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Abelian Varieties £
Abelian Variety: A projective group variety m
(the group law is automatically commutative).
Examples: LT

T
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1. Elliptic curves ]
2. Jacobians of curves
3. Modular abelian varieties

4. Weil restriction of scalars

The Modular Jacobian J;(N)

« J1(N) = Jacobian of X;(N)

*The Hecke Algebra:

T = Z[Ty, T>,...] — End(J1(N))
 Cuspidal Modular Forms:

S2(M1(N)) = HO (X1(N), 2%, (vy)

Overview

0. Syllabus
1. Modular Abelian Varieties
2. Shafarevich-Tate Group

3. A Story about Orders of Shafarevich-
Tate Groups

Jacobians of Curves

If X'is an algebraic curve then
Jac(X) = { divisor classes of degree 0 on X'},

has structure of abelian variety of dimension =
genus(X).

Example: Elliptic curves are their own Jacobians.
Example: Let X, (V) be the modular curve that
(tries to) parametrize isomorphism classes of pairs

(E, embedding of Z/NZ into E).
The Jacobian of X;(N) is J,(N).

Modular Abelian Varieties

A modular abelian variety is any quotient of J;(N).

Goro Shimura associated an abelian
variety 4,to any newform f'(much of
Math 252 will culminate in this
construction):

Ap = J1(N)/1;J1(N)

where
f=a+ 3 ang" € Sa(M1(N))
n=2

Iy = Ker(T — Z[ay, a2, a3,...]), Ty — an




A=A Has Lots of Structure

A is an abelian variety defined over Q
* Thering Z[a,,a,,...] is a subring of End(4)

» The dimension of 4 equals the degree of the
field Q[a;.a,,...] generated by the a,

Modular Abelian
Varieties A; Are
Interesting!!!

» Wiles et al.: Every elliptic curve
over Q is modular, i.e., isogenous to an A_,
Consequence (Ribet): Fermat’s Last Theorem
(1 will not sketch a proof of either of these statements in 252.)

« Serre’s Conjecture: Every odd irreducible Galois representation
p: Gal(Q/Q) — GLx(F)

occurs up to twist in the torsion points of some 4, (1 will discuss
Serre’s conjecture further in 252.)

Birch and Swinnerton-Dyer

The Birch and Swinnerton-
Dyer Conjecture

L)(Ap,1) cony (I ep) -4, - Regy,
rl #Ap(Qror - #A7(Qror

o ”r(ri)

galois orbit \n=1 "

SFUI(A/Q

The Shafarevich-Tate
Group of A;

{
“Sha” is a subgroup of the first Galois cohomology‘
of 4; it measures failure of local to global:

N

1I(A;/Q) = Ker (HI(Q. Ap) — @ HI(Q,-.A;))

all ¢
Example:

[32% + 4y + 5:3 = 0] € LI(2® + > + 60:> = 0)
Conjecture (Shafarevich-Tate):

I_H(Af/Q) is finite.

r = ords=1 L(A;,5) = rank of Ap(Q)
cp = order of component group at p
§2,4, = canonical measure of Ap(R)

(We will spend at least 2 weeks on this conjecture in Math 252.)

From Birch’s paper Conjectures
Concerning Elliptic Curves

Tate, afarevic) asserts that ? S is alwayn
a fmlle group; this is a very nal ning of the Selmer conjecture.
Unfortunately, the evidence is very weak; in fact, T'S has not yet been fully
computed for a single curve. It is very difficult to compute more than (TS) 2
for a general elliptic curve over &, and (T'S) for a curve of shape y*=x'-B.
Cassels’ theorem implies that if T'S is finite then its order must be a square.
In our computations leading to the formula

(Cp) = | TS| ifg=0"

we actually verified that f*/+(Cp) was an integer syuare, usually 1, and was
divisible by the order of (T'S), when this could be calculated.




Theorems of Kolyvagin, Kato,
Rubin, Gross, Zagier, et al.

These are partial results towards the Birch and
Swinnerton-Dyer conjecture, which we will
discuss at the end of the course.
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Now for a motivating story that The Dual Abelian Variety
involves lots of things you shouldn’t . ) o
d d b ill wh hi The dual of A is an abelian variety isogenous to
un erstf';m yet, ut will when this A that parametrizes classes of invertible sheaves
course Is over:

on A that are algebraically equivalent to zero.

QUESTION: What can we say AV = PICO(A)
about the possible sizes of
Shafarevich-Tate Groups? The dual s functoral

If A— B then BY — AV.

i i Cassels-Tate Pairin
Polarized Abelian g
Varieties
A/F: abelian variety over number field
. . . Theorem. If A i incipall lari 2 larizati is-
A polarization of 4 is an isogeny (homomorphism) from 4 i e : 5 {pHINCIpA iy po ariged by.’ potatization:atis
to its dual that is induced byadivisor on A Apolarization ing from an F-rational divisor, then there is a nondegenerate
. 7 o alternating pairing on LW(A/F) 4. 50 for all p:
of degree 1 is called a principal polarization. !
#UI(A/ )] gy =0
(Same statement away from minimal degree of polarizations.)
Theorem. If 4 is the Jacobian of a curve, then A is
canonically principally polarized. For example, elliptic Corollary. If dim A =1 and ILI(A/F) finite, then
curves are principally polarized.
#II(A/F) =0




E.."

What if the abelian variety
A is not an elliptic curve?

Assume #I111(A/F) is finite. Overly optimistic literature:

« Page 306 of [Tate, 1963]: If 4 is a Jacobian then
#III(A/F) =0

« Page 149 of [Swinnerton-Dyer, 1967]: Tate proved that

#I111(A/F) = 0.

Poonen-Stoll

From: Michael Stoll (9 Dec 1996)

Dear Bjorn, Dear Ed:

[--.1 your results would imply that Sha[2] = z/2Z

in contradiction to the fact that the order of Sha[2] should

be a square (always assuming, as everybody does, that Sha is Finite).
So my question is (of course): What is wrong ?

From: Bjorn Pooenen (9 Dec 96)

Dear Michael:

Thanks for your e-mails. 1°m glad someone is actually taking the time
to think about our paper critically! [...]

1 would really like to resolve the apparent contradiction,

because I am sure it will end with us learning something!

(And I don®t think that it will be that Sha[2] can have odd dimension!)

From: Bjorn Poonen (11 hours later)

Dear Michael:

I think I may have resolved the problem. There is nothing wrong with
the paper, or with the calculation. The thing that is wrong is the
claim that Sha must have square order!

Michael Stoll’s
Computation

During a grey winter day in 1996,
Michael Stoll sat puzzling over a
computation in his study on a
majestic embassy-peppered hill
near Bonn overlooking the Rhine.
He had implemented an algorithm
for computing 2-torsion in Shafarevich-Tate groups of Jacobians
of hyperelliptic curves. He stared at a curve X for which his
computations were in direct contradiction to the previous slide!

#11(Jac(X)/Q)[2] = 2.

What was wrong????

Poonen-Stoll Theorem

Theorem (Annals, 1999): Suppose J is the Jacobian of a curve
and J has finite Shafarevich-Tate group. Then

#U(J/F)=0or 2.0

Example: The Jacobian of this curve has Sha of order 2

y? = -30=% + 1)(x? - 6 + 1)« + 60+ 1)

Is Sha Always Square or
Twice a Square?

Poonen asked at the Arizona Winter
School in 2000, “Is there an abelian
variety A with Shafarevich-Tate group
of order three?”

In 2002 | finally found Sha of order 3
(times a square):

0= —af — ] + (—Gryrg & 3xidry + (23 4 Irard + (053 - 2r3)nz
+ (4x3 + 23 + (4§ + m + (2oa0n = 130N
0= —3rar] + ((~12rs — 2)zz + 3rdry + (~ 203 + Sxrari+
(=152 — 4xa)ra 4 (Sl + 3 + (2w + (8 4 Dz — w311
0= =3ryr] + (=322 + Grarz + (=923 = 2e3))ry + (23 + (=0xy = )23
+ (1253 + 2ra)rz + (—923 — 323 + (2rawn + (05 — 2w + (39 + w2100
0 = #]s} — 8erdes + 302a3s] — 44afore] + 250728 — 2/3512% + 26/3x 280y + 232153
140/ 3ry 2353 — 16/3r ks + 388/3r1230 + 205,063 — 2/30y2303 + 8/ 30y rdimm
— 10/3xyx3y] — 4903y xaa} — B8/3xyxea] + 8/3ryraTayd — 40/3xTaTayyy
+ 4435y zaxypd + 250/3xy23 + 50/3y28 — 10/3xny23p2 + 4432, 23yps — 503y x3yd
+ 1/9x5 — 2alry — 2/90% + 15287 + 26/9%rs + 1/95% — 544/90le] — 140/9:)x]
893y + 2/9:303 — 8/9rdvaw + 10/9:3ud + 135532 + 388/9:3x] + 10/32313
2e3rayd + BO/9xdrapays — 94/9xirsy] - 2/9x503 + B/9x3yays — 10/9x3y]
— 150r227 — 4909225 — 44/%r22] 4 50/9r2:7y] — 244922534 + 30x2clyd
+ B/9xaxap] ~ 40/Draxavayn + 44/ hrzray] 4 625/9: 4 250/92F 4 28/9x — 50/9x303
+ 220/9yays — 250/9x3] — 10/9r3u2 + 4493y — 50,9533 + 1/9y3
— 8/9u3us + 10/3u3ui — 44/9uanl + 25/9u3




Plenty of Non-square Sha!

e Theorem (Stein): For every prime
p < 25000 there is an abelian variety
A over Q such that

#111(A4/Q) = p-O

Conjecture (Stein): Same statement for all p.

How to Construct
Non-square Sha

While attempting to connect groups of points on
elliptic curves of high rank to Shafarevich-Tate groups
of abelian varieties of rank 0, | found a construction of
non-square Shafarevich-Tate groups.

The Main Theorem

Theorem (Stein). Suppose E is an elliptic curve and p an odd
prime that satisfies various technical hypothesis. Suppose { is a
prime congruent to 1 mod p (and not dividing Ny) such that

L{E, xpe. 1) =0 and a(E} £ £+ 1 (mod p)

Here Xy : (Z/6)" — lp is a Dirichlet character of order p
and conductor { corresponding to an abelian extension K. Then
there is a twist A of a product of p - 1 copies of E and an exact
sequence

0 — E(Q)/pE(Q) — I(A/Q)[p™]) — WI(E/K)[p™] — WI(E/Q)p™] — 0.

If E has odd rank and W{E/Q)[p™] is finite then 111{ A/ Q)[p™]
has order that is not a perfect square.

Proof Uses the Weil Restriction
of Scalars

F/R: finite extension of number fields
A/F: abelian variety over F

It = Resy;-(A) abelian variety over K with
dim(R) = dim(A) - [F : K]

Functorial characterization:
For any K-scheme S,

= R(S) = A(S xx F)

What is the Abelian Variety A?

il

Let R be the Weil restriction of scalars of £ from K down to Q, so R
is an abelian variety over Q of dimension p (i.e., the degree of K).
Then A is the kernel of the map induced by trace:

O—-A—-R—-F-—=O0O

Note that
* A4 has dimensionp — 1
« A is isomorphic over K to a product of copies of £
« Our hypothesis on £ and Kato’s finiteness theorems imply that
A(Q) and #£111{.A/()) are both finite.

« Is isogenous to 4, where f'is a twist of newform attached to E.

Proof Sketch (1): Exact
Sequence of Neron Models

The exact sequence

0—-A—-R—-E—0O
extends to an exact sequence of Néron models (and hence sheaves
for the étale topology) over Z:

0—-A—-R—-E—0

To check this, we use that formation of Neron models commutes
with unramified base change and Prop. 7.5.2(a) of [Néron Mod-
els, 1990].




Proof (2): Mazur’s Etale
Cohomology Sha Theorem

Mazur's Rational Points of Abelian Varieties
with Values in Towers of Number Fields:

For = A, R, E let F = Néron(F). Then
HL(Z, F)[p™] = UI(F/Q)[p™]

In general this is not true, but our hypothesis on p and £
are exactly strong enough to kill the relevant error terms.

Proof (3): Long Exact Sequence

The long exact sequence of étale cohomology begins

0~ AQ — RQ — BQ) — 5
— HL(Z,A) — HL(Z.R) — HA(Z,E) — H2(Z, A)

Take the p-power torsion in this exact sequence then use
Mazur’s theorem. Next analyze the cokernel of 6...

Proof (4): Apply Kato’s
Finiteness Theorems

We have Coker(d) = E(Q)/pE(Q) since

L(E,xpe1)#0 and  ag#{L+1 (modp).
(To see this requires chasing some diagrams.)
Also Héz((Z.A)[p*] = 0 (proof uses Artin-Mazur duality).

Both of these steps use Kato’s finiteness theorem in an essential way.
Putting everything together yields the claimed exact sequence

0 = E(Q)/pE(Q) — HI(A/Q)[p™] — WI(E/K)[p~] — HI{E/Q)[p™] — 0.

Thank you for coming and...
Come Back!!




