Homework Assignment 7

(Math 252: Modular Abelian Varieties)

William A. Stein

Oct. 29 (Due: Nov. 5))

- 1. Let *L* be a lattice in **C** and let *n* be a positive integer. Prove that the number of sublattices of *L* of index *n* is equal to the sum of the positive divisors of *n*. (Hint: Use the characterization of sublattices of index *n* from the notes, and reduce to the prime power case.)
- 2. In this problem you probably want to use a computer, though it isn't strictly necessary.
 - (a) Show that k = 24 is the smallest weight such that dim $S_k(1) > 1$.
 - (b) Find a basis for $S_{24}(1)$.
 - (c) Compute a matrix for the Hecke operator T_2 with respect to your basis.
 - (d) Compute the characteristic polynomial of your matrix.
 - (e) Prove that the characteristic polynomial of your matrix is irreducible, and hence verify Maeda's conjecture in this case.
 - (f) Find the smallest k such that $S_k(1)$ has dimension 3.
 - (g) Compute a matrix for T_2 on $S_k(1)$.
 - (h) Verify that the characteristic polynomial of T_2 has Galois group the full symmetric group S_3 , which verifies one case of what Buzzard proves in his paper on Maeda's conjecture.
- 3. Let m and d be positive integers. Prove that

$$\sum_{b=0}^{d-1} \left(e^{(2\pi i m)/d} \right)^b$$

is nonzero if and only if $d \mid m$.

4. Let V be a finite-dimensional complex vector space equipped with an action of $(\mathbf{Z}/N\mathbf{Z})^*$. For each homomorphism $\chi: (\mathbf{Z}/N\mathbf{Z})^* \to \mathbf{C}^*$, let

$$V(\chi) = \{ v \in V : av = \chi(a)v \text{ all } a \in (\mathbf{Z}/N\mathbf{Z})^* \}.$$

Prove that $V = \bigoplus_{\chi} V(\chi)$, where the sum is over all $\chi : (\mathbf{Z}/N\mathbf{Z})^* \to \mathbf{C}^*$.

1