

- 0. Syllabus
- 1. Modular Abelian Varieties
- 2. Shafarevich-Tate Group
- 3. A Story about Orders of Shafarevich-Tate Groups

Now for a motivating story that involves lots of things you shouldn't understand yet, but will when this course is over:

QUESTION: What can we say about the possible sizes of Shafarevich-Tate Groups?

Polarized Abelian Varieties

A *polarization* of A is an isogeny (homomorphism) from A to its dual that is induced by a divisor on A. A polarization of degree 1 is called a *principal polarization*.

Theorem. If A is the Jacobian of a curve, then A is canonically principally polarized. For example, elliptic curves are principally polarized.

A/F: abelian variety over number field

Theorem. If *A* is principally polarized by a polarization arising from an *F*-rational divisor, then there is a nondegenerate alternating pairing on $III(A/F)_{/\text{div}}$, so for all *p*:

 $\# \mathrm{III}(A/F)[p^\infty]_{/\operatorname{div}} = \Box$ (Same statement away from minimal degree of polarizations.)

Corollary. If dim A = 1 and III(A/F) finite, then $\#III(A/F) = \Box$

What if the abelian variety A is not an elliptic curve?

Assume #III(A/F) is finite. Overly optimistic literature:

• Page 306 of [Tate, 1963]: If A is a Jacobian then

$\# \amalg(A/F) = \Box.$

• Page 149 of [Swinnerton-Dyer, 1967]: Tate proved that

 $\# \amalg(A/F) = \Box.$

During a grey winter day in 1996, Michael Stoll sat puzzling over a computation in his study on a majestic embassy-peppered hill near Bonn overlooking the Rhine. He had implemented an algorithm

for computing 2-torsion in Shafarevich-Tate groups of Jacobians of hyperelliptic curves. He stared at a curve X for which his computations were in direct contradiction to the previous slide! #III(Jac(X)/Q)[2] = 2.

What was wrong????

From: Bjorn Poeenen (y Dec ye,) Dear Michael: Thanks for your --mails. I'm glad someone is actually taking the time to think about our paper critically! [...] I would really like to resolve the apparent contradiction, because I am sure it will lend with us learning something! (And I don't think that it will be that Sha[2] can have odd dimension!)

From: Bjorn Poonen (11 hours later)

Dear Michael: I think I may have resolved the problem. There is nothing wrong with the paper, or with the calculation. The thing that is wrong is the claim that Sha must have square order!

Is Sha Always Square or Twice a Square?

Poonen asked at the Arizona Winter School in 2000. "Is there an abelian variety A with Shafarevich-Tate group of order three?"

In 2002 I finally found Sha of order 3 (times a square):

 $0 = -x_1^3 - x_1^2 + (-6x_3x_2 + 3x_3^2)x_1 + (-x_2^3 + 3x_3x_2^2 + (-9x_3^2 - 2x_3)x_2$

How to Construct Non-square Sha

While attempting to connect groups of points on elliptic curves of high rank to Shafarevich-Tate groups of abelian varieties of rank 0, I found a construction of non-square Shafarevich-Tate groups.

Proof (2): Mazur's Etale Cohomology Sha Theorem

Mazur's Rational Points of Abelian Varieties with Values in Towers of Number Fields:

For
$$F = A, R, E$$
 let $\mathcal{F} = \operatorname{Néron}(F)$. Then
$$H^1_{\operatorname{\acute{e}t}}(\mathbf{Z}, \mathcal{F})[p^\infty] \cong \operatorname{III}(F/\mathbf{Q})[p^\infty]$$

In general this is not true, but our hypothesis on p and ℓ are exactly strong enough to kill the relevant error terms.

We have $Coker(\delta) = E(\mathbf{Q})/pE(\mathbf{Q})$ since

 $L(E, \chi_{p,\ell}, 1) \neq 0$ and $a_{\ell} \not\equiv \ell + 1 \pmod{p}$. (To see this requires chasing some diagrams.)

Also $H^2_{\text{ett}}(\mathbf{Z}, \mathcal{A})[p^{\infty}] = 0$ (proof uses Artin-Mazur duality). Both of these steps use Kato's finiteness theorem in an essential way. Putting everything together yields the claimed exact sequence

 $0 \to E(\mathbf{Q})/pE(\mathbf{Q}) \to \mathrm{III}(A/\mathbf{Q})[p^\infty] \to \mathrm{III}(E/K)[p^\infty] \to \mathrm{III}(E/\mathbf{Q})[p^\infty] \to 0.$

Thank you for coming and... Come Back!!

