Homework Assignment 8

(Math 252: Modular Abelian Varieties)

William A. Stein

Nov. 3 (Due: Nov. 12))

- 1. The principal congruence subgroup $\Gamma(N)$ of level N is the kernel of the reduction map $\operatorname{SL}_2(\mathbf{Z}) \to \operatorname{SL}(2, \mathbf{Z}/N\mathbf{Z})$. The subgroup $\Gamma_1(N)$ consists of matrices of the form $\begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$ modulo N. Let $\Gamma \subset \operatorname{SL}_2(\mathbf{Z})$ be a subgroup that contains $\Gamma(N)$ for some N. Show that there exists $g \in \operatorname{GL}(2, \mathbf{Q})$ such that the conjugate $g^{-1}\Gamma g$, which is a subgroup of $\operatorname{GL}(2, \mathbf{Q})$, contains $\Gamma_1(N^2)$. This shows that many problems about modular forms can be reduced to questions about modular forms for Γ_1 .
- 2. Let $f \in S_k(\Gamma_1(N))$ be a nonzero modular form that is an eigenform for all the Hecke operators T_p and for the diamond bracket operators $\langle d \rangle$. Let

$$\varepsilon: (\mathbf{Z}/N\mathbf{Z})^* \to \mathbf{C}^*$$

be the character of f, so $\langle d \rangle f = \varepsilon(d) f$ for all $d \in (\mathbb{Z}/N\mathbb{Z})^*$. Show that f satisfies the following equation: for any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$,

$$f(z) = \varepsilon(d)(cz+d)^{-k}f\Big(\frac{az+b}{cz+d}\Big).$$

- 3. Let M be a positive integer and let p be a prime.
 - (a) Show that there are two injective linear maps

$$S_2(\Gamma_1(M)) \hookrightarrow S_2(\Gamma_1(pM))$$

sending f(q) to f(q) and sending f(q) to $f(q^p)$. (I proved this in class, and you can copy the proof from your notes.)

- (b) Is it ever the case that the intersection of the images of these two maps is nonzero?
- 4. Let M be an integer such that $S_2(\Gamma_1(M))$ has positive dimension, and let p be a prime (thus M = 11 or $M \ge 13$).
 - (a) Let $f \in S_2(\Gamma_1(M))$ be an eigenvector for T_p with eigenvalue λ . Show that T_p acting on $S_2(\Gamma_1(Mp))$ preserves the two-dimensional subspace generated by f and f(pz). (When p divides the level, we define $T_p(\sum a_n q^n) = \sum a_{np}q^n$.)
 - (b) Show that if $\lambda^2 \neq 4p$ then T_p is diagonalizable on this 2-dimensional space. What are the eigenvalues of T_p on this space? In fact, one never has $\lambda^2 = 4p$; see [Coleman-Edixhoven, On the semisimplicity of the U_p operator on modular forms] for more details.
 - (c) Show that for any r > 2, the Hecke operator T_p on $S_2(\Gamma_1(Mp^r))$ is not diagonalizable.
 - (d) Deduce that for r > 2 the Hecke algebra **T** associated to $S_2(\Gamma_1(Mp^r))$ has nilpotent elements, so it is not a subring of a product of number fields.