12 2. Analytic theory of modular curves

2.4 Points on modular curves parameterize elliptic curves with extra structure

2.4.1 Elliptic curves over the complex numbers

The classical theory of the Weierstass \wp -function sets up a bijection between isomorphism classes of elliptic curves over **C** and isomorphism classes of one-dimensional complex tori \mathbf{C}/Λ . Here Λ is a lattice in **C**, i.e., a free abelian group of rank 2 such that $\mathbf{R}\Lambda = \mathbf{C}$.

Any homomorphism φ of complex tori $\mathbf{C}/\Lambda_1 \to \mathbf{C}/\Lambda_2$ is determined by a **C**-linear map $T : \mathbf{C} \to \mathbf{C}$ that sends Λ_1 into Λ_2 .

Lemma 2.4.1. Suppose $\varphi : \mathbf{C}/\Lambda_1 \to \mathbf{C}/\Lambda_2$ is nonzero. Then the kernel of φ is isomorphic to $\Lambda_2/T(\Lambda_1)$.

Proof. Use the snake lemma applied to the morphism from the short exact sequence $0 \to \Lambda_1 \to \mathbf{C} \to E_1 \to 0$ to the short exact sequence $0 \to \Lambda_2 \to \mathbf{C} \to E_2 \to 0$.

Lemma 2.4.2. Two complex tori C/Λ_1 and C/Λ_2 are isomorphic if and only if there is a complex number α such that $\alpha \Lambda_1 = \Lambda_2$.

Proof. Any **C**-linear map $\mathbf{C} \to \mathbf{C}$ is multiplication by a scalar $\alpha \in \mathbf{C}$. \Box

Suppose $\Lambda = \mathbf{Z}\omega_1 + \mathbf{Z}\omega_2$ is a lattice in **C**, and let $\tau = \omega_1/\omega_2$. Then $\Lambda_{\tau} = \mathbf{Z}\tau + \mathbf{Z}$ defines an elliptic curve that is isomorphic to the elliptic curve determined by Λ . By replacing ω_1 by $-\omega_1$, if necessary, we may assume that $\tau \in \mathfrak{h}$. Thus each point $\tau \in \mathfrak{h}$ determines an elliptic curve

$$E_{\tau} = \mathbf{C} / \Lambda_{\tau}$$

and every elliptic curve is of this form.

Proposition 2.4.3. Suppose $\tau, \tau' \in \mathfrak{h}$. Then $E_{\tau} \cong E_{\tau'}$ if and only if there exists $g \in SL_2(\mathbf{Z})$ such that $\tau = g(\tau')$.

Proof. Suppose $E_{\tau} \cong E_{\tau'}$. Then there exists $\lambda \in \mathbf{C}$ such that $\lambda \Lambda_{\tau} = \Lambda_{\tau'}$, so $\lambda \tau = a\tau' + b$ and $\lambda 1 = c\tau' + d$, where $a, b, c, d \in \mathbf{Z}$. The matrix $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ has nonzero integer determinant, and this determinant is positive because $g(\tau') = \tau$ and $\tau, \tau' \in \mathfrak{h}$. Thus $\det(g) = 1$, so $g \in \mathrm{SL}_2(\mathbf{Z})$.

Conversely, suppose $\tau, \tau' \in \mathfrak{h}$ and $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbf{Z})$ is such that $\tau = g(\tau')$. Let $\lambda = c\tau' + d$, so $\lambda \tau = a\tau' + b$. Since $\det(g) = 1$, the scalar λ defines an isomorphism from Λ'_{τ} to Λ_{τ} , so $E_{\tau} \cong E'_{\tau}$, as claimed. \Box

Let $E = \mathbf{C}/\Lambda$ be an elliptic curve over \mathbf{C} and N a positive integer. Using Lemma 2.4.1, we see that

$$E[N] := \{x \in E : Nx = 0\} \cong \left(\frac{1}{N}\Lambda\right) / \Lambda \cong (\mathbf{Z}/N\mathbf{Z})^2.$$

13

If $\Lambda = \Lambda_{\tau} = \mathbf{Z}\tau + \mathbf{Z}$, this means that τ/N and 1/N are a basis for E[N].

Suppose $\tau \in \mathfrak{h}$ and recall that $E_{\tau} = \mathbf{C}/\Lambda_{\tau} = \mathbf{C}/(\mathbf{Z}\tau + \mathbf{Z})$. To τ , we associate three "level N structures". First, let C_{τ} be the subgroup of E_{τ} generated by 1/N. Second, let P_{τ} be the point of order N in E_{τ} defined by $1/N \in \Lambda_{\tau}$. Third, let Q_{τ} be the point of order N in E_{τ} defined by τ/N , and consider the basis (P_{τ}, Q_{τ}) for E[N].

Let E be an elliptic curve over \mathbb{C} . Theorem 2.4.5 below asserts that the non-cuspidal points on $X_0(N)$ correspond to isomorphism classes of pairs (E, C) where C is a cyclic subgroup of E of order N, and we consider two such pairs (E, C), (E', C') isomorphic if there is an isomorphism φ : $E \to E'$ such that $\varphi(C) = C'$. Likewise, the non-cuspidal points on $X_1(N)$ will correspond to pairs (E, P) where P is a point on E of exact order N, and we call two such pairs (E, P) and (E', P') isomorphic if there is an isomorphism $\varphi : E \to E'$ such that $\varphi(P) = P'$. Finally, the non-cuspidal points on X(N) will correspond to pairs (E, P, Q) where P, Q are a basis for E[N] and two pairs (E, P, Q) and (E, P', Q') are isomorphic precisely when there is an isomorphism $\varphi : E \to E'$ such that $\varphi(P) = P'$ and $\varphi(Q) = Q'$.

Proposition 2.4.4. Let E be an elliptic curve over \mathbf{C} . If C is a cyclic subgroup of E of order N, then there exists $\tau \in \mathfrak{h}$ such that (E, C) is isomorphic to (E_{τ}, C_{τ}) . If P is a point on E of order N, then there exists $\tau \in \mathbf{C}$ such that (E, P) is isomorphic to (E_{τ}, P_{τ}) . If P, Q is a basis for E[N] then there exists $\tau \in \mathbf{C}$ such that (E, P, Q) is isomorphic to $(E_{\tau}, P_{\tau}, Q_{\tau})$.

Proof. We prove only the first statement, since the other proofs are similar. Choose a basis ω_1, ω_2 for a lattice in **C** that defines E in such that a way that $E = \mathbf{C}/(\mathbf{Z}\omega_1 + \mathbf{Z}\omega_2)$ and C is the subgroup generated by ω_2/N . Let $\tau = \omega_1/\omega_2$, and if $\operatorname{Im}(\tau) < 0$ replaced ω_1 by $-\omega_1$ so that $\tau \in \mathfrak{h}$. Then multiplication by $1/\omega_2$ defines an isomorphism from E to $E_{\tau} = \mathbf{C}/(\mathbf{Z}\tau + \mathbf{Z})$ that carries C onto the subgroup C_{τ} generated by 1/N.

The following theorem asserts that the noncuspidal points on the curves $X_0(N)$, $X_1(N)$, and X(N) parameterize elliptic curve with level N structure, as claimed above.

Theorem 2.4.5. Suppose $\tau, \tau' \in \mathfrak{h}$. Then (E_{τ}, C_{τ}) is isomorphic $(E_{\tau'}, C_{\tau'})$ if and only if there exists $g \in \Gamma_0(N)$ such that $g(\tau) = \tau'$. Also, (E_{τ}, P_{τ}) is isomorphic $(E_{\tau'}, P_{\tau'})$ if and only if there exists $g \in \Gamma_1(N)$ such that $g(\tau) = \tau'$. Finally, $(E_{\tau}, P_{\tau}, Q_{\tau})$ is isomorphic $(E_{\tau'}, P_{\tau'}, Q_{\tau'})$ if and only if there exists $g \in \Gamma(N)$ such that $g(\tau) = \tau'$.

Proof. We prove only the first assertion, since the others are proved in a similar way. Suppose (E_{τ}, C_{τ}) is isomorphic to (E'_{τ}, C'_{τ}) . Then there is $\lambda \in \mathbf{C}$ such that $\lambda \Lambda_{\tau} = \Lambda_{\tau'}$. Thus $\lambda \tau = a\tau' + b$ and $\lambda 1 = c\tau' + d$ with $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbf{Z})$ (as we saw in the proof of Proposition 2.4.3). Dividing the second equation by N we get $\lambda \frac{1}{N} = \frac{c}{N}\tau' + \frac{d}{N}$, which lies in $\Lambda_{\tau'} =$

14 2. Analytic theory of modular curves

 $\mathbf{Z}\tau' + \frac{1}{N}\mathbf{Z}$, by hypothesis. Thus $c \equiv 0 \pmod{N}$, so $g \in \Gamma_0(N)$, as claimed. For the converse, note that if $N \mid c$, then $\frac{c}{N}\tau' + \frac{d}{N} \in \Lambda_{\tau'}$.

2.5 Genus formulas

Let N be a positive integer. The aim of this section is to describe the idea behind computing the genus of $X_0(N)$, $X_1(N)$, and X(N), and to give (without proof) formulas for these genera.

The groups $\Gamma_0(1)$, $\Gamma_1(1)$, and $\Gamma(1)$ are all equal to $SL_2(\mathbf{Z})$, so $X_0(1) = X_1(1) = X(1) = \mathbf{P}^1$. Since \mathbf{P}^1 has genus 0, we know the genus for each of these three cases. For general N we obtain the genus by determining the ramification of the corresponding cover of \mathbf{P}^1 and applying the Hurwitz formula, which we assume the reader is familiar with, but which we now recall.

Suppose $f : X \to Y$ is a surjective morphism of Riemann surfaces of degree d. For each point $x \in X$, let e_x be the ramification exponent at x, so $e_x = 1$ precisely when f is unramified at x, which is the case for all but finitely many x. Let g(X) and g(Y) denote the genera of X and Y, respectively.

Theorem 2.5.1 (Hurwitz Formula). Let $f: X \to Y$ be as above. Then

$$2g(X) - 2 = d(2g(Y) - 2) + \sum_{x \in X} (e_x - 1)$$

If $X \to Y$ is Galois, so the e_x in the fiber over each fixed $y \in Y$ are all equal, then this formula becomes

$$2g(X) - 2 = d\left(2g(Y) - 2 + \sum_{y \in Y} \left(1 - \frac{1}{e_y}\right)\right).$$

Let X be one of the modular curves $X_0(N)$, $X_1(N)$, or X(N) corresponding to a congruence subgroup Γ , and let $Y = X(1) = \mathbf{P}^1$. There is a natural map $f: X \to Y$ got by sending the equivalence class of τ modulo the congruence subgroup Γ to the equivalence class of τ modulo $\mathrm{SL}_2(\mathbf{Z})$. This is "the" map $X \to \mathbf{P}^1$ that we mean everywhere below.

Because $PSL_2(\mathbf{Z})$ acts faithfully on \mathfrak{h} , the degree of f is the index in $PSL_2(\mathbf{Z})$ of the image of Γ in $PSL_2(\mathbf{Z})$ (see Exercise XXX). Using that the map $SL_2(\mathbf{Z}) \to SL_2(\mathbf{Z}/N\mathbf{Z})$ is surjective, we can compute these indexes (Exercise XXX), and obtain the following lemma:

Proposition 2.5.2. Suppose for simplicity that N > 2. The degree of the map $X_0(N) \to \mathbf{P}^1$ is $N \prod_{p|N} (1+1/p)$. The degree of the map $X_1(N) \to \mathbf{P}^1$ is $\frac{1}{2}N^2 \prod_{p|N} (1-1/p^2)$. The the degree of the map from $X(N) \to \mathbf{P}^1$ is $\frac{1}{2}N^3 \prod_{p|N} (1-p^2)$.

Proof. This follows from the discussion above, Exercise XXX about indexes of congruence subgroups in $SL_2(\mathbf{Z})$, and the observation that for N > 2 the groups $\Gamma(N)$ and $\Gamma_1(N)$ do not contain -1 and the group $\Gamma_0(N)$ does. \Box

Proposition 2.5.3. Let X be $X_0(N)$, $X_1(N)$ or X(N). Then the map $X \to \mathbf{P}^1$ is ramified at most over ∞ and the points corresponding to the two elliptic curves with extra automorphisms (i.e., the two elliptic curves with *j*-invariants 0 and 1728).

Proof. Since we have a tower $X(N) \to X_1(N) \to X_0(N) \to \mathbf{P}^1$, it suffices to prove the assertion for X = X(N). Since we do not claim that there is no ramification over ∞ , we may restrict to Y(N). By Theorem 2.4.5, the points on Y(N) correspond to isomorphism classes of triples (E, P, Q), where E is an elliptic curve over \mathbf{C} and P, Q are a basis for E[N]. The map from Y(N) to \mathbf{P}^1 sends the isomorphism class of (E, P, Q) to the isomorphism class of E. The equivalence class of (E, P, Q) also contains (E, -P, -Q), since $-1 : E \to E$ is an isomorphism. The only way the fiber over E can have cardinality smaller than the degree is if there is an extra equivalence $(E, P, Q) \to (E, \varphi(P), \varphi(Q))$ with φ an automorphism of E not equal to ± 1 . The theory of CM elliptic curves, shows that there are only two isomorphism classes of elliptic curves E with automorphisms other than -1, and these are the ones with j-invariant 0 and 1728. This proves the proposition.

Theorem 2.5.4. For N > 4, the genus of $X_0(N)$ is

$$g(X_0(N)) = 1 + N \prod_{p|N} (1 + 1/p) - \frac{1}{2}\sigma(N) - \frac{1}{4}\mu_{1728}(N) - \frac{1}{3}\mu_0(N).$$

Here $\sigma(N) = \sum_{d|n} \varphi(d)\varphi(N/d)$, $\mu_{1728}(N) = 0$ if $4 \mid N$ and $\mu_{1728}(N) = \prod_{p|N} (1+(-4/p))$ otherwise (where (-4/p) is the quadratic reciprocity symbol). Also, $\mu_0(N) = 0$ if $2 \mid N$ or $9 \mid N$, and $\mu_0(N) = \prod_{p|N} (1+(-3/p))$ otherwise.

For N > 4, the genus of $X_1(N)$ is

$$1 + \frac{1}{2}N^2 \prod_{p|N} (1 - 1/p^2) - \frac{1}{2}\sigma^*(N),$$

where $\sigma^*(N) = \frac{1}{2} \sum_{d|n} \varphi(d) \varphi(N/d)$. For example, when $N \ge 5$ is prime, the genus of $X_1(N)$ is (N-5)(N-7)/24.

For N > 1, the genus of X(N) is

$$g(X(N)) = 1 + \frac{N^2(N-6)}{24} \prod_{p|N} (1-p^2).$$

16 2. Analytic theory of modular curves

Proof. We only prove the theorem for X(N) here (a proof for $X_0(N)$ is Section 1.6 of [3] and a proof for $X_1(N)$ is in Section 9.1 of [1]).

Since X(N) is a Galois covering of $X(1) = \mathbf{P}^1$, the ramification indexes e_x are all the same for x over a fixed point $y \in \mathbf{P}^1$; we denote this common index by e_y . The fiber over the curve with j-invariant 0 has size one-third of the degree, since the automorphism group of the elliptic curve with j-invariant 0 has order 6, so $e_0 = 3$. Similarly, the fiber over the curve with j-invariant 1728 has size half the degree, since the automorphism group of the elliptic curve with j-invariant 1728 is cyclic of order 4, so $e_{1728} = 2$.

To compute the ramification degree e_{∞} we use the orbit stabilizer theorem. The fiber of $X(N) \to X(1)$ over ∞ is exactly the set of $\Gamma(N)$ equivalence classes of cusps, which is $\Gamma(N)\infty, x_2\Gamma(N)\infty, \ldots, x_r\Gamma(N)\infty$, where $x_1 = 1, x_2, \ldots, x_r$ are left coset representatives for $\Gamma(N)$ in $\operatorname{SL}_2(\mathbb{Z})$. By the orbit-stabilizer theorem, the number of cusps equals $\#(\Gamma(1)/\Gamma(N))/\#S$, where S is the stabilizer of $\Gamma(N)\infty$ in $\Gamma(1)/\Gamma(N) \cong \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})$. Thus S is the subgroup $\{\pm \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} : 0 \le n < N - 1\}$, which has order 2N. Since the degree of $X(N) \to X(1)$ equals $\#(\Gamma(1)/\Gamma(N))/2$, the number of cusps is the degree divided by N. Thus $e_{\infty} = N$.

The Hurwitz formula for $X(N) \to X(1)$ with $e_0 = 3$, $e_{1728} = 2$, and $e_{\infty} = N$, is

$$2g(X(N)) - 2 = d\left(0 - 2 + \left(1 - \frac{1}{3} + 1 - \frac{1}{2} + 1 - \frac{1}{N}\right)\right),$$

where d is the degree of $X(N) \to X(1)$. Solving for g(X(N)) we obtain

$$2g(X) - 2 = d\left(1 - \frac{5}{6} - \frac{1}{N}\right) = d\left(\frac{N - 6}{6N}\right),$$

 \mathbf{SO}

$$g(X) = 1 + \frac{d}{2}\left(\frac{N-6}{6N}\right) = \frac{d}{12N}(N-6) + 1.$$

Substituting the formula for d from Proposition 2.5.2 yields the claimed formula.

This is page 17 Printer: Opaque this

References

- F. Diamond and J. Im, Modular forms and modular curves, Seminar on Fermat's Last Theorem, Providence, RI, 1995, pp. 39–133.
- [2] J-P. Serre, A Course in Arithmetic, Springer-Verlag, New York, 1973, Translated from the French, Graduate Texts in Mathematics, No. 7.
- [3] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, Princeton, NJ, 1994, Reprint of the 1971 original, Kan Memorial Lectures, 1.