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1.4 Points on modular curves parameterize elliptic
curves with extra structure

The classical theory of the Weierstass ℘-function sets up a bijection between
isomorphism classes of elliptic curves over C and isomorphism classes of one-
dimensional complex tori C/Λ. Here Λ is a lattice in C, i.e., a free abelian group
Zω1 + Zω2 of rank 2 such that Rω1 + Rω2 = C.

Any homomorphism ϕ of complex tori C/Λ1 → C/Λ2 is determined by a C-
linear map T : C → C that sends Λ1 into Λ2.

Lemma 1.4.1. Suppose ϕ : C/Λ1 → C/Λ2 is nonzero. Then the kernel of ϕ is
isomorphic to Λ2/T (Λ1).

Lemma 1.4.2. Two complex tori C/Λ1 and C/Λ2 are isomorphic if and only if
there is a complex number α such that αΛ1 = Λ2.

Proof. Any C-linear map C → C is multiplication by a scalar α ∈ C.

Suppose Λ = Zω1 +Zω2 is a lattice in C, and let τ = ω1/ω2. Then Λτ = Zτ +Z
defines an elliptic curve that is isomorphic to the elliptic curve determined by Λ.
By replacing ω1 by −ω1, if necessary, we may assume that τ ∈ h. Thus every
elliptic curve is of the form Eτ = C/Λτ for some τ ∈ h and each τ ∈ h determines
an elliptic curve.

Proposition 1.4.3. Suppose τ, τ ′ ∈ h. Then Eτ
∼= Eτ ′ if and only if there exists

g ∈ SL2(Z) such that τ = g(τ ′). Thus the set of isomorphism classes of elliptic
curves over C is in natural bijection with the orbit space SL2(Z)\h.

Proof. Suppose Eτ
∼= Eτ ′ . Then there exists α ∈ C such that αΛτ = Λτ ′ , so

ατ = aτ ′ + b and α1 = cτ ′ + d for some a, b, c, d ∈ Z. The matrix g =
(

a b
c d

)
has

determinant ±1 since aτ ′+ b and cτ ′+d form a basis for Zτ +Z; this determinant
is positive because g(τ ′) = τ and τ, τ ′ ∈ h. Thus det(g) = 1, so g ∈ SL2(Z).

Conversely, suppose τ, τ ′ ∈ h and g =
(

a b
c d

) ∈ SL2(Z) is such that

τ = g(τ ′) =
aτ ′ + b

cτ ′ + d
.

Let α = cτ ′ + d, so ατ = aτ ′ + b. Since det(g) = 1, the scalar α defines an
isomorphism from Λτ to Λτ ′ , so Eτ

∼= E′
τ , as claimed.

Let E = C/Λ be an elliptic curve over C and N a positive integer. Using
Lemma 2.4.1, we see that

E[N ] := {x ∈ E : Nx = 0} ∼=
(

1
N

Λ
)

/Λ ∼= (Z/NZ)2.

If Λ = Λτ = Zτ + Z, this means that τ/N and 1/N are a basis for E[N ].
Suppose τ ∈ h and recall that Eτ = C/Λτ = C/(Zτ + Z). To τ , we associate

three “level N structures”. First, let Cτ be the subgroup of Eτ generated by 1/N .
Second, let Pτ be the point of order N in Eτ defined by 1/N ∈ Λτ . Third, let Qτ

be the point of order N in Eτ defined by τ/N , and consider the basis (Pτ , Qτ ) for
E[N ].
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4 1. Analytic theory of modular curves

In order to describe the third level structure, we introduce the Weil pairing

e : E[N ]× E[N ] → Z/NZ

as follows. If E = C/(Zω1 + Zω2) with ω1/ω2 ∈ h, and P = aω1/N + bω2/N ,
Q = cω1/N + dω2/N , then

e(P,Q) = ad− bc ∈ Z/NZ.

Notice that e(Pτ , Qτ ) = −1 ∈ Z/NZ. Also if C/Λ ∼= C/Λ′ via multiplication by α,
and P, Q ∈ (C/Λ)[N ], then e(α(P ), α(Q)) = e(P, Q).

Theorem 1.4.4. Let N be a positive integer.

1. The non-cuspidal points on X0(N) correspond to isomorphism classes of
pairs (E, C) where C is a cyclic subgroup of E of order N . (Two pairs
(E, C), (E′, C ′) are isomorphic if there is an isomorphism ϕ : E → E′

such that ϕ(C) = C ′.)

2. The non-cuspidal points on X1(N) correspond to pairs (E, P ) where P is a
point on E of exact order N . (Two pairs (E,P ) and (E′, P ′) isomorphic if
there is an isomorphism ϕ : E → E′ such that ϕ(P ) = P ′.)

3. The non-cuspidal points on X(N) correspond to triples (E,P, Q) where P, Q
are a basis for E[N ] such that e(P, Q) = −1 ∈ Z/NZ. (Triples (E,P, Q) and
(E, P ′, Q′) are isomorphic if there is an isomorphism ϕ : E → E′ such that
ϕ(P ) = P ′ and ϕ(Q) = Q′.)

This theorem follows from Propositions 2.4.5 and 2.4.7 below.

Proposition 1.4.5. Let E be an elliptic curve over C. If C is a cyclic subgroup of
E of order N , then there exists τ ∈ h such that (E, C) is isomorphic to (Eτ , Cτ ).
If P is a point on E of order N , then there exists τ ∈ C such that (E, P ) is
isomorphic to (Eτ , Pτ ). If P, Q is a basis for E[N ] and e(P, Q) = −1 ∈ Z/NZ,
then there exists τ ∈ C such that (E, P, Q) is isomorphic to (Eτ , Pτ , Qτ ).

Proof. Write E = C/Λ with Λ = Zω1 + Zω2 and ω1/ω2 ∈ h.
Suppose P = aω1/N + bω2/N is a point of order N . Then gcd(a, b, N) = 1,

otherwise P would have order strictly less than N , a contradiction. Thus we can
modify a and b by adding multiples of N to them (this follows from the fact that
SL2(Z) → SL2(Z/NZ) is surjective), so that P = aω1/N + bω2/N and gcd(a, b) =
1. There exists c, d ∈ Z such that ad−bc = 1, so ω′1 = aω1+bω2 and ω′2 = cω1+dω2

form a basis for Λ, and C is generated by P = ω′1/N . If necessary, replace ω′2 by
−ω′2 so that τ = ω′2/ω′1 ∈ h. Then (E, P ) is isomorphic to (Eτ , Pτ ). Also, if C is
the subgroup generated by P , then (E, C) is isomorphic to (Eτ , Cτ ).

Suppose P = aω1/N + bω2/N and Q = cω1/N + dω2/N are a basis for E[N ]
with e(P, Q) = −1. Then the matrix

(
a b
−c −d

)
has determinant 1 modulo N , so

because the map SL2(Z) → SL2(Z/NZ) is surjective, we can replace a, b, c, d by
integers which are equivalent to them modulo N (so P and Q are unchanged) and
so that ad − bc = −1. Thus ω′1 = aω1 + bω2 and ω′2 = cω1 + dω2 form a basis for
Λ. Let

τ = ω′2/ω′1 =
cω1

ω2
+ d

aω1
ω2

+ b
.
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Then τ ∈ h since ω1/ω2 ∈ h and
(

c d
a b

)
has determinant +1. Finally, division by

ω′1 defines an isomorphism E → Eτ that sends P to 1/N and Q to τ/N .

Remark 1.4.6. Part 3 of Theorem 2.4 in Chapter 11 of Husemöller’s book on
elliptic curves is wrong, since he neglects the Weil pairing condition. Also the
first paragraph of his proof of the theorem is incomplete.

The following proposition completes the proof of Theorem 2.4.4.

Proposition 1.4.7. Suppose τ, τ ′ ∈ h. Then (Eτ , Cτ ) is isomorphic (Eτ ′ , Cτ ′) if
and only if there exists g ∈ Γ0(N) such that g(τ) = τ ′. Also, (Eτ , Pτ ) is isomorphic
(Eτ ′ , Pτ ′) if and only if there exists g ∈ Γ1(N) such that g(τ) = τ ′. Finally,
(Eτ , Pτ , Qτ ) is isomorphic (Eτ ′ , Pτ ′ , Qτ ′) if and only if there exists g ∈ Γ(N) such
that g(τ) = τ ′.

Proof. We prove only the first assertion, since the others are proved in a similar
way. Suppose (Eτ , Cτ ) is isomorphic to (E′

τ , C ′τ ). Then there is λ ∈ C such that
λΛτ = Λτ ′ . Thus λτ = aτ ′ + b and λ1 = cτ ′ + d with g =

(
a b
c d

) ∈ SL2(Z) (as
we saw in the proof of Proposition 2.4.3). Dividing the second equation by N we
get λ 1

N = c
N τ ′ + d

N , which lies in Λτ ′ = Zτ ′ + 1
N Z, by hypothesis. Thus c ≡ 0

(mod N), so g ∈ Γ0(N), as claimed. For the converse, note that if N | c, then
c
N τ ′ + d

N ∈ Λτ ′ .

1.5 The Genus of X(N)

Let N be a positive integer. The aim of this section is to establish some facts
about modular curves associated to congruence subgroups and compute the genus
of X(N). Similar methods can be used to compute the genus of X0(N) and X1(N)
(for X0(N) see [3, §1.6] and for X1(N) see [1, §9.1]).

The groups Γ0(1), Γ1(1), and Γ(1) are all equal to SL2(Z), so X0(1) = X1(1) =
X(1) = P1. Since P1 has genus 0, we know the genus for each of these three
cases. For general N we obtain the genus by determining the ramification of the
corresponding cover of P1 and applying the Hurwitz formula, which we assume
the reader is familiar with, but which we now recall.

Suppose f : X → Y is a surjective morphism of Riemann surfaces of degree d.
For each point x ∈ X, let ex be the ramification exponent at x, so ex = 1 precisely
when f is unramified at x, which is the case for all but finitely many x. (There is a
point over y ∈ Y that is ramified if and only if the cardinality of f−1(y) is less than
the degree of f .) Let g(X) and g(Y ) denote the genera of X and Y , respectively.

Theorem 1.5.1 (Hurwitz Formula). Let f : X → Y be as above. Then

2g(X)− 2 = d(2g(Y )− 2) +
∑

x∈X

(ex − 1).

If X → Y is Galois, so the ex in the fiber over each fixed y ∈ Y are all equal, then
this formula becomes

2g(X)− 2 = d


2g(Y )− 2 +

∑

y∈Y

(
1− 1

ey

)
 .
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Let X be one of the modular curves X0(N), X1(N), or X(N) corresponding to a
congruence subgroup Γ, and let Y = X(1) = P1. There is a natural map f : X → Y
got by sending the equivalence class of τ modulo the congruence subgroup Γ to the
equivalence class of τ modulo SL2(Z). This is “the” map X → P1 that we mean
everywhere below.

Because PSL2(Z) acts faithfully on h, the degree of f is the index in PSL2(Z)
of the image of Γ in PSL2(Z) (see Exercise X). Using that the map SL2(Z) →
SL2(Z/NZ) is surjective, we can compute these indices (Exercise X), and obtain
the following lemma:

Proposition 1.5.2. Suppose N > 2. The degree of the map X0(N) → P1 is
N

∏
p|N (1 + 1/p). The degree of the map X1(N) → P1 is 1

2N2
∏

p|N (1 − 1/p2).
The degree of the map from X(N) → P1 is 1

2N3
∏

p|N (1 − 1/p2). If N = 2, then
the degrees are 3, 3, and 6, respectively.

Proof. This follows from the discussion above, Exercise X about indices of congru-
ence subgroups in SL2(Z), and the observation that for N > 2 the groups Γ(N)
and Γ1(N) do not contain −1 and the group Γ0(N) does.

Proposition 1.5.3. Let X be X0(N), X1(N) or X(N). Then the map X → P1

is ramified at most over ∞ and the two points corresponding to elliptic curves with
extra automorphisms (i.e., the two elliptic curves with j-invariants 0 and 1728).

Proof. Since we have a tower X(N) → X1(N) → X0(N) → P1, it suffices to prove
the assertion for X = X(N). Since we do not claim that there is no ramification
over ∞, we may restrict to Y (N). By Theorem 2.4.4, the points on Y (N) cor-
respond to isomorphism classes of triples (E,P, Q), where E is an elliptic curve
over C and P, Q are a basis for E[N ]. The map from Y (N) to P1 sends the iso-
morphism class of (E, P,Q) to the isomorphism class of E. The equivalence class
of (E,P, Q) also contains (E,−P,−Q), since −1 : E → E is an isomorphism. The
only way the fiber over E can have cardinality smaller than the degree is if there
is an extra equivalence (E,P, Q) → (E,ϕ(P ), ϕ(Q)) with ϕ an automorphism of
E not equal to ±1. The theory of CM elliptic curves shows that there are only two
isomorphism classes of elliptic curves E with automorphisms other than ±1, and
these are the ones with j-invariant 0 and 1728. This proves the proposition.

Theorem 1.5.4. For N > 2, the genus of X(N) is

g(X(N)) = 1 +
N2(N − 6)

24

∏

p|N

(
1− 1

p2

)
.

For N = 1, 2, the genus is 0.

Thus if gN = g(X(N)), then g1 = g2 = g3 = g4 = g5 = 0, g6 = 1, g7 = 3, g8 = 5,
g9 = 10, g389 = 2414816, and g2003 = 333832500.

Proof. Since X(N) is a Galois covering of X(1) = P1, the ramification indices ex

are all the same for x over a fixed point y ∈ P1; we denote this common index
by ey. The fiber over the curve with j-invariant 0 has size one-third of the degree,
since the automorphism group of the elliptic curve with j-invariant 0 has order 6,
so the group of automorphisms modulo ±1 has order three, hence e0 = 3. Similarly,
the fiber over the curve with j-invariant 1728 has size half the degree, since the
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automorphism group of the elliptic curve with j-invariant 1728 is cyclic of order 4,
so e1728 = 2.

To compute the ramification degree e∞ we use the orbit stabilizer theorem.
The fiber of X(N) → X(1) over ∞ is exactly the set of Γ(N) equivalence classes
of cusps, which is Γ(N)∞,Γ(N)g2∞, . . . , Γ(N)gr∞, where g1 = 1, g2, . . . , gr are
coset representatives for Γ(N) in SL2(Z). By the orbit-stabilizer theorem, the
number of cusps equals #(Γ(1)/Γ(N))/#S, where S is the stabilizer of Γ(N)∞
in Γ(1)/Γ(N) ∼= SL2(Z/NZ). Thus S is the subgroup {± ( 1 n

0 1 ) : 0 ≤ n < N − 1},
which has order 2N . Since the degree of X(N) → X(1) equals #(Γ(1)/Γ(N))/2,
the number of cusps is the degree divided by N . Thus e∞ = N .

The Hurwitz formula for X(N) → X(1) with e0 = 3, e1728 = 2, and e∞ = N , is

2g(X(N))− 2 = d

(
0− 2 +

(
1− 1

3
+ 1− 1

2
+ 1− 1

N

))
,

where d is the degree of X(N) → X(1). Solving for g(X(N)) we obtain

2g(X)− 2 = d

(
1− 5

6
− 1

N

)
= d

(
N − 6
6N

)
,

so

g(X) = 1 +
d

2

(
N − 6
6N

)
=

d

12N
(N − 6) + 1.

Substituting the formula for d from Proposition 2.5.2 yields the claimed formula.
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