Homework Assignment 2
 Math 252: Modular Abelian Varieties

William A. Stein

Sep. 24 (Due: Oct. 1)

1. Prove that $\mathfrak{h}^{*}=\mathfrak{h} \cup \mathbf{Q} \cup\{\infty\}$ is Hausdorff.
2. Compute the length of the geodesic path from -1 to 1 in the upper half plane with respect to the Poincaré metric. (It's OK to compute a numerical approximation-I just want you to play around.)
3. (a) Suppose $E=\mathbf{C} / \Lambda$ is an elliptic curve and $\lambda: \mathbf{C} \rightarrow \mathbf{C}$ defines an automorphism of E. Prove that λ lies in a quadratic imaginary extension of \mathbf{Q}.
(b) Suppose E is an elliptic curve and $\operatorname{Aut}(E) \neq\{ \pm 1\}$. Prove that E is isomorphic to E_{τ} with $\tau=i$ or $\tau=e^{2 \pi i / 3}$.
4. Let Γ be a congruence subgroup of $\mathrm{SL}_{2}(\mathbf{Z})$, and let $X=\Gamma \backslash \mathfrak{h} *$ be the corresponding compact Riemann surface. Prove that the degree of the natural map $X \rightarrow X(1)$ equals the index in $\mathrm{PSL}_{2}(\mathbf{Z})$ of the image of Γ in $\mathrm{PSL}_{2}(\mathbf{Z})$.
5. Find explicit basis for each of the following homology groups, along with all explicit natural maps you can think of between these groups:

$$
\begin{array}{ll}
\mathrm{H}_{1}\left(X_{0}(11), \mathbf{Z}\right), & \mathrm{H}_{1}\left(X_{0}(11), \text { cusps, } \mathbf{Z}\right), \\
\mathrm{H}_{1}\left(X_{1}(11), \mathbf{Z}\right), & \mathrm{H}_{1}\left(X_{1}(11), \text { cusps }, \mathbf{Z}\right) .
\end{array}
$$

6. If you read Lemma 1.41-1.42 on page 23 of Shimura's book you'll find a way to compare the cusps for $\Gamma(N)$, i.e., the orbits for the action of $\Gamma(N)$ on $\mathbf{P}^{1}(\mathbf{Q})$. Shimura proves that two cusps a / b and c / d (reduced fractions) are equivalent if and only if $\pm(a, b)=(c, d)(\bmod N)$.
(a) Use Shimura's result to prove that the cusps for $\Gamma(N)$ are in bijection with the following set: The vectors $\pm(a, b)$, where $a, b \in \mathbf{Z} / N \mathbf{Z}$ and $\operatorname{gcd}(a, b, N)=1$, and the \pm means that we identify (a, b) with $(-a,-b)$.
(b) Deduce that for $N>2$, the number of $\Gamma(N)$ cusps is $N^{2} / 2 \cdot \prod_{p \mid N}\left(1-p^{-2}\right)$.
