Homework Assignment 1
 Math 252: Modular Abelian Varieties

William Stein

Sep. 17 (Due: Sep. 24)

There are 7 problems, each worth an equal number of points.

1. Verify that if $g \in \mathrm{SL}_{2}(\mathbf{R})$ and $z \in \mathbf{C}$ then

$$
\operatorname{Im}(g(z))=\frac{\operatorname{Im}(z)}{|c z+d|^{2}}
$$

2. Let D be the subset of points $z \in \mathbf{C}$ with $|z| \geq 1$ and $|\operatorname{Re}(z)| \leq 1 / 2$. For each z in the following list, find an element $g \in \mathrm{SL}_{2}(\mathbf{Z})$ such that $g(z) \in D$:

$$
-1+\frac{i}{2}, \quad-\frac{1}{5}+3 i, \quad \frac{7}{8}+\frac{4}{5} i .
$$

3. (a) Find an element $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})$ such that $c=7$ and $d=9$.
(b) Write the element you found in (a) in terms of $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
4. (a) Find an element of $g \in \mathrm{SL}_{2}(\mathbf{Z})$ whose reduction modulo 5 is

$$
\left(\begin{array}{cc}
1 & 1 \\
6 & 12
\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z} / 5 \mathbf{Z})
$$

(b) Let N be a positive integer. Prove that the reduction $\bmod N$ map from $\mathrm{SL}_{2}(\mathbf{Z})$ to $\mathrm{SL}_{2}(\mathbf{Z} / N \mathbf{Z})$ is surjective. [Hint: If you get stuck, you can find the proof somewhere in Shimura's Introduction to the Arithmetic Theory of Automorphic Functions and reformulate it in your own way.]
5. Let N be a positive integer.Compute the index of each of the following groups in $\mathrm{SL}_{2}(\mathbf{Z})$:

$$
\Gamma(N), \quad \Gamma_{1}(N), \quad \Gamma_{0}(N)
$$

6. Compute generators for $\Gamma_{0}(3), \Gamma_{1}(3)$, and $\Gamma(3)$.
7. Let p be a prime. Prove that $\Gamma_{0}(p) \backslash \mathbf{P}^{1}(\mathbf{Q})$ has cardinality 2. What about $\Gamma_{0}\left(p^{2}\right) \backslash \mathbf{P}^{1}(\mathbf{Q})$?
