Homework Assignment 4

(Math 252: Modular Abelian Varieties)

William A. Stein
Oct. 8 (Due: Oct. 15)

There are six problems and parts of problems are of equal weight. (Reminder: It is fine to try to find solutions to these problems in books, etc., and recopy them, as long as you cite your sources.)

1. Let $T=V / L$ be a complex torus. Then we know that the map that sends an element $\varphi \in \operatorname{End}(T)=\operatorname{Hom}(T, T)$ to the corresponding homomorphism $L \rightarrow L$ is injective, so there is an injective map $\rho_{\mathbf{Z}}: \operatorname{Hom}(L, L) \approx \mathbf{Z}^{4 d}$, where $d=\operatorname{dim} T$. Is it possible that ρ_{Z} is surjective?
2. Suppose $L_{1}=\mathbf{Z}+\mathbf{Z} \alpha i \subset V_{1}=\mathbf{C}$, with $\alpha^{3}=2$. Then with respect to the basis 1 , αi, the matrix of complex conjugation is $J_{1}=\left(\begin{array}{cc}0 & -\alpha \\ 1 / \alpha & 0\end{array}\right)$. Use this to prove that $\operatorname{End}\left(V_{1} / L_{1}\right)=\mathbf{Z}$.
3. Let L be a lattice in a vector space V. A subgroup M of L is saturated in L if L / M is torsion free.
(a) Suppose W is a vector space and $f: L \rightarrow W$ is a homomorphism. Prove that $\operatorname{ker}(L)$ is saturated in L.
(b) Suppose $W \subset V$ is a subspace of V. Prove that $L \cap W$ is saturated in L.
(c) Suppose M is a subgroup of L. The saturation M^{\prime} of M in L is the intersection of $\mathbf{Q} M$ with L. Prove that M has finite index in M^{\prime}.
4. Let $T=V / L$ be a complex torus and let $\rho_{\mathbf{Z}}: \operatorname{End}(T) \rightarrow \operatorname{End}_{\mathbf{Z}}(L)$ be the integral representation. Prove that the image of $\rho_{\mathbf{Z}}$ is saturated in $\operatorname{End}_{\mathbf{Z}}(L)$, in the sense that the cokernel of $\rho_{\mathbf{Z}}$ is torsion free.
5. (a) Let $T=V / L$ be a complex torus. Prove that as a real manifold T is isomorphic to a product of copies of $S^{1}=\mathbf{R} / \mathbf{Z}$. Thus topologically complex tori are boring since they are classified by their dimension; it is their complex structure that makes them interesting.
(b) $\left(^{*}\right)$ Construct a 2-dimensional complex torus $T=V / L$ (so V is a 2dimensional complex vector space), such that T is not isomorphic as a complex torus to a product $\mathbf{C} / L_{1} \times \mathbf{C} / L_{2}$ of 1-dimensional complex tori.

6 . Let L be the subgroup of $V=\mathbf{C} \times \mathbf{C}$ generated by $(1,0),(0, i),(1, \sqrt{2}),(i, \sqrt{2})$.
(a) Prove that L is a lattice in V.
(b) With respect to the given basis for L, compute the matrix J that represents multiplication by i from V to V.
(c) $\left(^{*}\right)$ Let $T=V / L$. $\operatorname{Compute} \operatorname{End}(T)$, which is the subgroup of $\operatorname{End}_{\mathbf{Z}}(L, L)$ of elements that commute with J.
(d) $\left(^{*}\right)$ Find a complex torus T^{\prime} that is isogenous to T but not isomorphic to T.

