1.4 Points on modular curves parameterize elliptic curves with extra structure

The classical theory of the Weierstass \wp-function sets up a bijection between isomorphism classes of elliptic curves over \mathbf{C} and isomorphism classes of onedimensional complex tori \mathbf{C} / Λ. Here Λ is a lattice in \mathbf{C}, i.e., a free abelian group $\mathbf{Z} \omega_{1}+\mathbf{Z} \omega_{2}$ of rank 2 such that $\mathbf{R} \omega_{1}+\mathbf{R} \omega_{2}=\mathbf{C}$.

Any homomorphism φ of complex tori $\mathbf{C} / \Lambda_{1} \rightarrow \mathbf{C} / \Lambda_{2}$ is determined by a \mathbf{C} linear map $T: \mathbf{C} \rightarrow \mathbf{C}$ that sends Λ_{1} into Λ_{2}.

Lemma 1.4.1. Suppose $\varphi: \mathbf{C} / \Lambda_{1} \rightarrow \mathbf{C} / \Lambda_{2}$ is nonzero. Then the kernel of φ is isomorphic to $\Lambda_{2} / T\left(\Lambda_{1}\right)$.

Lemma 1.4.2. Two complex tori \mathbf{C} / Λ_{1} and \mathbf{C} / Λ_{2} are isomorphic if and only if there is a complex number α such that $\alpha \Lambda_{1}=\Lambda_{2}$.

Proof. Any \mathbf{C}-linear map $\mathbf{C} \rightarrow \mathbf{C}$ is multiplication by a scalar $\alpha \in \mathbf{C}$.
Suppose $\Lambda=\mathbf{Z} \omega_{1}+\mathbf{Z} \omega_{2}$ is a lattice in \mathbf{C}, and let $\tau=\omega_{1} / \omega_{2}$. Then $\Lambda_{\tau}=\mathbf{Z} \tau+\mathbf{Z}$ defines an elliptic curve that is isomorphic to the elliptic curve determined by Λ. By replacing ω_{1} by $-\omega_{1}$, if necessary, we may assume that $\tau \in \mathfrak{h}$. Thus every elliptic curve is of the form $E_{\tau}=\mathbf{C} / \Lambda_{\tau}$ for some $\tau \in \mathfrak{h}$ and each $\tau \in \mathfrak{h}$ determines an elliptic curve.

Proposition 1.4.3. Suppose $\tau, \tau^{\prime} \in \mathfrak{h}$. Then $E_{\tau} \cong E_{\tau^{\prime}}$ if and only if there exists $g \in \mathrm{SL}_{2}(\mathbf{Z})$ such that $\tau=g\left(\tau^{\prime}\right)$. Thus the set of isomorphism classes of elliptic curves over \mathbf{C} is in natural bijection with the orbit space $\mathrm{SL}_{2}(\mathbf{Z}) \backslash \mathfrak{h}$.

Proof. Suppose $E_{\tau} \cong E_{\tau^{\prime}}$. Then there exists $\alpha \in \mathbf{C}$ such that $\alpha \Lambda_{\tau}=\Lambda_{\tau^{\prime}}$, so $\alpha \tau=a \tau^{\prime}+b$ and $\alpha 1=c \tau^{\prime}+d$ for some $a, b, c, d \in \mathbf{Z}$. The matrix $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has determinant ± 1 since $a \tau^{\prime}+b$ and $c \tau^{\prime}+d$ form a basis for $\mathbf{Z} \tau+\mathbf{Z}$; this determinant is positive because $g\left(\tau^{\prime}\right)=\tau$ and $\tau, \tau^{\prime} \in \mathfrak{h}$. Thus $\operatorname{det}(g)=1$, so $g \in \mathrm{SL}_{2}(\mathbf{Z})$.

Conversely, suppose $\tau, \tau^{\prime} \in \mathfrak{h}$ and $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})$ is such that

$$
\tau=g\left(\tau^{\prime}\right)=\frac{a \tau^{\prime}+b}{c \tau^{\prime}+d}
$$

Let $\alpha=c \tau^{\prime}+d$, so $\alpha \tau=a \tau^{\prime}+b$. Since $\operatorname{det}(g)=1$, the scalar α defines an isomorphism from Λ_{τ} to $\Lambda_{\tau^{\prime}}$, so $E_{\tau} \cong E_{\tau}^{\prime}$, as claimed.

Let $E=\mathbf{C} / \Lambda$ be an elliptic curve over \mathbf{C} and N a positive integer. Using Lemma 2.4.1, we see that

$$
E[N]:=\{x \in E: N x=0\} \cong\left(\frac{1}{N} \Lambda\right) / \Lambda \cong(\mathbf{Z} / N \mathbf{Z})^{2}
$$

If $\Lambda=\Lambda_{\tau}=\mathbf{Z} \tau+\mathbf{Z}$, this means that τ / N and $1 / N$ are a basis for $E[N]$.
Suppose $\tau \in \mathfrak{h}$ and recall that $E_{\tau}=\mathbf{C} / \Lambda_{\tau}=\mathbf{C} /(\mathbf{Z} \tau+\mathbf{Z})$. To τ, we associate three "level N structures". First, let C_{τ} be the subgroup of E_{τ} generated by $1 / N$. Second, let P_{τ} be the point of order N in E_{τ} defined by $1 / N \in \Lambda_{\tau}$. Third, let Q_{τ} be the point of order N in E_{τ} defined by τ / N, and consider the basis $\left(P_{\tau}, Q_{\tau}\right)$ for $E[N]$.

In order to describe the third level structure, we introduce the Weil pairing

$$
e: E[N] \times E[N] \rightarrow \mathbf{Z} / N \mathbf{Z}
$$

as follows. If $E=\mathbf{C} /\left(\mathbf{Z} \omega_{1}+\mathbf{Z} \omega_{2}\right)$ with $\omega_{1} / \omega_{2} \in \mathfrak{h}$, and $P=a \omega_{1} / N+b \omega_{2} / N$, $Q=c \omega_{1} / N+d \omega_{2} / N$, then

$$
e(P, Q)=a d-b c \in \mathbf{Z} / N \mathbf{Z}
$$

Notice that $e\left(P_{\tau}, Q_{\tau}\right)=-1 \in \mathbf{Z} / N \mathbf{Z}$. Also if $\mathbf{C} / \Lambda \cong \mathbf{C} / \Lambda^{\prime}$ via multiplication by α, and $P, Q \in(\mathbf{C} / \Lambda)[N]$, then $e(\alpha(P), \alpha(Q))=e(P, Q)$.

Theorem 1.4.4. Let N be a positive integer.

1. The non-cuspidal points on $X_{0}(N)$ correspond to isomorphism classes of pairs (E, C) where C is a cyclic subgroup of E of order N. (Two pairs $(E, C),\left(E^{\prime}, C^{\prime}\right)$ are isomorphic if there is an isomorphism $\varphi: E \rightarrow E^{\prime}$ such that $\varphi(C)=C^{\prime}$.)
2. The non-cuspidal points on $X_{1}(N)$ correspond to pairs (E, P) where P is a point on E of exact order N. (Two pairs (E, P) and $\left(E^{\prime}, P^{\prime}\right)$ isomorphic if there is an isomorphism $\varphi: E \rightarrow E^{\prime}$ such that $\varphi(P)=P^{\prime}$.)
3. The non-cuspidal points on $X(N)$ correspond to triples (E, P, Q) where P, Q are a basis for $E[N]$ such that $e(P, Q)=-1 \in \mathbf{Z} / N \mathbf{Z}$. (Triples (E, P, Q) and $\left(E, P^{\prime}, Q^{\prime}\right)$ are isomorphic if there is an isomorphism $\varphi: E \rightarrow E^{\prime}$ such that $\varphi(P)=P^{\prime}$ and $\left.\varphi(Q)=Q^{\prime}.\right)$

This theorem follows from Propositions 2.4.5 and 2.4.7 below.
Proposition 1.4.5. Let E be an elliptic curve over \mathbf{C}. If C is a cyclic subgroup of E of order N, then there exists $\tau \in \mathfrak{h}$ such that (E, C) is isomorphic to $\left(E_{\tau}, C_{\tau}\right)$. If P is a point on E of order N, then there exists $\tau \in \mathbf{C}$ such that (E, P) is isomorphic to $\left(E_{\tau}, P_{\tau}\right)$. If P, Q is a basis for $E[N]$ and $e(P, Q)=-1 \in \mathbf{Z} / N \mathbf{Z}$, then there exists $\tau \in \mathbf{C}$ such that (E, P, Q) is isomorphic to $\left(E_{\tau}, P_{\tau}, Q_{\tau}\right)$.

Proof. Write $E=\mathbf{C} / \Lambda$ with $\Lambda=\mathbf{Z} \omega_{1}+\mathbf{Z} \omega_{2}$ and $\omega_{1} / \omega_{2} \in \mathfrak{h}$.
Suppose $P=a \omega_{1} / N+b \omega_{2} / N$ is a point of order N. Then $\operatorname{gcd}(a, b, N)=1$, otherwise P would have order strictly less than N, a contradiction. Thus we can modify a and b by adding multiples of N to them (this follows from the fact that $\mathrm{SL}_{2}(\mathbf{Z}) \rightarrow \mathrm{SL}_{2}(\mathbf{Z} / N \mathbf{Z})$ is surjective $)$, so that $P=a \omega_{1} / N+b \omega_{2} / N$ and $\operatorname{gcd}(a, b)=$ 1. There exists $c, d \in \mathbf{Z}$ such that $a d-b c=1$, so $\omega_{1}^{\prime}=a \omega_{1}+b \omega_{2}$ and $\omega_{2}^{\prime}=c \omega_{1}+d \omega_{2}$ form a basis for Λ, and C is generated by $P=\omega_{1}^{\prime} / N$. If necessary, replace ω_{2}^{\prime} by $-\omega_{2}^{\prime}$ so that $\tau=\omega_{2}^{\prime} / \omega_{1}^{\prime} \in \mathfrak{h}$. Then (E, P) is isomorphic to $\left(E_{\tau}, P_{\tau}\right)$. Also, if C is the subgroup generated by P, then (E, C) is isomorphic to $\left(E_{\tau}, C_{\tau}\right)$.

Suppose $P=a \omega_{1} / N+b \omega_{2} / N$ and $Q=c \omega_{1} / N+d \omega_{2} / N$ are a basis for $E[N]$ with $e(P, Q)=-1$. Then the matrix $\left(\begin{array}{cc}a & b \\ -c & -d\end{array}\right)$ has determinant 1 modulo N, so because the map $\mathrm{SL}_{2}(\mathbf{Z}) \rightarrow \mathrm{SL}_{2}(\mathbf{Z} / N \mathbf{Z})$ is surjective, we can replace a, b, c, d by integers which are equivalent to them modulo N (so P and Q are unchanged) and so that $a d-b c=-1$. Thus $\omega_{1}^{\prime}=a \omega_{1}+b \omega_{2}$ and $\omega_{2}^{\prime}=c \omega_{1}+d \omega_{2}$ form a basis for Λ. Let

$$
\tau=\omega_{2}^{\prime} / \omega_{1}^{\prime}=\frac{c \frac{\omega_{1}}{\omega_{2}}+d}{a \frac{\omega_{1}}{\omega_{2}}+b}
$$

Then $\tau \in \mathfrak{h}$ since $\omega_{1} / \omega_{2} \in \mathfrak{h}$ and $\left(\begin{array}{cc}c & d \\ a & b\end{array}\right)$ has determinant +1 . Finally, division by ω_{1}^{\prime} defines an isomorphism $E \rightarrow E_{\tau}$ that sends P to $1 / N$ and Q to τ / N.

Remark 1.4.6. Part 3 of Theorem 2.4 in Chapter 11 of Husemöller's book on elliptic curves is wrong, since he neglects the Weil pairing condition. Also the first paragraph of his proof of the theorem is incomplete.

The following proposition completes the proof of Theorem 2.4.4.
Proposition 1.4.7. Suppose $\tau, \tau^{\prime} \in \mathfrak{h}$. Then $\left(E_{\tau}, C_{\tau}\right)$ is isomorphic $\left(E_{\tau^{\prime}}, C_{\tau^{\prime}}\right)$ if and only if there exists $g \in \Gamma_{0}(N)$ such that $g(\tau)=\tau^{\prime}$. Also, $\left(E_{\tau}, P_{\tau}\right)$ is isomorphic $\left(E_{\tau^{\prime}}, P_{\tau^{\prime}}\right)$ if and only if there exists $g \in \Gamma_{1}(N)$ such that $g(\tau)=\tau^{\prime}$. Finally, $\left(E_{\tau}, P_{\tau}, Q_{\tau}\right)$ is isomorphic $\left(E_{\tau^{\prime}}, P_{\tau^{\prime}}, Q_{\tau^{\prime}}\right)$ if and only if there exists $g \in \Gamma(N)$ such that $g(\tau)=\tau^{\prime}$.

Proof. We prove only the first assertion, since the others are proved in a similar way. Suppose $\left(E_{\tau}, C_{\tau}\right)$ is isomorphic to $\left(E_{\tau}^{\prime}, C_{\tau}^{\prime}\right)$. Then there is $\lambda \in \mathbf{C}$ such that $\lambda \Lambda_{\tau}=\Lambda_{\tau^{\prime}}$. Thus $\lambda \tau=a \tau^{\prime}+b$ and $\lambda 1=c \tau^{\prime}+d$ with $g=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})$ (as we saw in the proof of Proposition 2.4.3). Dividing the second equation by N we get $\lambda \frac{1}{N}=\frac{c}{N} \tau^{\prime}+\frac{d}{N}$, which lies in $\Lambda_{\tau^{\prime}}=\mathbf{Z} \tau^{\prime}+\frac{1}{N} \mathbf{Z}$, by hypothesis. Thus $c \equiv 0$ $(\bmod N)$, so $g \in \Gamma_{0}(N)$, as claimed. For the converse, note that if $N \mid c$, then $\frac{c}{N} \tau^{\prime}+\frac{d}{N} \in \Lambda_{\tau^{\prime}}$.

1.5 The Genus of $X(N)$

Let N be a positive integer. The aim of this section is to establish some facts about modular curves associated to congruence subgroups and compute the genus of $X(N)$. Similar methods can be used to compute the genus of $X_{0}(N)$ and $X_{1}(N)$ (for $X_{0}(N)$ see $[3, \S 1.6]$ and for $X_{1}(N)$ see $[1, \S 9.1]$).

The groups $\Gamma_{0}(1), \Gamma_{1}(1)$, and $\Gamma(1)$ are all equal to $\mathrm{SL}_{2}(\mathbf{Z})$, so $X_{0}(1)=X_{1}(1)=$ $X(1)=\mathbf{P}^{1}$. Since \mathbf{P}^{1} has genus 0 , we know the genus for each of these three cases. For general N we obtain the genus by determining the ramification of the corresponding cover of \mathbf{P}^{1} and applying the Hurwitz formula, which we assume the reader is familiar with, but which we now recall.

Suppose $f: X \rightarrow Y$ is a surjective morphism of Riemann surfaces of degree d. For each point $x \in X$, let e_{x} be the ramification exponent at x, so $e_{x}=1$ precisely when f is unramified at x, which is the case for all but finitely many x. (There is a point over $y \in Y$ that is ramified if and only if the cardinality of $f^{-1}(y)$ is less than the degree of f.) Let $g(X)$ and $g(Y)$ denote the genera of X and Y, respectively.
Theorem 1.5.1 (Hurwitz Formula). Let $f: X \rightarrow Y$ be as above. Then

$$
2 g(X)-2=d(2 g(Y)-2)+\sum_{x \in X}\left(e_{x}-1\right)
$$

If $X \rightarrow Y$ is Galois, so the e_{x} in the fiber over each fixed $y \in Y$ are all equal, then this formula becomes

$$
2 g(X)-2=d\left(2 g(Y)-2+\sum_{y \in Y}\left(1-\frac{1}{e_{y}}\right)\right)
$$

Let X be one of the modular curves $X_{0}(N), X_{1}(N)$, or $X(N)$ corresponding to a congruence subgroup Γ, and let $Y=X(1)=\mathbf{P}^{1}$. There is a natural map $f: X \rightarrow Y$ got by sending the equivalence class of τ modulo the congruence subgroup Γ to the equivalence class of τ modulo $\mathrm{SL}_{2}(\mathbf{Z})$. This is "the" map $X \rightarrow \mathbf{P}^{1}$ that we mean everywhere below.

Because $\mathrm{PSL}_{2}(\mathbf{Z})$ acts faithfully on \mathfrak{h}, the degree of f is the index in $\mathrm{PSL}_{2}(\mathbf{Z})$ of the image of Γ in $\mathrm{PSL}_{2}(\mathbf{Z})$ (see Exercise X). Using that the map $\mathrm{SL}_{2}(\mathbf{Z}) \rightarrow$ $\mathrm{SL}_{2}(\mathbf{Z} / N \mathbf{Z})$ is surjective, we can compute these indices (Exercise X), and obtain the following lemma:
Proposition 1.5.2. Suppose $N>2$. The degree of the map $X_{0}(N) \rightarrow \mathbf{P}^{1}$ is $N \prod_{p \mid N}(1+1 / p)$. The degree of the map $X_{1}(N) \rightarrow \mathbf{P}^{1}$ is $\frac{1}{2} N^{2} \prod_{p \mid N}\left(1-1 / p^{2}\right)$. The degree of the map from $X(N) \rightarrow \mathbf{P}^{1}$ is $\frac{1}{2} N^{3} \prod_{p \mid N}\left(1-1 / p^{2}\right)$. If $N=2$, then the degrees are 3, 3, and 6 , respectively.

Proof. This follows from the discussion above, Exercise X about indices of congruence subgroups in $\mathrm{SL}_{2}(\mathbf{Z})$, and the observation that for $N>2$ the groups $\Gamma(N)$ and $\Gamma_{1}(N)$ do not contain -1 and the group $\Gamma_{0}(N)$ does.

Proposition 1.5.3. Let X be $X_{0}(N), X_{1}(N)$ or $X(N)$. Then the map $X \rightarrow \mathbf{P}^{1}$ is ramified at most over ∞ and the two points corresponding to elliptic curves with extra automorphisms (i.e., the two elliptic curves with j-invariants 0 and 1728).

Proof. Since we have a tower $X(N) \rightarrow X_{1}(N) \rightarrow X_{0}(N) \rightarrow \mathbf{P}^{1}$, it suffices to prove the assertion for $X=X(N)$. Since we do not claim that there is no ramification over ∞, we may restrict to $Y(N)$. By Theorem 2.4.4, the points on $Y(N)$ correspond to isomorphism classes of triples (E, P, Q), where E is an elliptic curve over \mathbf{C} and P, Q are a basis for $E[N]$. The map from $Y(N)$ to \mathbf{P}^{1} sends the isomorphism class of (E, P, Q) to the isomorphism class of E. The equivalence class of (E, P, Q) also contains $(E,-P,-Q)$, since $-1: E \rightarrow E$ is an isomorphism. The only way the fiber over E can have cardinality smaller than the degree is if there is an extra equivalence $(E, P, Q) \rightarrow(E, \varphi(P), \varphi(Q))$ with φ an automorphism of E not equal to ± 1. The theory of CM elliptic curves shows that there are only two isomorphism classes of elliptic curves E with automorphisms other than ± 1, and these are the ones with j-invariant 0 and 1728 . This proves the proposition.

Theorem 1.5.4. For $N>2$, the genus of $X(N)$ is

$$
g(X(N))=1+\frac{N^{2}(N-6)}{24} \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right) .
$$

For $N=1,2$, the genus is 0 .
Thus if $g_{N}=g(X(N))$, then $g_{1}=g_{2}=g_{3}=g_{4}=g_{5}=0, g_{6}=1, g_{7}=3, g_{8}=5$, $g_{9}=10, g_{389}=2414816$, and $g_{2003}=333832500$.

Proof. Since $X(N)$ is a Galois covering of $X(1)=\mathbf{P}^{1}$, the ramification indices e_{x} are all the same for x over a fixed point $y \in \mathbf{P}^{1}$; we denote this common index by e_{y}. The fiber over the curve with j-invariant 0 has size one-third of the degree, since the automorphism group of the elliptic curve with j-invariant 0 has order 6 , so the group of automorphisms modulo ± 1 has order three, hence $e_{0}=3$. Similarly, the fiber over the curve with j-invariant 1728 has size half the degree, since the
automorphism group of the elliptic curve with j-invariant 1728 is cyclic of order 4 , so $e_{1728}=2$.

To compute the ramification degree e_{∞} we use the orbit stabilizer theorem. The fiber of $X(N) \rightarrow X(1)$ over ∞ is exactly the set of $\Gamma(N)$ equivalence classes of cusps, which is $\Gamma(N) \infty, \Gamma(N) g_{2} \infty, \ldots, \Gamma(N) g_{r} \infty$, where $g_{1}=1, g_{2}, \ldots, g_{r}$ are coset representatives for $\Gamma(N)$ in $\mathrm{SL}_{2}(\mathbf{Z})$. By the orbit-stabilizer theorem, the number of cusps equals $\#(\Gamma(1) / \Gamma(N)) / \# S$, where S is the stabilizer of $\Gamma(N) \infty$ in $\Gamma(1) / \Gamma(N) \cong \mathrm{SL}_{2}(\mathbf{Z} / N \mathbf{Z})$. Thus S is the subgroup $\left\{ \pm\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right): 0 \leq n<N-1\right\}$, which has order $2 N$. Since the degree of $X(N) \rightarrow X(1)$ equals $\#(\Gamma(1) / \Gamma(N)) / 2$, the number of cusps is the degree divided by N. Thus $e_{\infty}=N$.

The Hurwitz formula for $X(N) \rightarrow X(1)$ with $e_{0}=3, e_{1728}=2$, and $e_{\infty}=N$, is

$$
2 g(X(N))-2=d\left(0-2+\left(1-\frac{1}{3}+1-\frac{1}{2}+1-\frac{1}{N}\right)\right)
$$

where d is the degree of $X(N) \rightarrow X(1)$. Solving for $g(X(N))$ we obtain

$$
2 g(X)-2=d\left(1-\frac{5}{6}-\frac{1}{N}\right)=d\left(\frac{N-6}{6 N}\right)
$$

so

$$
g(X)=1+\frac{d}{2}\left(\frac{N-6}{6 N}\right)=\frac{d}{12 N}(N-6)+1
$$

Substituting the formula for d from Proposition 2.5.2 yields the claimed formula.

References

[1] F. Diamond and J. Im, Modular forms and modular curves, Seminar on Fermat's Last Theorem, Providence, RI, 1995, pp. 39-133.
[2] J-P. Serre, A Course in Arithmetic, Springer-Verlag, New York, 1973, Translated from the French, Graduate Texts in Mathematics, No. 7.
[3] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, Princeton, NJ, 1994, Reprint of the 1971 original, Kan Memorial Lectures, 1.

