Homework Assignment 4

(Math 252: Modular Abelian Varieties)

William A. Stein

Oct. 8 (Due: Oct. 15)

There are six problems and parts of problems are of equal weight. (Reminder: It is fine to try to find solutions to these problems in books, etc., and recopy them, as long as you cite your sources.)

- 1. Let T = V/L be a complex torus. Then we know that the map that sends an element $\varphi \in \text{End}(T) = \text{Hom}(T,T)$ to the corresponding homomorphism $L \to L$ is injective, so there is an injective map $\rho_{\mathbf{Z}} : \text{Hom}(L,L) \approx \mathbf{Z}^{4d}$, where $d = \dim T$. Is it possible that ρ_Z is surjective?
- 2. Suppose $L_1 = \mathbf{Z} + \mathbf{Z}\alpha i \subset V_1 = \mathbf{C}$, with $\alpha^3 = 2$. Then with respect to the basis $1, \alpha i$, the matrix of complex conjugation is $J_1 = \begin{pmatrix} 0 & -\alpha \\ 1/\alpha & 0 \end{pmatrix}$. Use this to prove that $\operatorname{End}(V_1/L_1) = \mathbf{Z}$.
- 3. Let L be a lattice in a vector space V. A subgroup M of L is saturated in L if L/M is torsion free.
 - (a) Suppose W is a vector space and $f: L \to W$ is a homomorphism. Prove that ker(L) is saturated in L.
 - (b) Suppose $W \subset V$ is a subspace of V. Prove that $L \cap W$ is saturated in L.
 - (c) Suppose M is a subgroup of L. The saturation M' of M in L is the intersection of $\mathbb{Q}M$ with L. Prove that M has finite index in M'.
- 4. Let T = V/L be a complex torus and let $\rho_{\mathbf{Z}}$: End $(T) \to \text{End}_{\mathbf{Z}}(L)$ be the integral representation. Prove that the image of $\rho_{\mathbf{Z}}$ is saturated in End $_{\mathbf{Z}}(L)$, in the sense that the cokernel of $\rho_{\mathbf{Z}}$ is torsion free.
- 5. (a) Let T = V/L be a complex torus. Prove that as a real manifold T is isomorphic to a product of copies of $S^1 = \mathbf{R}/\mathbf{Z}$. Thus topologically complex tori are boring since they are classified by their dimension; it is their complex structure that makes them interesting.
 - (b) (*) Construct a 2-dimensional complex torus T = V/L (so V is a 2-dimensional complex vector space), such that T is not isomorphic as a complex torus to a product $\mathbf{C}/L_1 \times \mathbf{C}/L_2$ of 1-dimensional complex tori.
- 6. Let L be the subgroup of $V = \mathbf{C} \times \mathbf{C}$ generated by $(1,0), (0,i), (1,\sqrt{2}), (i,\sqrt{2})$.
 - (a) Prove that L is a lattice in V.
 - (b) With respect to the given basis for L, compute the matrix J that represents multiplication by i from V to V.
 - (c) (*) Let T = V/L. Compute End(T), which is the subgroup of End_Z(L, L) of elements that commute with J.
 - (d) (*) Find a complex torus T' that is isogenous to T but not isomorphic to T.