Homework Assignment 2 Math 252: Modular Abelian Varieties

William A. Stein

Sep. 24 (Due: Oct. 1)

- 1. Prove that $\mathfrak{h}^* = \mathfrak{h} \cup \mathbf{Q} \cup \{\infty\}$ is Hausdorff.
- 2. Compute the length of the geodesic path from -1 to 1 in the upper half plane with respect to the Poincaré metric. (It's OK to compute a numerical approximation—I just want you to play around.)
- 3. (a) Suppose $E = \mathbf{C}/\Lambda$ is an elliptic curve and $\lambda : \mathbf{C} \to \mathbf{C}$ defines an automorphism of E. Prove that λ lies in a quadratic imaginary extension of \mathbf{Q} .
 - (b) Suppose E is an elliptic curve and Aut(E) $\neq \{\pm 1\}$. Prove that E is isomorphic to E_{τ} with $\tau = i$ or $\tau = e^{2\pi i/3}$.
- 4. Let Γ be a congruence subgroup of $\mathrm{SL}_2(\mathbf{Z})$, and let $X = \Gamma \setminus \mathfrak{h}^*$ be the corresponding compact Riemann surface. Prove that the degree of the natural map $X \to X(1)$ equals the index in $\mathrm{PSL}_2(\mathbf{Z})$ of the image of Γ in $\mathrm{PSL}_2(\mathbf{Z})$.
- 5. Find explicit basis for each of the following homology groups, along with all explicit natural maps you can think of between these groups:

$$H_1(X_0(11), \mathbf{Z}), \quad H_1(X_0(11), \text{cusps}, \mathbf{Z}),$$

 $H_1(X_1(11), \mathbf{Z}), \quad H_1(X_1(11), \text{cusps}, \mathbf{Z}).$

- 6. If you read Lemma 1.41–1.42 on page 23 of Shimura's book you'll find a way to compare the cusps for $\Gamma(N)$, i.e., the orbits for the action of $\Gamma(N)$ on $\mathbf{P}^1(\mathbf{Q})$. Shimura proves that two cusps a/b and c/d (reduced fractions) are equivalent if and only if $\pm(a,b) = (c,d) \pmod{N}$.
 - (a) Use Shimura's result to prove that the cusps for $\Gamma(N)$ are in bijection with the following set: The vectors $\pm(a,b)$, where $a,b \in \mathbb{Z}/N\mathbb{Z}$ and gcd(a,b,N) = 1, and the \pm means that we identify (a,b) with (-a,-b).
 - (b) Deduce that for N > 2, the number of $\Gamma(N)$ cusps is $N^2/2 \cdot \prod_{p|N} (1-p^{-2})$.