_{τ} defined by $1 / N \in \Lambda_{\tau}$. Third, let Q_{τ} be the point of order N in E_{τ} defined by τ / N, and consider the basis $\left(P_{\tau}, Q_{\tau}\right)$ for $E[N]$.

Let E be an elliptic curve over \mathbf{C}. Theorem 2.4.5 below asserts that the non-cuspidal points on $X_{0}(N)$ correspond to isomorphism classes of pairs (E, C) where C is a cyclic subgroup of E of order N, and we consider two such pairs $(E, C),\left(E^{\prime}, C^{\prime}\right)$ isomorphic if there is an isomorphism φ : $E \rightarrow E^{\prime}$ such that $\varphi(C)=C^{\prime}$. Likewise, the non-cuspidal points on $X_{1}(N)$ will correspond to pairs (E, P) where P is a point on E of exact order N, and we call two such pairs (E, P) and $\left(E^{\prime}, P^{\prime}\right)$ isomorphic if there is an isomorphism $\varphi: E \rightarrow E^{\prime}$ such that $\varphi(P)=P^{\prime}$. Finally, the non-cuspidal points on $X(N)$ will correspond to pairs (E, P, Q) where P, Q are a basis for $E[N]$ and two pairs (E, P, Q) and $\left(E, P^{\prime}, Q^{\prime}\right)$ are isomorphic precisely when there is an isomorphism $\varphi: E \rightarrow E^{\prime}$ such that $\varphi(P)=P^{\prime}$ and $\varphi(Q)=Q^{\prime}$.

Proposition 2.4.4. Let E be an elliptic curve over \mathbf{C}. If C is a cyclic subgroup of E of order N, then there exists $\tau \in \mathfrak{h}$ such that (E, C) is isomorphic to $\left(E_{\tau}, C_{\tau}\right)$. If P is a point on E of order N, then there exists $\tau \in \mathbf{C}$ such that (E, P) is isomorphic to $\left(E_{\tau}, P_{\tau}\right)$. If P, Q is a basis for $E[N]$ then there exists $\tau \in \mathbf{C}$ such that (E, P, Q) is isomorphic to $\left(E_{\tau}, P_{\tau}, Q_{\tau}\right)$.

Proof. We prove only the first statement, since the other proofs are similar. Choose a basis ω_{1}, ω_{2} for a lattice in \mathbf{C} that defines E in such that a way that $E=\mathbf{C} /\left(\mathbf{Z} \omega_{1}+\mathbf{Z} \omega_{2}\right)$ and C is the subgroup generated by ω_{2} / N. Let $\tau=\omega_{1} / \omega_{2}$, and if $\operatorname{Im}(\tau)<0$ replaced ω_{1} by $-\omega_{1}$ so that $\tau \in \mathfrak{h}$. Then multiplication by $1 / \omega_{2}$ defines an isomorphism from E to $E_{\tau}=\mathbf{C} /(\mathbf{Z} \tau+\mathbf{Z})$ that carries C onto the subgroup C_{τ} generated by $1 / N$.

The following theorem asserts that the noncuspidal points on the curves $X_{0}(N), X_{1}(N)$, and $X(N)$ parameterize elliptic curve with level N structure, as claimed above.

Theorem 2.4.5. Suppose $\tau, \tau^{\prime} \in \mathfrak{h}$. Then $\left(E_{\tau}, C_{\tau}\right)$ is isomorphic $\left(E_{\tau^{\prime}}, C_{\tau^{\prime}}\right)$ if and only if there exists $g \in \Gamma_{0}(N)$ such that $g(\tau)=\tau^{\prime}$. Also, $\left(E_{\tau}, P_{\tau}\right)$ is isomorphic $\left(E_{\tau^{\prime}}, P_{\tau^{\prime}}\right)$ if and only if there exists $g \in \Gamma_{1}(N)$ such that $g(\tau)=\tau^{\prime}$. Finally, $\left(E_{\tau}, P_{\tau}, Q_{\tau}\right)$ is isomorphic $\left(E_{\tau^{\prime}}, P_{\tau^{\prime}}, Q_{\tau^{\prime}}\right)$ if and only if there exists $g \in \Gamma(N)$ such that $g(\tau)=\tau^{\prime}$.

Proof. We prove only the first assertion, since the others are proved in a similar way. Suppose $\left(E_{\tau}, C_{\tau}\right)$ is isomorphic to $\left(E_{\tau}^{\prime}, C_{\tau}^{\prime}\right)$. Then there is $\lambda \in \mathbf{C}$ such that $\lambda \Lambda_{\tau}=\Lambda_{\tau^{\prime}}$. Thus $\lambda \tau=a \tau^{\prime}+b$ and $\lambda 1=c \tau^{\prime}+d$ with $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})$ (as we saw in the proof of Proposition 2.4.3). Dividing the second equation by N we get $\lambda \frac{1}{N}=\frac{c}{N} \tau^{\prime}+\frac{d}{N}$, which lies in $\Lambda_{\tau^{\prime}}=$
$\mathbf{Z} \tau^{\prime}+\frac{1}{N} \mathbf{Z}$, by hypothesis. Thus $c \equiv 0(\bmod N)$, so $g \in \Gamma_{0}(N)$, as claimed. For the converse, note that if $N \mid c$, then $\frac{c}{N} \tau^{\prime}+\frac{d}{N} \in \Lambda_{\tau^{\prime}}$.

2.5 Genus formulas

Let N be a positive integer. The aim of this section is to describe the idea behind computing the genus of $X_{0}(N), X_{1}(N)$, and $X(N)$, and to give (without proof) formulas for these genera.

The groups $\Gamma_{0}(1), \Gamma_{1}(1)$, and $\Gamma(1)$ are all equal to $\mathrm{SL}_{2}(\mathbf{Z})$, so $X_{0}(1)=$ $X_{1}(1)=X(1)=\mathbf{P}^{1}$. Since \mathbf{P}^{1} has genus 0 , we know the genus for each of these three cases. For general N we obtain the genus by determining the ramification of the corresponding cover of \mathbf{P}^{1} and applying the Hurwitz formula, which we assume the reader is familiar with, but which we now recall.

Suppose $f: X \rightarrow Y$ is a surjective morphism of Riemann surfaces of degree d. For each point $x \in X$, let e_{x} be the ramification exponent at x, so $e_{x}=1$ precisely when f is unramified at x, which is the case for all but finitely many x. Let $g(X)$ and $g(Y)$ denote the genera of X and Y, respectively.

Theorem 2.5.1 (Hurwitz Formula). Let $f: X \rightarrow Y$ be as above. Then

$$
2 g(X)-2=d(2 g(Y)-2)+\sum_{x \in X}\left(e_{x}-1\right) .
$$

If $X \rightarrow Y$ is Galois, so the e_{x} in the fiber over each fixed $y \in Y$ are all equal, then this formula becomes

$$
2 g(X)-2=d\left(2 g(Y)-2+\sum_{y \in Y}\left(1-\frac{1}{e_{y}}\right)\right)
$$

Let X be one of the modular curves $X_{0}(N), X_{1}(N)$, or $X(N)$ corresponding to a congruence subgroup Γ, and let $Y=X(1)=\mathbf{P}^{1}$. There is a natural map $f: X \rightarrow Y$ got by sending the equivalence class of τ modulo the congruence subgroup Γ to the equivalence class of τ modulo $\mathrm{SL}_{2}(\mathbf{Z})$. This is "the" map $X \rightarrow \mathbf{P}^{1}$ that we mean everywhere below.

Because $\mathrm{PSL}_{2}(\mathbf{Z})$ acts faithfully on \mathfrak{h}, the degree of f is the index in $\mathrm{PSL}_{2}(\mathbf{Z})$ of the image of Γ in $\mathrm{PSL}_{2}(\mathbf{Z})$ (see Exercise XXX). Using that the map $\mathrm{SL}_{2}(\mathbf{Z}) \rightarrow \mathrm{SL}_{2}(\mathbf{Z} / N \mathbf{Z})$ is surjective, we can compute these indexes (Exercise XXX), and obtain the following lemma:

Proposition 2.5.2. Suppose for simplicity that $N>2$. The degree of the $\operatorname{map} X_{0}(N) \rightarrow \mathbf{P}^{1}$ is $N \prod_{p \mid N}(1+1 / p)$. The degree of the map $X_{1}(N) \rightarrow \mathbf{P}^{1}$ is $\frac{1}{2} N^{2} \prod_{p \mid N}\left(1-1 / p^{2}\right)$. The the degree of the map from $X(N) \rightarrow \mathbf{P}^{1}$ is $\frac{1}{2} N^{3} \prod_{p \mid N}\left(1-p^{2}\right)$.

Proof. This follows from the discussion above, Exercise XXX about indexes of congruence subgroups in $\mathrm{SL}_{2}(\mathbf{Z})$, and the observation that for $N>2$ the groups $\Gamma(N)$ and $\Gamma_{1}(N)$ do not contain -1 and the group $\Gamma_{0}(N)$ does.

Proposition 2.5.3. Let X be $X_{0}(N), X_{1}(N)$ or $X(N)$. Then the map $X \rightarrow \mathbf{P}^{1}$ is ramified at most over ∞ and the points corresponding to the two elliptic curves with extra automorphisms (i.e., the two elliptic curves with j-invariants 0 and 1728).

Proof. Since we have a tower $X(N) \rightarrow X_{1}(N) \rightarrow X_{0}(N) \rightarrow \mathbf{P}^{1}$, it suffices to prove the assertion for $X=X(N)$. Since we do not claim that there is no ramification over ∞, we may restrict to $Y(N)$. By Theorem 2.4.5, the points on $Y(N)$ correspond to isomorphism classes of triples (E, P, Q), where E is an elliptic curve over \mathbf{C} and P, Q are a basis for $E[N]$. The map from $Y(N)$ to \mathbf{P}^{1} sends the isomorphism class of (E, P, Q) to the isomorphism class of E. The equivalence class of (E, P, Q) also contains $(E,-P,-Q)$, since $-1: E \rightarrow E$ is an isomorphism. The only way the fiber over E can have cardinality smaller than the degree is if there is an extra equivalence $(E, P, Q) \rightarrow(E, \varphi(P), \varphi(Q))$ with φ an automorphism of E not equal to ± 1. The theory of CM elliptic curves, shows that there are only two isomorphism classes of elliptic curves E with automorphisms other than -1 , and these are the ones with j-invariant 0 and 1728 . This proves the proposition.

Theorem 2.5.4. For $N>4$, the genus of $X_{0}(N)$ is

$$
g\left(X_{0}(N)\right)=1+N \prod_{p \mid N}(1+1 / p)-\frac{1}{2} \sigma(N)-\frac{1}{4} \mu_{1728}(N)-\frac{1}{3} \mu_{0}(N)
$$

Here $\sigma(N)=\sum_{d \mid n} \varphi(d) \varphi(N / d), \mu_{1728}(N)=0$ if $4 \mid N$ and $\mu_{1728}(N)=$ $\prod_{p \mid N}(1+(-4 / p))$ otherwise (where $(-4 / p)$ is the quadratic reciprocity symbol). Also, $\mu_{0}(N)=0$ if $2 \mid N$ or $9 \mid N$, and $\mu_{0}(N)=\prod_{p \mid N}(1+(-3 / p))$ otherwise.

For $N>4$, the genus of $X_{1}(N)$ is

$$
1+\frac{1}{2} N^{2} \prod_{p \mid N}\left(1-1 / p^{2}\right)-\frac{1}{2} \sigma^{*}(N)
$$

where $\sigma^{*}(N)=\frac{1}{2} \sum_{d \mid n} \varphi(d) \varphi(N / d)$. For example, when $N \geq 5$ is prime, the genus of $X_{1}(N)$ is $(N-5)(N-7) / 24$.

For $N>1$, the genus of $X(N)$ is

$$
g(X(N))=1+\frac{N^{2}(N-6)}{24} \prod_{p \mid N}\left(1-p^{2}\right)
$$

Proof. We only prove the theorem for $X(N)$ here (a proof for $X_{0}(N)$ is Section 1.6 of [3] and a proof for $X_{1}(N)$ is in Section 9.1 of [1]).

Since $X(N)$ is a Galois covering of $X(1)=\mathbf{P}^{1}$, the ramification indexes e_{x} are all the same for x over a fixed point $y \in \mathbf{P}^{1}$; we denote this common index by e_{y}. The fiber over the curve with j-invariant 0 has size one-third of the degree, since the automorphism group of the elliptic curve with j invariant 0 has order 6 , so $e_{0}=3$. Similarly, the fiber over the curve with j-invariant 1728 has size half the degree, since the automorphism group of the elliptic curve with j-invariant 1728 is cyclic of order 4 , so $e_{1728}=2$.

To compute the ramification degree e_{∞} we use the orbit stabilizer theorem. The fiber of $X(N) \rightarrow X(1)$ over ∞ is exactly the set of $\Gamma(N)$ equivalence classes of cusps, which is $\Gamma(N) \infty, x_{2} \Gamma(N) \infty, \ldots, x_{r} \Gamma(N) \infty$, where $x_{1}=1, x_{2}, \ldots, x_{r}$ are left coset representatives for $\Gamma(N)$ in $\mathrm{SL}_{2}(\mathbf{Z})$. By the orbit-stabilizer theorem, the number of cusps equals $\#(\Gamma(1) / \Gamma(N)) / \# S$, where S is the stabilizer of $\Gamma(N) \infty$ in $\Gamma(1) / \Gamma(N) \cong \operatorname{SL}_{2}(\mathbf{Z} / N \mathbf{Z})$. Thus S is the subgroup $\left\{ \pm\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right): 0 \leq n<N-1\right\}$, which has order $2 N$. Since the degree of $X(N) \rightarrow X(1)$ equals $\#(\Gamma(1) / \Gamma(N)) / 2$, the number of cusps is the degree divided by N. Thus $e_{\infty}=N$.

The Hurwitz formula for $X(N) \rightarrow X(1)$ with $e_{0}=3, e_{1728}=2$, and $e_{\infty}=N$, is

$$
2 g(X(N))-2=d\left(0-2+\left(1-\frac{1}{3}+1-\frac{1}{2}+1-\frac{1}{N}\right)\right)
$$

where d is the degree of $X(N) \rightarrow X(1)$. Solving for $g(X(N))$ we obtain

$$
2 g(X)-2=d\left(1-\frac{5}{6}-\frac{1}{N}\right)=d\left(\frac{N-6}{6 N}\right)
$$

so

$$
g(X)=1+\frac{d}{2}\left(\frac{N-6}{6 N}\right)=\frac{d}{12 N}(N-6)+1
$$

Substituting the formula for d from Proposition 2.5.2 yields the claimed formula.

References

[1] F. Diamond and J. Im, Modular forms and modular curves, Seminar on Fermat's Last Theorem, Providence, RI, 1995, pp. 39-133.
[2] J-P. Serre, A Course in Arithmetic, Springer-Verlag, New York, 1973, Translated from the French, Graduate Texts in Mathematics, No. 7.
[3] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, Princeton, NJ, 1994, Reprint of the 1971 original, Kan Memorial Lectures, 1.

