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Hello,

Thank you very much for looking at my book, Elementary Number Theory
and Elliptic Curves.

This book is slated for publication in Springer-Verlag’s Undergraduate
Texts in Mathematics (UTM) series. Since this book is yet another un-
dergraduate book on number theory, I want it to be different in that it is
hopefully concise, timely, and takes the reader to one frontier of modern
number theory (elliptic curves). Incidentally, after Springer publishes this
book, I’m assured that I will be allowed to continue to make an electronic
version available for free online.

I also don’t want this book to contain any mistakes or annoying ways of
explaining things. That’s where you come in. Please look through some of
the book, any part that interests you, and tell me what annoys you. Give
me any constructive criticism; in the interest of giving under-
graduates a better-quality book, I’m thick skinned. What should I
have described but didn’t? Who should I have referenced? What obvious
example did I miss? What helpful diagram could I have given? What is
incomprehensible? What did I forget to define? What couldn’t you find in
the index?

Note: In part III on computation, only the introduction and the chapter
on Maple are completely finished.

Thanks!

William Stein
Department of Mathematics
Harvard University
was@math.harvard.edu

http://modular.fas.harvard.edu
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1
Preface

This is a textbook about classical number theory and modern elliptic
curves. Part I discusses elementary topics such as primes, factorization,
continued fractions, and quadratic forms, in the context of cryptography,
computation, and deep open research problems. The second part is about
elliptic curves, their applications to algorithmic problems, and their connec-
tions with problems in number theory such as Fermat’s Last Theorem, the
Congruent Number Problem, and the Conjecture of Birch and Swinnerton-
Dyer.

The goal of part I is to give the reader a solid foundation in the stan-
dard topics of elementary number theory. In contrast, the goal of part II
is to convey the central importance of elliptic curves in modern number
theory and give a feeling for the big open problems about them without
becoming overwhelmed by technical details. Part III describes how to use
several standard mathematics programs to do computations with many of
the objects described in this book.

The intended audience is a strong undergraduate with some familiarity
with abstract algebra (rings, fields, and finite abelian groups), who has
not necessarily seen any number theory. For the elliptic curves part of the
book, some prior exposure to complex analysis would be useful but is not
necessary.

This book grew out of an undergraduate course that the author taught
at Harvard University in 2001 and 2002.

Acknowledgment. I would like to thank Lawrence Cabusora for carefully
reading the first draft of this book and making many helpful comments.
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Brian Conrad made clarifying comments on the first 30 pages, which I’ve
included. Noam Elkies made many comments about the chapter on p-adic
numbers, Section 3.2, and many other parts of the book. I would also like
to thank the students of my Math 124 course at Harvard during the Fall
of 2001 and 2002, who provided the first audience for this book, as well
as David Savitt for conversations. Hendrik Lenstra made helpful remarks
about how to present his factorization algorithm.

Seth Kleinerman wrote the first version of Section 7.3 and Exercise 7.14.
People offering corrections and comments via email: George Stephanides,

Kevin Stern, Heidi L. Williams.

1. Peter Hawthorne (discussions about algebra; helped write ...)

2. Seth Kleinerman (e; finding many typos)

I also found LATEX, xfig, MAGMA, PARI, and Emacs to be extremely
helpful in the preparation of this manuscript.

Part I of this book grew out of a course based on Davenport’s [22], so in
some places we follow [22] closely. There are a few pictures (in particular, of
Diffie and Hellman) that were swiped from other books without permission;
this was fair use for lecture notes during a course, but not for a textbook,
so this will have to be remedied.
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2
Introduction

This book is divided into three parts. The first is about several stan-
dard topics in elementary number theory including primes and congru-
ences (Chapter 3), quadratic reciprocity (Chapter 6), continued fractions
(Chapter 7), and binary quadratic forms (Chapter 9), with motivation from
cryptography (Chapter 4). The second is about elliptic curves and the cen-
tral role they play in modern number theory. We will discuss their use in
algorithmic applications (Chapter 11), their role in the proof of Fermat’s
Last Theorem (Chapter 12), the most central unsolved conjecture about
them (Chapter 13), and their connection with the congruent number prob-
lem (Section 13.1). The third is about how to use a computer in number
theory.

For the first part of the book, some mathematical maturity and knowl-
edge of basic abstract algebra is assumed on the part of the reader. The
second part also assumes some background in analysis and a willingness to
take a few statements on faith.

2.1 Elementary Number Theory

2.1.1 Prime Factorization of Integers

Remember writing integers (whole numbers) as products of primes? For
example, 12 = 2 · 2 · 3, as illustrated in Figure 2.1.

Does every positive integer factor as a product of primes? If so, how
difficult is it to find factorizations? For example, factoring US social security
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FIGURE 2.1. We have 12 = 2 · 2 · 3

numbers, which have 9 digits, is easy enough that the onHand wrist watch
quickly does it (see [45]). What about bigger numbers?

These questions are important to your everyday life, because the popu-
lar RSA public-key cryptosystem relies on the difficulty of factoring large
numbers quickly (see Section 4.2).

2.1.2 Congruences and Public-Key Cryptography

We say that integers a and b are congruent modulo an integer n if there is
an integer k such that a = b+nk. That a and b are congruent means you can
get from a to b by adding or subtracting copies of n. For example, 26 ≡ 2
(mod 12) since 26 = 2 + 12 · 2. We will extensively study arithmetic with
integers modulo n in Chapter 3. Then in Chapter 4 we will see how the RSA
cryptosystem uses arithmetic with the numbers modulo n to send messages
in view of an adversary without their true portent being discovered by the
adversary.

2.1.3 Computers and Telescopes

A computer is to a number theorist like a telescope to an astronomer. It
would be a shame to study astronomy without learning about telescopes;
likewise, in Part 3 of this book you will learn how to look at the integers
through the enhancing power of a computer.

2.1.4 Quadratic Reciprocity

One of the most celebrated theorems of classical number theory is Gauss’s
quadratic reciprocity law. One application is that it gives the following
simple criterion for whether or not 5 is a square modulo an odd prime p:
the number 5 is a perfect square modulo p if and only if p is congruent
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to 1 or 4 modulo 5. This result is impressive because it is extremely easy
to be convinced that it is true by numerical observation, but difficult to
prove. For more details, including the statement with 5 replaced by any
odd prime, see Chapter 6.

2.1.5 Continued Fractions

A continued fraction is an expression of the form

a0 +
1

a1 +
1

a2+
1

a3+··· .

Continued fractions have surprising applications all over number theory.
They provide new insight into numbers of the form a + b

√
d with a and b

rational and d positive. They are useful in understanding the “modular
group” SL(2,Z) of 2× 2 integer matrices with determinant 1, which plays
a crucial role in the theory of elliptic curves. From a computational point of
view, continued fractions give rise to a powerful algorithm for recognizing a
rational number x from a partial decimal expansion of x. This is frequently
useful because such partial decimal expansions are often output by various
algorithms. See Chapter 7 for much more.

2.1.6 Sums of Two Squares and Binary Quadratic Forms

Let n be your favorite positive integer. Is n the sum of two perfect squares?
For example, 7 is not a sum of two squares, but 13 is. In Chapter 9 you
will learn a beautiful criterion for whether or not a number is a sum of two
squares. More generally, we will study binary quadratic forms ax2 + bxy+
cy2, which provide a concrete glimpse into some of the central problems of
algebraic number theory.

2.2 Elliptic Curves

An elliptic curve over Q is a curve of the form

y2 = x3 + ax+ b,

where a and b are rational numbers and x3 + ax + b has distinct complex
roots. The set

E(Q) = {(x, y) ∈ Q×Q : y2 = x3 + ax+ b} ∪ {O}

of rational points on E is of great interest. (Here O is a rational point on E
“at infinity”.) The set E(Q) is sometimes finite and sometimes infinite. For
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FIGURE 2.2. The Two Rational Points on the Elliptic Curve y2 = x3 + x

example, if E is defined by y2 = x3+x then E(Q) is finite (see Figure 2.2),
but if E is given by y2 = x3 + 100x, then E(Q) is infinite. Birch and
Swinnerton-Dyer gave a beautiful conjectural criterion that they believe
predicts whether or not E(Q) is infinite (see Chapter 13). To try and
understand E(Q) better, we find that this set has the additional structure
of finitely generated abelian group: given two elements of E(Q), there is
a way to “add” them together to obtain another element of E(Q) (this
addition is not coordinate wise). Moreover, there is a finite set of elements
of E(Q) so that every element of E(Q) is a obtained by adding together
elements from this finite list.

2.2.1 Algorithmic Applications

Elliptic curves are crucial to modern factorization methods, and elliptic
curves over finite fields provide valuable alternative cryptosystems (see
Chapter 11).

2.2.2 Theoretical Applications

Many exciting problems in number theory can be translated into questions
about elliptic curves. For example, Fermat’s Last Theorem, which asserts
that xn + yn = zn has no positive integer solutions when n > 2, was
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proved by Andrew Wiles who showed that counterexamples to Fermat’s
Last Theorem would give rise to impossibly bizarre elliptic curves (see
Chapter 12).

The ancient congruent number problem asks for an algorithm to decide
whether an integer is the area of a right triangle with rational side lengths.
This question is equivalent to a question about elliptic curves that has al-
most, but not entirely, been solved. The key missing ingredient is a proof
of a certain case of the Birch and Swinnerton-Dyer conjecture (see Chap-
ter 13).

2.3 Notation and Conventions

We use the standard notation N, Z, Q, R, and C for the rings of natu-
ral, integer, rational, real, and complex numbers, respectively. We use the
words proposition, theorem, lemma, corollary, etc., in their standard math-
ematical way. Thus usually a proposition is a routine assertion, a theorem
a deeper culmination of ideas, a lemma something that will be used later
to prove a proposition or theorem, and a corollary an easy consequence of
a proposition, theorem, or lemma.



Part I

Elementary Number

Theory

10
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3
Primes and Congruences

Prime numbers are the foundation from which the integers, and hence much
of number theory, is built. Congruences between integers lead to the ring
Z/n = {0, 1, . . . , n− 1} of equivalence classes of integers modulo n. Arith-
metic in this ring is critical for every cryptosystem discussed in this book,
and plays a key role in the elliptic curve factorization method (Section 11.2)
and the Birch and Swinnerton-Dyer conjecture (Chapter 13).

In Section 3.1 we describe how the integers are built out of the mysterious
sequence 2, 3, 5, 7, 11, . . . of prime numbers. In Section 3.2 we discuss theo-
rems about the set of primes numbers, starting with Euclid’s proof that this
set is infinite, then explore the distribution of primes via the prime num-
ber theorem and the Riemann Hypothesis (without proofs). Section 3.3 is
about congruences modulo n and simple linear equations in the the ring
Z/n. In Section 3.4 we prove the Chinese Remainder Theorem, which de-
scribes how to solve certain systems of equations modulo n; we also use
this theorem to establish the multiplicativity of the Euler ϕ function. Sec-
tion 3.5.2 is about how being able to quickly compute huge powers in the
integers modulo n leads to a way to quickly decide, with high probability,
whether or not a number is prime.
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3.1 Prime Factorization

3.1.1 Prime Numbers

The set of natural numbers is

N = {1, 2, 3, 4, . . .},

the set of integers is

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

They are denoted by Z because the German word for the integers is Zahlen,
and Germans laid the foundations of number theory.

Definition 3.1.1. If a, b ∈ Z then we say that a divides b, written a | b,
if ac = b for some c ∈ Z. We say that a does not divide b, written a - b if
there is no c ∈ Z such that ac = b.

To save time, we write

a | b.
For example, 2 | 6 and 389 | 97734562907. Also, everything divides 0, and 0
divides only 0.

Definition 3.1.2. We say that a natural number n > 1 is prime if 1 and n
are the only positive divisors of n, and we call n composite otherwise. The
number 1 is neither prime nor composite.

Thus the primes are

2, 3, 5, 7, 11, . . . , 389, . . . , 2003, . . . .

and the composites are

4, 6, 8, 9, 10, 12, . . . , 666 = 2 · 32 · 37, . . . , 2001 = 3 · 23 · 29, . . . .

What about 1? One reason that we don’t call 1 prime, is that Theo-
rem 3.1.5 below asserts that every positive integer is a product of primes
in a unique way; if 1 were prime, then this uniqueness would be destroyed.
It is best to think of 1 as a unit in Z, i.e., a number with a multiplicative
inverse in Z, and think of the natural numbers as divided into three classes:
primes, composites, and units. In rings which are more complicated than Z,
this distinction is easier to appreciate (e.g., in Z[

√
2] = {a+b

√
2 : a, b ∈ Z},

the element 1 +
√
2 is a unit because (1 +

√
2)(−1 +

√
2) = 1. For future

use, we formalize the definition of unit.

Definition 3.1.3 (Unit). Let R be a ring. An element x ∈ R is a unit if
there exists y ∈ R such that xy = yx = 1.
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Remark 3.1.4. Before the influence of abstract algebra on number theory
the picture was less clear. For example, in 1914 Dick Lehmer, considered 1
to be prime (see [39]).

Every natural number is built, in a unique way, out of prime numbers.is
obvious

Theorem 3.1.5 (Fundamental Theorem of Arithmetic). Every pos-
itive integer can be written as a product of primes, and this expression is
unique (up to order).

This theorem, which we will prove in Section 3.1.4, is trickier to prove
than you might first think. First, we are fortunate that there are any primes
at all: if the natural numbers are replaced by the positive rational numbers
then there are no primes; e.g., 2 = 1

2 · 4, so “ 12 | 2” in the sense that there
is a c ∈ Q such that 12c = 2. Second, we are fortunate that factorization is
unique in Z, since there are simple rings where unique factorization fails.
For example, it fails in

Z[
√
−5] = {a+ b

√
−5 : a, b ∈ Z},

where 6 factors in two different irreducible ways:

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5).

See Exercise 3.

3.1.2 The Greatest Common Divisor

We will use the notion of greatest common divisor of two integers to prove
that if p is a prime and p | ab, then p | a or p | b. This is the key step in
our proof of Theorem 3.1.5.

Definition 3.1.6. Let gcd(a, b) = max{d : d | a and d | b}, unless both a
and b are 0 in which case gcd(0, 0) = 0.

For example, gcd(1, 2) = 1, gcd(3, 27) = 3, and for any a, gcd(0, a) =
gcd(a, 0) = a.

The greatest common divisor of two numbers, even large numbers, is
surprisingly easy to compute. For example, let’s compute gcd(2261, 1275).
First, we recall the division algorithm, which you might recall from elemen-
tary school when you learned long division with remainder:

Algorithm 3.1.7 (Division Algorithm). Suppose that a and b are nat-
ural numbers. Then there exist unique nonnegative integers q and r such
that 0 ≤ r < b and a = bq + r.

We use the division algorithm repeatedly to compute gcd(2261, 1275).
Dividing 2261 by 1275 we find that

2261 = 1 · 1275 + 986,



14 3. Primes and Congruences

so q = 1 and r = 986. Notice that if a natural number d divides both 2261
and 1275, then d divides their difference 986 and d still divides 1275. On
the other hand, if d divides both 1275 and 986, then it has got to divide
their sum 2261 as well! We have made progress:

gcd(2261, 1275) = gcd(1275, 986).

Repeating, we have
1275 = 1 · 986 + 289,

so gcd(1275, 986) = gcd(986, 289). Keep going:

986 = 3 · 289 + 119

289 = 2 · 119 + 51

119 = 2 · 51 + 17.

Thus gcd(2261, 1275) = · · · = gcd(51, 17), which is 17 because 17 | 51. Thus

gcd(2261, 1275) = 17.

Aside from tedious arithmetic, that was quick and systematic.

Algorithm 3.1.8 (Euclidean Algorithm for Computing GCDs). Fix
a, b ∈ N with a > b. Using the division algorithm, write a = bq + r, with
0 ≤ r < b. Then, as above,

gcd(a, b) = gcd(b, r).

Let a1 = b, b1 = r, and repeat until the remainder is 0. Since the re-
mainders form a decreasing sequence of nonnegative numbers, this process
terminates.

Example 3.1.9. Set a = 15 and b = 6.

15 = 6 · 2 + 3 gcd(15, 6) = gcd(6, 3)

6 = 3 · 2 + 0 gcd(6, 3) = gcd(3, 0) = 3

Note that we can just as easily do an example that is ten times as big, an
observation that will be important in the proof of Theorem 3.1.11 below.

Example 3.1.10. Set a = 150 and b = 60.

150 = 60 · 2 + 30 gcd(150, 60) = gcd(60, 30)

60 = 30 · 2 + 0 gcd(60, 30) = gcd(30, 0) = 30

With the Euclidean algorithm in hand, we can prove that if a prime
divides the product of two numbers, then it has got to divide one of them.
This result is the key to proving that prime factorization is unique.
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Theorem 3.1.11 (Euclid). Let p be a prime and a, b ∈ N. If p | ab then
p | a or p | b.

The reader may think that this theorem is “intuitively obvious”, but that
is only because the fundamental theorem of arithmetic (Theorem 3.1.5) is
deeply ingrained as a source of intuition. Yet, Theorem 3.1.11 will be needed
to prove the fundamental theorem of arithmetic.

Proof. If p | a we are done. If p - a then gcd(p, a) = 1, since only 1 and p
divide p. Stepping through Algorithm 3.1.8, an in Example 3.1.10, we see
that gcd(pb, ab) = b. At each step, we simply multiply the equation through
by b. Since p | pb and, by hypothesis, p | ab, it follows that

p | gcd(pb, ab) = b.

3.1.3 Numbers Factor as Products of Primes

In this section, we prove that every natural number factors as a product
of primes. Then we discuss the difficulty of finding such a decomposition
in practice. We will wait until Section 3.1.4 to prove that factorization is
unique.

As a first example, let n = 1275. Since 17 | 1275, n is definitely composite,
n = 17 · 75. Next, 75 is 5 · 15 = 5 · 5 · 3, and we find that 1275 = 3 · 5 · 5 · 17.
Generalizing this process proves the following proposition:

Proposition 3.1.12. Every natural number is a product of primes.

Proof. Let n be a natural number. If n = 1, then n is the empty product
of primes. If n is prime, we are done. If n is composite, then n = ab with
a, b < n. By induction, a and b are products of primes, so n is also a product
of primes.

Two questions: is this factorization unique, and how quickly can we find
a factorization? What if we had done something differently when breaking
1275 apart as a product of primes? Could the primes that show up be
different? Let’s try: we have 1275 = 5 ·255. Now 255 = 5 ·51 and 51 = 17 ·3,
so the factorization is the same, as asserted by Theorem 3.1.5 above.

Regarding the second question, it is still unknown just how clever we can
be at factoring.

Open Problem 3.1.13. Is there an algorithm which can factor any inte-
ger n in polynomial time?

By “algorithm” we mean an algorithm in the sense of computer science,
i.e., a sequence of instructions that can be run on a classical computer (Tur-
ing machine), which is guaranteed to terminate. By “polynomial time” we
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mean that there is a polynomial f(x) such that for any n the number of
steps needed by the algorithm to factor n is less than f(log10(n)). (Note
that log10(n) is a good approximation for the number of digits of the in-
put n to the algorithm.) We will discuss one of the fastest known factoring
algorithms in Section 11.2.

Peter Shor [56] devised a polynomial time algorithm for factoring integers
on quantum computers. We will not discuss his algorithm further, except to
note that IBM built a quantum computer out of a “billion-billion custom-
designed molecules” in December 2001 that used Shor’s algorithm to factor
15 (see [33]).

Factoring integers can be lucrative. For example, as of September 2002,
if you factor the following 174-digit integer then the RSA security company
will award you ten thousand dollars! (See [54].)

1881988129206079638386972394616504398071635633794173827007
6335642298885971523466548531906060650474304531738801130339
6716199692321205734031879550656996221305168759307650257059

This number is known as RSA-576 since it has 576 digits when written in
binary (see Section 3.5.2 for more on binary numbers). RSA constructed
this difficult-to-factor number by multiplying together two large primes.

The previous RSA challenge was the 155-digit number

1094173864157052742180970732204035761200373294544920599091
3842131476349984288934784717997257891267332497625752899781
833797076537244027146743531593354333897.

It was factored on 22 August 1999 by a group of sixteen researchers in four
months on a cluster of 292 computers (see [1]). They found that RSA-155
is the product of the following two 78-digit primes:

p = 102639592829741105772054196573991675900716567808038066803341933521790711307779

q = 106603488380168454820927220360012878679207958575989291522270608237193062808643.

3.1.4 The Fundamental Theorem of Arithmetic

We are ready to prove Theorem 3.1.5 using the following idea. Suppose
we have two factorizations of n. Using Theorem 3.1.11 we cancel common
primes from each factorization, one prime at a time. At the end, we dis-
cover that the factorizations must consist of exactly the same primes. The
technical details are given below.

Proof. By Proposition 3.1.12, there exist primes p1, . . . , pd such that

n = p1 · p2 · · · pd.
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Suppose that
n = q1 · q2 · · · qm

is another expression of n as a product of primes. Since

p1 | n = q1 · (q2 · · · qm),

Euclid’s theorem implies that p1 = q1 or p1 | q2 · · · qm. By induction, we
see that p1 = qi for some i.

Now cancel p1 and qi, and repeat the above argument. Eventually, we
find that, up to order, the two factorizations are the same.

3.2 The Sequence of Prime Numbers

This section is concerned with three questions. Are there infinitely many
primes? Are there infinitely many primes of the form ax+b for varying x ∈
N and fixed integers a > 1 and b ∈ Z? How many primes are there? We first
show that there are infinitely many primes, then state Dirichlet’s theorem
that if gcd(a, b) = 1, then ax+ b is a prime for infinitely many values of x.
Finally, we discuss the prime number theorem which asserts that there are
asymptotically x/ log(x) primes less than x (and we make a connection
between this asymptotic formula and the Riemann Hypothesis). For some
other famous questions about the sequence of primes, see Section 14.1.

3.2.1 There Are Infinitely Many Primes

Note that each number on the left in the following table is prime. Does this
pattern continue indefinitely?

3 = 2 + 1

7 = 2 · 3 + 1

31 = 2 · 3 · 5 + 1

211 = 2 · 3 · 5 · 7 + 1

2311 = 2 · 3 · 5 · 7 · 11 + 1

Theorem 3.2.1 (Euclid). There are infinitely many primes.

Proof. Suppose that p1, p2, . . . , pn are all the primes. If we let

N = p1p2p3 · · · pn + 1,

then by Proposition 3.1.12

N = q1q2 · · · qm
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with each qi prime and m ≥ 1. If q1 = pi for some i, then pi | N and
pi | N + 1, so pi | 1 = (N + 1) −N , a contradiction. Thus the prime q1 is
not in the list p1, . . . , pn, which is a contradiction.

For example,

2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509.

Multiplying together the first 6 primes and adding 1 doesn’t produce a
prime, but it produces an integer that is merely divisible by a new prime.

Joke 3.2.2 (Hendrik Lenstra). There are infinitely many composite
numbers. Proof. Multiply together the first n+ 1 primes and don’t add 1.

3.2.2 The Largest Known Prime

Though Theorem 3.2.1 implies that there are infinitely many primes, it still
makes sense to ask the social question “What is the largest known prime?”

According to [10] the largest known prime, as of September 2002, is the
Mersenne prime

p = 213466917 − 1,

which was discovered in November 2001. (A Mersenne prime is a prime of
the form 2q−1.) This number has 4053946 decimal digits, so writing it out
would fill several large paperback novels.

Euclid’s theorem implies that there definitely is a bigger prime; how-
ever, nobody has yet found one, proven that they are right, and released
their result to the world. Deciding whether or not a number is prime is
surprisingly interesting, both as a motivating problem and for applications
to cryptography, as we will see in Section 3.5.3 and Chapter 4.

3.2.3 Primes of the Form ax + b

Next we turn to primes of the form ax+ b, where a and b are fixed integers
with a > 1 and x varies over N. We assume that gcd(a, b) = 1, because
otherwise there is no hope that ax+b is prime infinitely often. For example,
2x+ 2 is never prime for x ∈ N.

Proposition 3.2.3. There are infinitely many primes of the form 4x− 1.

Why might this be true? We list numbers of the form 4x−1 and underline
those that are prime:

3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, . . .

It is plausible that underlined numbers would continue to appear indefi-
nitely.
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Proof. Suppose p1, p2, . . . , pn are primes of the form 4x − 1. Consider the
number

N = 4p1p2 · · · pn − 1.

Then pi - N for any i. Moreover, not every prime p | N is of the form
4x+ 1; if they all were, then N would be of the form 4x+ 1. Thus there is
a p | N that is of the form 4x− 1. Since p 6= pi for any i, we have found a
new prime of the form 4x − 1. We can repeat this process indefinitely, so
the set of primes of the form 4x− 1 cannot be finite.

Note that this proof does not work if 4x−1 is replaced by 4x+1, since a
product of primes of the form 4x−1 can be of the form 4x+1. We will give
a completely different proof, which involves “primitive roots”, that there
are infinitely many primes of the form 4x+ 1 (see Chapter 5).

Example 3.2.4. Set p1 = 3, p2 = 7. Then

N = 4 · 3 · 7− 1 = 83

is a prime of the form 4x− 1. Next

N = 4 · 3 · 7 · 83− 1 = 6971,

which is a again a prime of the form 4x− 1. Again:

N = 4 · 3 · 7 · 83 · 6971− 1 = 48601811 = 61 · 796751.

This time 61 is a prime, but it is of the form 4x+ 1 = 4 · 15 + 1. However,
796751 is prime and 796751 = 4 · 199188− 1. We are unstoppable:

N = 4 · 3 · 7 · 83 · 6971 · 796751− 1 = 5591 · 6926049421.

This time the small prime, 5591, is of the form 4x− 1 and the large one is
of the form 4x+ 1.

Theorem 3.2.5 (Dirichlet). Let a and b be integers with gcd(a, b) = 1.
Then there are infinitely many primes of the form ax+ b.

Proofs of this theorem, which use tools from algebraic and analytic num-
ber theory, are beyond the scope of this book. For a proof see [48, §8.4] or
[26, VIII.4].

3.2.4 How Many Primes are There?

We saw in Section 3.2.1 that there are infinitely many primes. In order to
get a sense for just how many primes there are, we consider a few warm-
up questions. Then we consider some numerical evidence and state the
prime number theorem, which gives an asymptotic answer to our question,
and connect this theorem with a form of the Riemann Hypothesis. Our



20 3. Primes and Congruences

TABLE 3.1. Values of π(x)

x 100 200 300 400 500 600 700 800 900 1000
π(x) 25 46 62 78 95 109 125 139 154 168

x

y

(100, 25)
(200, 46)

(900, 154)(1000, 168)180

100

900100

Graph of π(x)

FIGURE 3.1. Graph of π(x) for x < 1000

discussion of counting primes in this section is very cursory; for more details
read Crandall and Pomerance’s excellent book [18, §1.1.5].

How many natural numbers are even? Answer: Half of them (but note
that the cardinality of the even integers is the same as the cardinality of
all integers, because there is a bijection between them). How many natural
numbers are of the form 4x − 1? Answer: One fourth of them. How many
natural numbers are perfect squares? Answer: Zero percent of all natural
numbers, in the sense that the limit of the proportion of perfect squares to
all natural numbers converges to 0; more precisely,

lim
x→∞

#{n ∈ N : n ≤ x and n is a perfect square}
x

= 0,

since the numerator is roughly
√
x and limx→∞

√
x
x = 0.

Likewise, and we won’t prove this here, zero percent of all natural num-
bers are prime (this follows from Theorem 3.2.7 below). We are thus led to
ask the following more precise question: How many positive integers ≤ x
are perfect squares? Answer: roughly

√
x. In the context of primes, we ask,

Question 3.2.6. How many natural numbers ≤ x are prime?

Let
π(x) = #{p ∈ N : p ≤ x is a prime}.

For example,
π(6) = #{2, 3, 5} = 3.

Some values of π(x) are given in Table 3.1, and Figure 3.1 contains a graph
of π(x) for x < 1000, which almost looks like a straight line.

Gauss had a serious prime-computing habit; eventually he computed
π(3000000), though the author doesn’t know whether or not Gauss got the
right answer, which is 216816. Gauss conjectured the following asymptotic
formula for π(x), which was later proved independently by Hadamard and
Vallée Poussin in 1896 (but will not be proved in this book):
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TABLE 3.2. Comparison of π(x) and x/(log(x)− 1)

x π(x) x/(log(x)− 1) (approx)
1000 168 169.2690290604408165186256278
2000 303 302.9888734545463878029800994
3000 430 428.1819317975237043747385740
4000 550 548.3922097278253264133400985
5000 669 665.1418784486502172369455815
6000 783 779.2698885854778626863677374
7000 900 891.3035657223339974352567759
8000 1007 1001.602962794770080754784281
9000 1117 1110.428422963188172310675011
10000 1229 1217.976301461550279200775705

Theorem 3.2.7 (Prime Number Theorem). π(x) is asymptotic to
x/ log(x), in the sense that

lim
x→∞

π(x)

x/ log(x)
= 1.

We do nothing more here than motivate this theorem by some some
numerical observations.

The theorem implies that limx→∞ π(x)/x = limx→∞ 1/ log(x) = 0, so
for any a,

lim
x→∞

π(x)

x/(log(x)− a)
= lim

x→∞
π(x)

x/ log(x)
− aπ(x)

x
= 1.

Thus x/(log(x) − a) is also asymptotic to π(x) for any a. See [18, §1.1.5]
for a discussion of why a = 1 is the best choice. Table 3.2 compares π(x)
and x/(log(x)− 1) for several x < 10000.

As of 2002, the world record for counting primes appears to be

π(4 · 1022) = 783964159847056303858.

The computation of π(4 ·1022) took about 250 days on a 350 Mhz Pentium
II; see [27] for more details.

The famous Riemann Hypothesis about the location of zeros of the Rie-
mann zeta function

∑

n−s is equivalent to the conjecture that

Li(x) =

∫ x

2

1

log(t)
dt.

is an excellent approximation to π(x), in the following precise sense (see
[18, §1.4.1]):
Conjecture 3.2.8 (Equivalent to the Riemann Hypothesis).
For all x ≥ 2.01,

|π(x)− Li(x)| ≤ √x log(x).
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FIGURE 3.2. Visualizing the Mod 3 Congruence Between 7 and 13

Again, we will do nothing more to motivate this here than to give some
numerical examples.

Example 3.2.9. Let x = 4 · 1022. Then
π(x) = 783964159847056303858,

Li(x) = 783964159852157952242.7155276025801473 . . . ,

|π(x)− Li(x)| = 5101648384.71552760258014 . . . ,
√
x log(x) = 10408633281397.77913344605 . . . ,

x/(log(x)− 1) = 783650443647303761503.5237113087392967 . . . .

3.3 Congruences Modulo n

In this section we define the ring Z/n of integers modulo n, introduce
the Euler ϕ-function , and relate it to the multiplicative order of certain
elements of Z/n.

Definition 3.3.1 (Congruence). Let a, b ∈ Z and n ∈ N. Then a is
congruent to b modulo n if n | a− b. We write a ≡ b (mod n).

In other words, a is congruent to b modulo n if we can get from a to b
by adding or subtracting copies of n. For example, 13 ≡ 7 (mod 3), since
7 = 13− 3− 3, as illustrated in Figure 3.2.

Congruence modulo n is an equivalence relation on Z (i.e., it is transitive,
symmetric, and reflexive).

Definition 3.3.2. The ring of integers modulo n is the set Z/n of equiv-
alences classes of integers equipped with its natural ring structure.

Example 3.3.3.

Z/3 = {{. . . ,−3, 0, 3, . . .}, {. . . ,−2, 1, 4, . . .}, {. . . ,−1, 2, 5, . . .}}
We use the notation Z/n because Z/n is the quotient of the ring Z by

the ideal nZ of multiples of n. Because Z/n is the quotient of a ring by an
ideal, the ring structure on Z induces a ring structure on Z/n. We often
let a denote the equivalence class of a, when this won’t cause confusion.
If p is a prime Z/p is a field (see Exercise 16), which we sometimes also
denote by Fp.

It is very easy to derive tests for divisibility of an integer by 3, 5, 9, and
11 by working modulo n (see Exercise 12). For example,
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Proposition 3.3.4. A number n ∈ Z is divisible by 3 if and only if the
sum of the digits of n is divisible by 3.

Proof. Write

n = a+ 10b+ 100c+ · · · ,
so the digits of n are a, b, c, etc. Since 10 ≡ 1 (mod 3),

n = a+ 10b+ 100c+ · · · ≡ a+ b+ c+ · · · (mod 3),

from which the proposition follows.

Definition 3.3.5 (GCD in Z/n). For elements a and b of Z/n, let

gcd(a, b) = gcd(ã, gcd(b̃, n)),

where ã, b̃ ∈ Z reduce to a, b, respectively.

It is necessary to check that this is well defined (see Exercise 6).
In order to start solving interesting equations in Z/n, note that it is

often possible to cancel a quantity from both sides of an equation, though
sometimes it is not (see Proposition 3.3.11).

Proposition 3.3.6. If gcd(c, n) = 1 and

ac ≡ bc (mod n),

then a ≡ b (mod n).

Proof. By definition

n | ac− bc = (a− b)c.

Since gcd(n, c) = 1, it follows that n | a− b, so

a ≡ b (mod n),

as claimed.

3.3.1 Linear Equations Modulo n

In this section, we are concerned with how to decide whether or not a
linear equation of the form ax ≡ b (mod n) has a solution modulo n. For
example, when a has a multiplicative inverse in Z/n then ax ≡ b (mod n)
has a unique solution. Thus it is of interest to determine the units in Z/n,
i.e., the elements which have a multiplicative inverse. Finding solutions to
ax ≡ b (mod n) is the topic of Section 3.5.

We will use complete sets of residues to prove that the units in Z/n are
exactly the a ∈ Z/n such that gcd(a, n) = 1.
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Definition 3.3.7 (Complete Set of Residues). A subset R ⊂ Z of
size n whose reductions modulo n are distinct is called a complete set of
residues modulo n. In other words, a complete set of residues is a choice of
representative for each equivalence class in Z/n.

For example,

R = {0, 1, 2, . . . , n− 1}

is a complete set of residues modulo n. When n = 5, R = {0, 1,−1, 2,−2}
is a complete set of residues.

Lemma 3.3.8. If R is a complete set of residues modulo n and a ∈ Z with
gcd(a, n) = 1, then aR = {ax : x ∈ R} is also a complete set of residues
modulo n.

Proof. If ax ≡ ax′ (mod n) with x, x′ ∈ R, then Proposition 3.3.6 implies
that x ≡ x′ (mod n). Because R is a complete set of residues, this implies
that x = x′. Thus the elements of aR have distinct reductions modulo n. It
follows, since #aR = n, that aR is a complete set of residues modulo n.

Proposition 3.3.9. If gcd(a, n) = 1, then the equation ax ≡ b (mod n)
has a solution, and the solution is unique modulo n.

Proof. Let R be a complete set of residues modulo n, so there is a unique
element of R that is congruent to b modulo n. By Lemma 3.3.8, aR is also
a complete set of residues modulo n, so there is a unique element ax ∈ aR
that is congruent to b modulo n, and we have ax ≡ b (mod n).

Algebraically, this proposition asserts that if gcd(a, n) = 1, then the map
Z/n→ Z/n given by left multiplication by a is bijective.

Example 3.3.10. Consider 2x ≡ 3 (mod 7). Letting R = {0, 1, 2, 3, 4, 5, 6},
we have

2R = {0, 2, 4, 6, 8 ≡ 1, 10 ≡ 3, 12 ≡ 5},

so 2 · 5 ≡ 3 (mod 7).

When gcd(a, n) 6= 1, then the equation ax ≡ b (mod n) may or may
not have a solution. For example, 2x ≡ 1 (mod 4) has no solution, but
2x ≡ 2 (mod 4) does, and in fact it has more than one (x = 1 and x =
3). Generalizing Proposition 3.3.9 we obtain the following more general
criterion for solvability.

Proposition 3.3.11. The equation ax ≡ b (mod n) has a solution if and
only if gcd(a, n) divides b.

Proof. Let g = gcd(a, n). If there is a solution x to the equation, then
n | (ax− b). Since g | n and g | a, it follows that g | b.
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Conversely, suppose that g | b. Then n | (ax− b) if and only if

n

g
|
(

a

g
x− b

g

)

.

Thus ax ≡ b (mod n) has a solution if and only if a
gx ≡ b

g (mod n
g ) has a

solution. By Proposition 3.3.9, this latter equation does have a solution.

3.3.2 Fermat’s Little Theorem

Definition 3.3.12 (Order of an Element). Let n ∈ N and x ∈ Z with
gcd(x, n) = 1. The order of x modulo n is the smallest m ∈ N such that

xm ≡ 1 (mod n).

To show that the definition makes sense, we verify that such an m exists.
Consider x, x2, x3, . . .modulo n. There are only finitely many residue classes
modulo n, so we must eventually find two integers i, j with i < j such that

xj ≡ xi (mod n).

Since gcd(x, n) = 1, Proposition 3.3.6 implies that we can cancel x’s and
conclude that

xj−i ≡ 1 (mod n).

Definition 3.3.13 (Euler Phi function). For n ∈ N, let

ϕ(n) = #{a ∈ N : a ≤ n and gcd(a, n) = 1}.

For example,

ϕ(1) = #{1} = 1,

ϕ(2) = #{1} = 1,

ϕ(5) = #{1, 2, 3, 4} = 4,

ϕ(12) = #{1, 5, 7, 11} = 4.

Also, if p is any prime number then

ϕ(p) = #{1, 2, . . . , p− 1} = p− 1.

In Section 3.4.1, we will prove that ϕ is a multiplicative function. This will
yield an easy way to compute ϕ(n) in terms of the prime factorization of n.

Theorem 3.3.14 (Fermat’s Little Theorem). If gcd(x, n) = 1, then

xϕ(n) ≡ 1 (mod n).
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Proof. Let
P = {a : 1 ≤ a ≤ n and gcd(a, n) = 1}.

In the same way that we proved Lemma 3.3.8, we see that the reductions
modulo n of the elements of xP are the same as the reductions of the
elements of P . Thus

∏

a∈P
(xa) ≡

∏

a∈P
a (mod n),

since the products are over the same numbers modulo n. Now cancel the
a’s on both sides to get

x#P ≡ 1 (mod n),

as claimed.

Note that ϕ(n) is not, of course, necessarily equal to the order of x
modulo n. For example, if x = 1 and n > 2, then x has order 1, but
ϕ(n) > 1. Theorem 3.3.14 only implies that ϕ(n) is a multiple of the order
of x.

Fermat’s Little Theorem has the following group-theoretic interpretation.
The set of units in Z/n is a group

(Z/n)× = {a ∈ Z/n : gcd(a, n) = 1}.

which has order ϕ(n). Theorem 3.3.14 asserts that the order of an element
of (Z/n)× divides the order ϕ(n) of (Z/n)×. This is a special case of the
more general fact that if G is a finite group and g ∈ G, then the order of g
divides the cardinality of G.

3.3.3 Wilson’s Theorem

The following result, from the 1770s, is called “Wilson’s Theorem” (though
it was first proved by Lagrange).

Proposition 3.3.15 (Wilson’s Theorem). An integer p > 1 is prime if
and only if (p− 1)! ≡ −1 (mod p).

For example, if p = 3, then (p− 1)! = 2 ≡ −1 (mod 3). If p = 17, then

(p− 1)! = 20922789888000 ≡ −1 (mod 17).

But if p = 15, then

(p− 1)! = 87178291200 ≡ 0 (mod 15),

so 15 is composite. Thus Wilson’s theorem could be viewed as a primality
test, though, from a computational point of view, it is probably the least
efficient primality test since computing (n− 1)! takes far more steps than
checking for prime divisors of n up to

√
n.
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Proof. We first assume that p is prime and prove that (p − 1)! ≡ −1
(mod p). If a ∈ {1, 2, . . . , p− 1} then the equation

ax ≡ 1 (mod p)

has a unique solution a′ ∈ {1, 2, . . . , p− 1}. If a = a′, then a2 ≡ 1 (mod p),
so p | a2−1 = (a−1)(a+1), so p | (a−1) or p | (a+1), so a ∈ {1,−1}. We
can thus pair off the elements of {2, 3, . . . , p − 2}, each with their inverse.
Thus

2 · 3 · · · · · (p− 2) ≡ 1 (mod p).

Multiplying both sides by p− 1 proves that (p− 1)! ≡ −1 (mod p).
Next we assume that (p − 1)! ≡ −1 (mod p) and prove that p must be

prime. Suppose not, so that p ≥ 4 is a composite number. Let ` be a prime
divisor of p. Then ` < p, so ` | (p− 1)!. Also, by assumption,

` | p | ((p− 1)! + 1).

This is a contradiction, because a prime can not divide a number a and
also divide a+ 1, since it would then have to divide (a+ 1)− a = 1.

Example 3.3.16. We illustrate the key step in the above proof in the case
p = 17. We have

2·3 · · · 15 = (2·9)·(3·6)·(4·13)·(5·7)·(8·15)·(10·12)·(14·11) ≡ 1 (mod 17),

where we have paired up the numbers a, b for which ab ≡ 1 (mod 17).

“

3.4 The Chinese Remainder Theorem

In this section we prove the Chinese Remainder Theorem, which gives con-
ditions under which a system of linear equations is guaranteed to have a
solution.

In the 4th century a Chinese mathematician asked:

Question 3.4.1. There is a quantity whose number is unknown. Repeat-
edly divided by 3, the remainder is 2; by 5 the remainder is 3; and by 7 the
remainder is 2. What is the quantity?

In modern notation, Question 3.4.1 asks us to find a positive integer
solution to the following system of three equations:

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)
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The Chinese Remainder Theorem asserts that a solution exists, and the
proof gives a method to find one. (See Section 3.5 for the necessary algo-
rithms.)

Theorem 3.4.2 (Chinese Remainder Theorem). Let a, b ∈ Z and
n,m ∈ N such that gcd(n,m) = 1. Then there exists x ∈ Z such that

x ≡ a (mod m),

x ≡ b (mod n).

Moreover x is unique modulo mn.

Proof. If we can solve for t in the equation

a+ tm ≡ b (mod n),

then x = a + tm will satisfy both congruences. To see that we can solve,
subtract a from both sides and use Proposition 3.3.9 together with our
assumption that gcd(n,m) = 1 to see that there is a solution.

For uniqueness, suppose that x and y solve both congruences. Then z =
x−y satisfies z ≡ 0 (mod m) and z ≡ 0 (mod n), so m | z and n | z. Since
gcd(n,m) = 1, it follows that nm | z, so x ≡ y (mod nm).

Now we can answer Question 3.4.1. First, we use Theorem 3.4.2 to find
a solution to the pair of equations

x ≡ 2 (mod 3)

x ≡ 3 (mod 5).

Set a = 2, b = 3, m = 3, n = 5. Step 1 is to find a solution to t · 3 ≡ 3− 2
(mod 5). A solution is t = 2. Then x = a+ tm = 2+2 · 3 = 8. Since any x′

with x′ ≡ x (mod 15) is also a solution to those two equations, we can
solve all three equations by finding a solution to the pair of equations

x ≡ 8 (mod 15)

x ≡ 2 (mod 7).

Again, we find a solution to t · 15 ≡ 2− 8 (mod 7). A solution is t = 1, so

x = a+ tm = 8 + 15 = 23.

Note that there are other solutions. Any x′ ≡ x (mod 3 · 5 · 7) is also a
solution; e.g., 23 + 3 · 5 · 7 = 128.
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3.4.1 Multiplicative Functions

Definition 3.4.3. A function f : N → Z is multiplicative if, whenever
m,n ∈ N and gcd(m,n) = 1, we have

f(mn) = f(m) · f(n).
Recall that the Euler ϕ-function is

ϕ(n) = #{a : 1 ≤ a ≤ n and gcd(a, n) = 1}.
Proposition 3.4.4. ϕ is a multiplicative function.

Proof. Suppose that m,n ∈ N and gcd(m,n) = 1. Consider the map

r : (Z/mn)× → (Z/m)× × (Z/n)×.

defined by
r(c) = (c mod m, c mod n).

Here c mod mmeans the image of c in Z/m under the natural map Z/mn→
Z/m, and likewise for c mod n.

We first show that r is injective. If r(c) = r(c′), then m | c − c′ and
n | c − c′, so, since gcd(n,m) = 1, nm | c − c′, so c = c′ as elements of
(Z/mn)×.

Next we show that r is surjective. Given a and b with gcd(a,m) = 1
and gcd(b, n) = 1, Theorem 3.4.2 implies that there exists c with c ≡ a
(mod m) and c ≡ b (mod n). We may assume that 1 ≤ c ≤ nm, and
since gcd(a,m) = 1 and gcd(b, n) = 1, we must have gcd(c, nm) = 1. Thus
r(c) = (a, b).

Because r is a bijection, the set on the left has the same size as the
product set on the right. Thus

ϕ(mn) = ϕ(m) · ϕ(n).

For an alternative proof of Proposition 3.4.4 see Exercise 22.
The proposition makes it easier to compute ϕ(n). For example,

ϕ(12) = ϕ(22) · ϕ(3) = 2 · 2 = 4.

Also, for n ≥ 1, we have

ϕ(pn) = pn − pn

p
= pn − pn−1 = pn−1(p− 1),

since ϕ(pn) is the number of numbers less than pn minus the number of
those that are divisible by p. Thus, e.g.,

ϕ(389 · 112) = 388 · (112 − 11) = 388 · 110 = 42680.

For a discussion of a relation between computing ϕ(n) and factoring n in
certain cases, see Section 4.3.1.



30 3. Primes and Congruences

3.5 Quickly Computing Inverses and Huge Powers

This section is about how to solve ax ≡ 1 (mod n) when we know it has
a solution, and how to efficiently compute am (mod n). We also discuss a
simple probabilistic primality test that relies on our ability to compute am

(mod n) quickly. All three of these algorithms are of fundamental impor-
tance in Chapter 4, since they lie at the heart of the Diffie-Hellman and
RSA public-key cryptosystems.

3.5.1 How to Solve ax ≡ 1 (mod n)

Suppose a, n ∈ N with gcd(a, n) = 1. Then by Proposition 3.3.9 the equa-
tion ax ≡ 1 (mod n) has a unique solution. How can we find it?

Proposition 3.5.1. Suppose a, b ∈ Z and gcd(a, b) = d. Then there exists
x, y ∈ Z such that

ax+ by = d.

Remark 3.5.2. If e = cd is a multiple of d, then cax + cby = cd = e, so e
can also be written in terms of a and b.

We will not give a formal proof of Proposition 3.5.1, but instead we show
how to find x and y in practice. To use this proposition to solve ax ≡ 1
(mod n), use that gcd(a, n) = 1 to find x and y such that ax + ny = 1.
Then

ax ≡ 1 (mod n).

Suppose a = 5 and b = 7. The steps of the Euclidean gcd algorithm
(Algorithm 3.1.8) are:

7 = 1 · 5 + 2 so 2 = 7− 5

5 = 2 · 2 + 1 so 1 = 5− 2 · 2 = 5− 2(7− 5) = 3 · 5− 2 · 7

On the right, we have back-substituted in order to write each partial re-
mainder as a linear combination of a and b. In the last step, we obtain
gcd(a, b) as a linear combination of a and b, as desired.

That example was not too complicated, so we try a longer one. Let
a = 130 and b = 61. We have

130 = 2 · 61 + 8 8 = 130− 2 · 61
61 = 7 · 8 + 5 5 = −7 · 130 + 15 · 61
8 = 1 · 5 + 3 3 = 8 · 130− 17 · 61
5 = 1 · 3 + 2 2 = −15 · 130 + 32 · 61
3 = 1 · 2 + 1 1 = 23 · 130− 49 · 61

Thus x = 23 and y = −49 is a solution to 130x+ 61y = 1.
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For the purpose of solving ax ≡ 1 (mod n), it is sufficient to find any
solution to ax+ by = d. In fact, there are always infinitely many solutions
to this equation; if x, y is a solution to

ax+ by = d,

then for any c ∈ Z,

a

(

x+ c · b
d

)

+ b
(

y − c · a
d

)

= d,

is also a solution. Moreover, all solutions are of the above form for some c.

Example 3.5.3. Solve 17x ≡ 1 (mod 61). First, we use the Euclidean algo-
rithm to find x, y such that 17x+ 61y = 1:

61 = 3 · 17 + 10 10 = 61− 3 · 17
17 = 1 · 10 + 7 7 = −61 + 4 · 17
10 = 1 · 7 + 3 3 = 2 · 61− 7 · 17
3 = 2 · 3 + 1 1 = −5 · 61 + 18 · 17

Thus 17 · 18 + 61 · (−5) = 1 so x = 18 is a solution to 17x ≡ 1 (mod 61).

To simplify this process, we view it algebraically as follows. Define a
homomorphism ϕ : Z × Z → Z by ϕ(x, y) = xa + yb. Our goal is to find
(x, y) such that ϕ(x, y) = gcd(a, b). We have ϕ(1, 0) = a and ϕ(0, 1) = b.
Each step of the Euclidean algorithm produces a new element of Z×Z that
maps to the remainder at that step, and in the end we obtain an (x, y) that
maps to gcd(a, b). We illustrate this with a = 61 and b = 17:

(1, 0) 7→ 61

(0, 1) 7→ 17 multiply by −3
(1,−3) 7→ 10 −1
(−1, 4) 7→ 7 −1
(2,−7) 7→ 3 −2

(−5, 18) 7→ 1.

Thus 61 · (−5) + 17 · 18 = 1. The parenthesis, commas, and 7→ symbol are
redundant. The following example illustrates writing 1 in terms of 136 and
75 with minimal distracting notation.

x y ϕ(x, y) multiple

1 0 136
0 1 75 −1
1 −1 61 −1

−1 2 14 −4
5 −9 5 −2

−11 20 4 −1
16 −29 1
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Thus 136 · 16 + 75 · (−29) = 1.

3.5.2 How to Compute am (mod n)

Let a and n be integers, and m a nonnegative integer. In this section we de-
scribe an efficient algorithm to compute am (mod n). For the cryptography
applications in Chapter 4, m will have hundreds of digits.

The naive approach to computing am (mod n) is to simply compute
am = a ·a · · · a (mod n) by repeatedly multiplying by a and reducing mod-
ulo m. Note that after each arithmetic operation is completed, we reduce
the result modulo n so that the sizes of the numbers involved don’t ex-
plode. Nonetheless, this algorithm is horribly inefficient because it takes
m − 1 multiplications, which is out of the question when m has hundreds
of digits.

A much more efficient algorithm for computing am (mod n) involves

writing m in binary, then expressing am as a product of expressions a2
i

, for
various i. These latter expressions can be computed by repeatedly squaring
a2

i

. This more clever algorithm is not “simpler”, but it is vastly more
efficient since the number of operations needed grows with the number of
binary digits of m, whereas with the naive algorithm above the number of
operations is m− 1.

Algorithm 3.5.4 (Writing a number in binary). Let m be a non-
negative integer. This algorithm writes m in binary, so it finds εi ∈ {0, 1}
such that m =

∑r
i=0 εi2

i with each εi ∈ {0, 1}. If m is odd, then ε0 = 1,
otherwise ε0 = 0. Replace m by

⌊

m
2

⌋

. If the new m is odd then ε1 = 1,
otherwise ε1 = 0. Keep repeating until m = 0.

Algorithm 3.5.5 (Compute am (mod n)). Let a and n be integers
and m a nonnegative integer. This algorithm computes am modulo n.
Write m in binary using Algorithm 3.5.4. Then

am =
∏

εi=1

a2
i

(mod n).

To compute am compute a, a2, a2
2

= (a2)2, a2
3

= (a2
2

)2, etc., up to a2
r

,
where r + 1 is the number of binary digits of m. Then multiply together
the a2

i

such that εi = 1, always working modulo n.

For example, we can compute the last 2 digits of 691, by finding 691

(mod 100). Make a table whose first column, labeled i, contains 0, 1, 2,
etc. The second column, labeled m, is got by dividing the entry above it
by 2 and taking the integer part of the result. The third column, labeled
εi, records whether or not the second column is odd. The forth column is
computed by squaring, modulo n = 100, the entry above it.
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i m εi 62
i

mod 100

0 91 1 6

1 45 1 36
2 22 0 96

3 11 1 16

4 5 1 56
5 2 0 36

6 1 1 96

We have

691 ≡ 62
6 · 624 · 623 · 62 · 6 ≡ 96 · 56 · 16 · 36 · 6 ≡ 56 (mod 100).

That’s a lot easier than multiply 6 by itself 91 times.

3.5.3 A Probabilistic Primality Test

Theorem 3.5.6. An integer p > 1 is prime if and only if for every a 6≡ 0
(mod p),

ap−1 ≡ 1 (mod p).

Proof. If p is prime, then the statement follows from Proposition 3.3.15.
If p is composite, then there is a divisor a of p with a 6= 1, p. If ap−1 ≡
1 (mod p), then p | ap−1 − 1. Since a | p, a | ap−1 − 1 hence a | 1, a
contradiction.

Suppose n ∈ N. Using this theorem and Algorithm 3.5.5, we can either
quickly prove that n is not prime, or convince ourselves that n probably
is prime. For example, if 2n−1 6≡ 1 (mod n), then we have proved that n
is not prime. On the other hand, if ap−1 ≡ 1 (mod p) for a couple of a, it
“seems likely” that n is prime.

Example 3.5.7. Is p = 323 prime? We compute 2322 (mod 323). Making a
table as above, we have

i m εi 22
i

mod 323
0 322 0 2

1 161 1 4

2 80 0 16
3 40 0 256

4 20 0 290

5 10 0 120

6 5 1 188
7 2 0 137

8 1 1 35
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Thus
2322 ≡ 4 · 188 · 35 ≡ 157 (mod 323),

so 323 is not prime. In fact, 323 = 17 · 19.
It’s possible to prove that a large number is composite, but yet be unable

to easily find a factorization! For example if

n = 95468093486093450983409583409850934850938459083,

then 2n−1 6≡ 1 (mod n), so n is composite. We could verify with some work
that n is composite with pencil and paper, but factoring n by hand would
be extremely difficult.

3.5.4 A Polynomial Time Deterministic Primality Test

Though the practical method for deciding primality with high probability
discussed above is very efficient in practice, it was for a long time an open
problem to give an algorithm that decides whether or not any integer is
prime in time bounded by a polynomial in the number of digits of the in-
teger. Three Indian mathematicians, Agrawal, Kayal, and Saxena, recently
found the first ever polynomial-time primality test. See [2] and also [5] for
a concise exposition of their clever idea.
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Exercises

3.1 Let p be a prime number and r an integer such that 1 ≤ r < p. Prove
that p divides the binomial coefficient

p!

r!(p− r)!
.

You may not assume that this coefficient is a integer.

3.2 Compute the following gcd’s using a pencil and the Euclidean algo-
rithm:

gcd(15, 35), gcd(247, 299), gcd(51, 897), gcd(136, 304)

3.3 (a) Show that 2 is irreducible in the ring Z[
√
−5]. [Hint: Suppose 2 =

(a+ b
√
−5)(c+ d

√
−5), take norms, and apply Theorem 3.1.5.]

(b) Show that (1 +
√
−5) is irreducible in Z[

√
−5]. [Hint: Suppose

(1 +
√
−5) = (a+ b

√
−5)(c+ d

√
−5) and take norms.]

3.4 What was the most recent prime year?

3.5 Use the Euclidean algorithm to find integers x, y ∈ Z such that

2261x+ 1275y = 17.

3.6 Prove that Definition 3.3.5 is well defined. That is, gcd(ã, gcd(b̃, n))
doesn’t depend on the choice of lifts ã, b̃ ∈ Z.

3.7 Let f(x) ∈ Z[x] be a polynomial with integer coefficients. Formulate
a conjecture about when the set {f(a) : a ∈ Z and f(a) is prime} is
infinite. Give computational evidence for your conjecture.

3.8 Is it “easy” or “hard” for a computer to compute the gcd of two
random 2000-digit numbers?

3.9 Prove that there are infinitely many primes of the form 6x− 1.

3.10 (a) Let y be the current year (e.g., 2002). Use a computer to compute

π(y) = #{ primes p ≤ y}.

(b) The prime number theorem predicts that π(x) is asymptotic to
x/ log(x). How close is π(y) to y/ log(y), where y is as in (a)?

3.11 Find complete sets of residues modulo 7, all of whose elements are
(a) nonnegative, (b) odd, (c) even, (d) prime.

3.12 Find rules for divisiblity of an integer by 5, 9, and 11, and prove each
of these rules using arithmetic modulo n.
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3.13 Find an integer x such that 37x ≡ 1 (mod 101).

3.14 What is the order of 5 modulo 37?

3.15 Let n = ϕ(20!) = 416084687585280000. Compute the prime factor-
ization of n using the multiplicative property of ϕ.

3.16 Let p be a prime. Prove that Z/p is a field.

3.17 Find an x ∈ Z such that x ≡ −4 (mod 17) and x ≡ 3 (mod 23).

3.18 Compute the last two digits of 666.

3.19 Find a number a such that 0 ≤ a < 111 and

(10270 + 1)35 ≡ a (mod 111).

3.20 Prove that if n > 4 is composite then

(n− 1)! ≡ 0 (mod n).

3.21 For what values of n is ϕ(n) odd?

3.22 Prove that ϕ is multiplicative as follows. Show that the natural map
Z/mn→ Z/m× Z/n is an injective map of rings, hence bijective by
counting, then look at unit groups.

3.23 Suppose n is a random 1000 digit number. Do you think computing
ϕ(n) is relatively easy or extremely difficult?

3.24 Let ϕ : N→ N be the Euler ϕ function.

(a) Find all natural numbers n such that ϕ(n) = 1.

(b) Do there exist natural numbers m and n such that ϕ(mn) 6=
ϕ(m) · ϕ(n)?
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4
Public-Key Cryptography

4.1 The Diffie-Hellman Key Exchange

I recently watched a TV show called La Femme
Nikita about a skilled women named Nikita, who is
forced to be an agent for the anti-terrorist organi-
zation Section One. Nikita has strong feelings for
fellow agent Michael, and she mosts trust Walter,
Section One’s gadgets and explosives expert. Often
Nikita’s worst enemies are her superiors and cowork-
ers at Section One.

The synopsis for a third season episode is as fol-
lows:

PLAYING WITH FIRE

On a mission to secure detonation chips from a terrorist or-
ganization’s heavily armed base camp, Nikita is captured as a
hostage by the enemy. Or so it is made to look. Michael and
Nikita have actually created the scenario in order to secretly
rendezvous with each other. The ruse works, but when Birkoff
[Section One’s master hacker] accidentally discovers encrypted
messages between Michael and Nikita sent with Walter’s help,
Birkoff is forced to tell Madeline. Suspecting that Michael and
Nikita may be planning a coup d’tat, Operations and Madeline
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FIGURE 4.1. Diffie and Hellman (photos from [61])

use a second team of operatives to track Michael and Nikita’s
next secret rendezvous... killing them if necessary.

What sort of encryption might Walter have helped them to use? I let my
imagination run free, and this is what I came up with. After being captured
at the base camp, Nikita is given a phone by her captors, in hopes that she’ll
use it and they’ll be able to figure out what she is really up to. Everyone
is eagerly listening in on her calls.

Nikita remembers a conversation with Walter about the first public key-
exchange protocol, the “Diffie-Hellman key exchange”. She remembers that
it allows two people to agree on a secret key in the presence of eavesdrop-
pers. Moreover, Walter mentioned that though Diffie-Hellman was the first
ever public-key exchange system, it is still in common use today (e.g., in
ssh and SSL). It must be good.

Nikita pulls out her handheld computer and phone, calls up Michael, and
they do the following:

1. Together they choose a big prime number p and a number g with
1 < g < p.

2. Nikita secretly chooses an integer n.

3. Michael secretly choses an integer m.

4. Nikita tells Michael ng (mod p) (the remainder of ng reduced mod-
ulo p).

5. Michael tells mg (mod p) to Nikita.

6. The “secret key” is s = nmg (mod p), which both Nikita and Michael
can easily compute.
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Nikita

Michael

Nikita’s captors

Section One

Here’s a very simple example with small numbers that illustrates what
Michael and Nikita do. (They really used 200 digit numbers.)

1. p = 97, g = 5

2. n = 31

3. m = 95

4. ng ≡ 58 (mod 97)

5. mg ≡ 87 (mod 97)

6. s = nmg = 78 (mod 97)

Nikita and Michael are foiled because everyone easily figures out s:

1. Everyone knows p, g, ng (mod p), and mg (mod p).

2. Using the very fast Euclidean algorithm, anyone can easily find a, b ∈
Z such that ag + bp = 1, which exist because gcd(g, p) = 1.

3. Then ang ≡ n (mod p), so everyone knows Nikita’s secret key n, and
hence can find s just as easily as she did.

To taunt her, Nikita’s captors give her the Math Review of Diffie and
Hellman’s 1976 paper “New Directions in Cryptography”:

“The authors discuss some recent results in communications
theory [...] The first [method] has the feature that an unautho-
rized ‘eavesdropper’ will find it computationally infeasible to de-
cipher the message [...] They propose a couple of techniques for
implementing the system, but the reviewer was unconvinced.”

Night darkens her cell as Nikita reflects on what has happened. Upon re-
alizing that she misremembered how the system works, she phones Michael
and they do the following:

1. Together Michael and Nikita choose a 200-digit (pseudo-)prime p and
a number g with 1 < g < p.
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2. Nikita secretly chooses an integer n.

3. Michael secretly chooses an integer m.

4. Nikita computes gn (mod p) on her handheld computer and tells
Michael the resulting number over the phone. (She is surprised that
her handheld computer finds gn (mod p) quickly, even though n is
very large. How it does this was described in Section 3.5.)

5. Michael tells Nikita gm (mod p).

6. The secret key is then

s ≡ (gn)m ≡ (gm)n ≡ gnm (mod p).

Here is a simplified example that illustrates what they did, but which
involves only relatively simple arithmetic.

1. p = 97, g = 5

2. n = 31

3. m = 95

4. gn ≡ 7 (mod p)

5. gm ≡ 39 (mod p)

6. s ≡ (gn)m ≡ 14 (mod p)

4.1.1 The Discrete Log Problem

Nikita communicates with Michael by encrypting everything using their
agreed upon secret key. In order to understand the conversation, the eaves-
dropper needs s, but it takes a long time to compute s given only p, g, gn,
and gm. One way would be to compute n from knowledge of g and gn; this
is possible, but appears to be “computationally infeasible”, in the sense
that it would take too long to be practical.

Let a, b, and n be real numbers with a, b > 0 and n ≥ 0. Recall that

logb(a) = n if and only if a = bn.

The logb function is used in algebra to solve the following problem: Given
a base b and a power a of b, find an exponent n such that

a = bn.

That is, given a = bn and b, find n.

Example 4.1.1. The number a = 19683 is the nth power of b = 3 for some n.
With a calculator we quickly find that

n = log3(19683) = log(19683)/ log(3) = 9.

A calculator can then quickly compute an approximation for log(x) by com-
puting a partial sum of an appropriate rapidly-converging infinite series.
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The discrete log problem is the analogue of this problem but in any finite
(“discrete”) group:

Problem 4.1.2 (Discrete Log Problem). Let G be a finite group, e.g.,
G = (Z/p)×. Given b ∈ G and a power a of b, find the smallest positive
integer n such that bn = a. Thus the discrete log problem is the problem
of computing n = logb(a) for a, b ∈ G.

As far as we know, computing discrete logarithms is very time consum-
ing in practice. Over the years, many people have been very motivated to
try. For example, if Nikita’s captors could efficiently solve Problem 4.1.2,
then they could read the messages she exchanges with Michael. Unfortu-
nately, we have no proofs that computing discrete logarithms on a classical
computer is difficult. In contrast, Peter Shor [56] showed that quantum
computers of significant complexity can solve the discrete logarithm prob-
lem in time bounded by a polynomial in the number of digits of #G.

It’s easy to give an inefficient algorithm that solves the discrete log prob-
lem. Simply try b1, b2, b3, etc., until we find an exponent n such that bn = a.
For example, suppose a = 18, b = 5, and p = 23. We have

b1 = 5, b2 = 2, b3 = 10, . . . , b12 = 18,

so n = 12. When p is large, computing the discrete log this way soon
becomes impractical, because doubling the number of digits of the modulus
makes the computation take much longer.

4.1.2 Realistic Diffie-Hellman Example

In this section we present an example that uses bigger numbers.
Let p = 93450983094850938450983409623 and g = −2 ∈ (Z/p)×, which

has order p − 1. The secret random numbers generated by Nikita and
Michael are

n = 18319922375531859171613379181

and
m = 82335836243866695680141440300.

Nikita sends

gn = 45416776270485369791375944998 ∈ (Z/q)×

to Michael, and Michael sends

gm = 15048074151770884271824225393 ∈ (Z/q)×

to Nikita. They agree on the secret key

gnm = 85771409470770521212346739540 ∈ (Z/q)×.

4.1.3 The Man in the Middle Attack

After their first system was broken, instead of talking on the phone, Michael
and Nikita can now only communicate via text messages. Her captor, The
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Michael

Nikita

The Man

PSfrag replacements

gnt (mod p)

gnt (mod p)

gmt (mod p)

gmt (mod p)

FIGURE 4.2. The Man in the Middle Attack

Man, is watching each of the email transmissions; moreover, he can inter-
cept messages and send false messages. When Nikita sends an email to
Michael announcing gn (mod p), The Man intercepts this message, and
sends his own number gt (mod p) to Michael. Eventually, Michael and The
Man agree on the secret key gtm (mod p), and Nikita and The Man agree
on the key gtn (mod p). When Nikita sends a message to Michael she fool-
ishly uses the secret key gtn (mod p); The Man then intercepts it, decrypts
it, changes it, and re-encrypts it using the key gtm (mod p), and sends it
on to Michael. This is bad.

One way to get around this attack is to use “digital signatures” based on
the RSA cryptosystem. We will not discuss digital signatures in this book,
but we will discuss RSA in the next section.

4.2 The RSA Cryptosystem

The Diffie-Hellman key exchange has drawbacks. As discussed in Section
4.1.3, it is susceptible to the man in the middle attack, so one is not always
sure with whom they are exchanging messages. Also, it only provides a
way to agree on a secret key, not a way to encrypt any information; for
that, one must rely on a symmetric-key encryption method. This section is
about the RSA public-key cryptosystem of Rivest, Shamir, and Adleman
[53], which remedies some of these defects.

In this section we describe the RSA cryptosystem, then discuss several
ways to attack it, which we must be aware of in order to implement the
cryptosystem without making foolish mistakes.
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4.2.1 How RSA works

The fundamental idea behind RSA is to try to construct a so-called “one-
way function” on a set X, that is, an invertible function

E : X → X

such that it is easy for Nikita to compute E−1, but extremely difficult for
anybody else to do so.

Here is how Nikita makes a one-way function E on the set of integers
modulo n.

1. Nikita picks two large primes p and q, and lets n = pq.

2. It is easy for Nikita to then compute

ϕ(n) = ϕ(p) · ϕ(q) = (p− 1) · (q − 1).

3. Nikita next chooses a “random” integer e with

1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1.

4. Nikita uses the algorithm from Section 3.5.2 to find a solution x = d
to the equation

ex ≡ 1 (mod ϕ(n)).

5. Finally, Nikita defines a function E : Z/n→ Z/n by

E(x) = xe ∈ Z/n.

Anybody can compute E fairly quickly using the repeated-squaring
algorithm from Section 3.5.2.

Nikita’s public key is the pair of integers (n, e), which is just enough
information for people to easily compute E. Nikita knows a number d such
that ed ≡ 1 (mod ϕ(n)), so, as we will see below, she can quickly compute
E−1.

To send Nikita a message, proceed as follows. Encode your message, in
some way, as a sequence of numbers modulo n (see Section 4.2.2)

m1, . . . ,mr ∈ Z/n,

then send

E(m1), . . . , E(mr)

to Nikita. (Recall that E(m) = me.)
When Nikita receives E(mi), she finds each mi by using that E−1(m) =

md, a fact that follows from the following proposition.

Proposition 4.2.1. Let n be an integer that is a product of distinct primes
and let d, e ∈ N such that p− 1 | de− 1 for each prime p | n. Then ade ≡ a
(mod n) for all a ∈ Z.
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Proof. Since n | ade − a if and only if p | ade − a for each prime divisor p
of n, it suffices to prove that ade ≡ a (mod p) for each prime divisor p of n.
If gcd(a, p) 6= 0, then a ≡ 0 (mod p), so ade ≡ a (mod p). If gcd(a, p) = 1,
then Theorem 3.3.14 asserts that ap−1 ≡ 1 (mod p). Since p − 1 | de − 1,
we have ade−1 ≡ 1 (mod p) as well. Multiplying both sides by a shows that
ade ≡ a (mod p).

Thus to decrypt E(mi) Nikita computes

mi = E−1(E(mi)) = E(mi)
d = (me

i )
d = mi.

4.2.2 Encoding a Phrase in a Number

In order to use the RSA cryptosystem to encrypt messages, it is necessary
to encode them as a sequence of numbers of size less than n = pq. We now
describe a simple way to do this.

We encode a sequence of capital letters and spaces (that doesn’t start
with a space) by viewing it as a number in base 27 as follows: a single
space corresponds to 0, the letter A to 1, B to 2, . . ., Z to 26. Thus “RUN
NIKITA” is a number written in base 27:

RUN NIKITA ↔ 279 · 18 + 278 · 21 + 277 · 14 + 276 · 0 + 275 · 14
+ 274 · 9 + 273 · 11 + 272 · 9 + 27 · 20 + 1

= 143338425831991 (in decimal).

To recover the letters from the decimal number, repeatedly divide by 27
and read off the letter corresponding to each remainder:

143338425831991 = 5308830586370 · 27 + 1 “A”
5308830586370 = 196623355050 · 27 + 20 “T”
196623355050 = 7282346483 · 27 + 9 “I”

7282346483 = 269716536 · 27 + 11 “K”
269716536 = 9989501 · 27 + 9 “I”

9989501 = 369981 · 27 + 14 “N”
369981 = 13703 · 27 + 0 “ ”
13703 = 507 · 27 + 14 “N”

507 = 18 · 27 + 21 “U”
18 = 0 · 27 + 18 “R”

If 27k ≤ n, then any sequence of k letters can be encoded as above using
a positive integer ≤ n. Thus if we use can encrypt integers of size at most n,
then we must break out message up into blocks of size at most log27(n).

4.2.3 Examples

So the arithmetic is easy to follow, we use small primes p and q and encrypt
the single letter “X” using the RSA cryptosystem.

1. Choose p and q: Let p = 17, q = 19, so n = pq = 323.
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2. Compute ϕ(n):

ϕ(n) = ϕ(p · q) = ϕ(p) · ϕ(q) = (p− 1)(q − 1)

= pq − p− q + 1 = 323− 17− 19 + 1 = 288.

3. Randomly choose an e < 288: We choose e = 95.

4. Solve
95x ≡ 1 (mod 288).

Using the GCD algorithm, we find that d = 191 solves the equation.

The public key is (323, 95), so the encryption function E : Z/323 →
Z/323 is defined by

E(x) = x95,

and the decryption function is D(x) = x191.
Next, we encrypt the letter “X”. It is encoded as the number 24, since X

is the 24th letter of the alphabet. We have

E(24) = 2495 = 294 ∈ Z/323.

To decrypt, we compute E−1:

E−1(294) = 294191 = 24 ∈ Z/323.

This example illustrates RSA but with bigger numbers. Let

p = 738873402423833494183027176953, q = 3787776806865662882378273.

Then

n = p · q = 2798687536910915970127263606347911460948554197853542169

and

ϕ(n) = (p− 1)(q − 1)

= 2798687536910915970127262867470721260308194351943986944.

We somehow randomly chose

e = 1483959194866204179348536010284716655442139024915720699.

Then

d = 2113367928496305469541348387088632973457802358781610803

Since log27(n) ≈ 38.04, we can encode then encrypt single blocks of up
to 38 letters. Let’s encrypt “RUN NIKITA”, which is encoded as m =
143338425831991. We have

E(m) = me = 1504554432996568133393088878600948101773726800878873990.

Changing the input slightly to “RUN NAKITA” (which corresponds to
m′ = 143338421580463) completely changes the encrypted version:

E(m′) = 437968760439188600589414766639328726464015666686231875.
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4.3 Attacking RSA

Suppose Nikita’s public key is (n, e) and her decryption key is d, so ed ≡ 1
(mod ϕ)(n). If somehow we compute the factorization n = pq, then we can
compute ϕ(n) = (p−1)(q−1) and hence deduce d. Thus if we can factor n
then we can break the corresponding RSA public-key cryptosystem. In this
section we consider several approaches to “cracking” RSA, and relate them
to the difficulty of factoring n.

4.3.1 Factoring n Given ϕ(n)

Suppose n = pq. Given ϕ(n), it is very easy to compute p and q. We have

ϕ(n) = (p− 1)(q − 1) = pq − (p+ q) + 1,

so we know both pq = n and p + q = n + 1 − ϕ(n). Thus we know the
polynomial

x2 − (p+ q)x+ pq = (x− p)(x− q)

whose roots are p and q. These roots can be found using the quadratic
formula.

Example 4.3.1. The number n = pq = 31615577110997599711 is a product
of two primes, and ϕ(n) = 31615577098574867424. We have

f = x2 − (n+ 1− ϕ(n))x+ n

= x2 − 12422732288x+ 31615577110997599711

= (x− 3572144239)(x− 8850588049),

where the last step is easily accomplished using the quadratic formula:

−b+
√
b2 − 4ac

2a
=

12422732288 +
√

124227322882 − 4 · 31615577110997599711

2
= 8850588049.

We conclude that n = 3572144239 · 8850588049.

4.3.2 When p and q are Close

Suppose that p and q are “close” to each other. Then it is easy to factor n
using a factorization method of Fermat.

Suppose n = pq with p > q, say. Then

n =

(

p+ q

2

)2

−
(

p− q

2

)2

.

Since p and q are “close”,

s =
p− q

2

is small,

t =
p+ q

2
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is only slightly larger than
√
n, and t2 − n = s2 is a perfect square. So we

just try

t = d√ne, t = d√ne+ 1, t = d√ne+ 2, . . .

until t2−n is a perfect square s2. (Here dxe denotes the least integer n ≥ x.)
Then

p = t+ s, q = t− s.

Example 4.3.2. Suppose n = 23360947609. Then

√
n = 152842.88 . . . .

If t = 152843, then
√
t2 − n = 187.18 . . ..

If t = 152844, then
√
t2 − n = 583.71 . . ..

If t = 152845, then
√
t2 − n = 804 ∈ Z.

Thus s = 804. We find that p = t+ s = 153649 and q = t− s = 152041.

4.3.3 Factoring n Given d

In this section, we show that cracking RSA is, in practice, at least as difficult
as factoring n. We give a probabilistic algorithm that given a decryption
key determines the factorization of n.

Suppose that we crack an RSA cryptosystem with modulus n and en-
cryption key e by somehow finding an integer d such that

aed ≡ a (mod n)

for all a. Then m = ed − 1 satisfies am ≡ 1 (mod n) for all a that are
coprime to n. As we saw in Section 4.3.1, knowing ϕ(n) leads directly to a
factorization of n. Unfortunately, knowing d does not seem to lead easily to
a factorization of n. However, there is a probabilistic procedure that, given
an m such that am ≡ 1 (mod n), will find a factorization of n with high
probability.

Algorithm 4.3.3 (Probabilistic Algorithm to Factor n Given d).
In the description of this algorithm, a always denotes an integer coprime
to n. Given an integer m > 1 such that am ≡ 1 (mod n) for all a, this
probabilistic algorithm factors n with high probability.

1. If am/2 ≡ 1 (mod n) for all a, replace m by m/2. Note that m is even
since (−1)m ≡ 1 (mod n). It is not practical to determine whether
or not am/2 ≡ 1 (mod n) for all a, because it would require doing
a computation for too many a. Instead, we try a few random a; if
am/2 ≡ 1 (mod n) for the a we check, we divide m by 2.

Note that if there exists even a single a such that am/2 6≡ 1 (mod n),
then at least half the a have this property, since a 7→ am/2 is a
nontrivial homomorphism (Z/n)× → {±1} and the kernel can have
size at most φ(n)/2 = #(Z/n)×/2.

Keep replacing m by m/2 until we find an a such that am/2 6≡ 1
(mod n).
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2. Try to factor n by computing gcd’s. Assume that we have found
an m such that am ≡ 1 (mod n) for all a coprime to n, but there
is an a such that am/2 6≡ 1 (mod n). (That x2 ≡ 1 (mod p) implies
x = ±1 (mod p) follows from Proposition 5.1.1 in the next chap-
ter.) Since (am/2)2 ≡ 1 (mod n), we also have (am/2)2 ≡ 1 (mod p)
and (am/2)2 ≡ 1 (mod q), so am/2 ≡ ±1 (mod p) and am/2 ≡ ±1
(mod q). Since am/2 6≡ 1 (mod n), their are three possibilities for
these signs, so with probability 2/3,

am/2 ≡ +1 (mod p) and am/2 ≡ −1 (mod q)

or

am/2 ≡ −1 (mod p) and am/2 ≡ +1 (mod q).

(The only other possibility is that both signs are −1.) In the first
case,

p | am/2 − 1 but q - am/2 − 1,

so gcd(am/2 − 1, pq) = p, and we have factored n. Similarly, in the
second case, gcd(am/2 − 1, pq) = q, and we again factor n.

Keep trying a’s until one of these two cases occurs.

Example 4.3.4. Somehow we discover that the RSA cryptosystem with

n = 32295194023343 and e = 29468811804857

has decryption key d = 11127763319273. Let’s use this information to fac-
tor n. We have

m = ed− 1 = 327921963064646896263108960.

For each a ≤ 20 we find that am/2 ≡ 1 (mod n), so we replace m by

m

2
= 163960981532323448131554480.

Again, we find with this new m that for each a ≤ 20, am/2 ≡ 1 (mod n), so
we replace m by 81980490766161724065777240. Yet again, for each a ≤ 20,
am/2 ≡ 1 (mod n), so we replace m by 40990245383080862032888620. This
is enough, since 2m/2 ≡ 4015382800099 (mod n). Then

gcd(2m/2 − 1, n) = gcd(4015382800098, 32295194023343) = 737531,

and we have found a factor of n! Dividing, we find that

n = 737531 · 43788253.
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Exercises

4.1 You and Nikita wish to agree on a secret key using the Diffie-Hellman
protocol. Nikita announces that p = 3793 and g = 7. Nikita secretly
chooses a number n < p and tells you that gn ≡ 454 (mod p). You
choose the random number m = 1208. What is the secret key?

4.2 This problem concerns encoding phrases using numbers using the
encoding of Section 4.2.2.

(a) Find the number that corresponds to VEÃRIÃTAS. (Note that the
left-most “digit”, V, is the least significant digit, and Ã denotes
a blank space.)

(b) What is the longest that an arbitrary sequence of letters (and
space) can be if it must fit in a number that is less than 1020?

4.3 You see Michael and Nikita agree on a secret key using the Diffie-
Hellman key exchange protocol. Michael and Nikita choose p = 97
and g = 5. Nikita chooses a random number n and tells Michael that
gn ≡ 3 (mod 97), and Michael chooses a random number m and tells
Nikita that gm ≡ 7 (mod 97). Crack their code: What is the secret
key that Nikita and Michael agree upon? What is n? What is m?

4.4 Using the RSA public key (n, e) = (441484567519, 238402465195),
encrypt the current year.

4.5 In this problem, you will “crack” an RSA cryptosystem.

(a) What is the secret decoding number d for the RSA cryptosystem
with public key (n, e) = (5352381469067, 4240501142039)?

(b) The number 3539014000459 encrypts a question using the RSA
cryptosystem from part (a). What is the question? (After de-
coding, you’ll get a number. To find the corresponding word,
see Section 4.2.2.)

4.6 Suppose Michael creates an RSA cryptosystem with a very large mod-
ulus n for which the factorization of n cannot be found in a reasonable
amount of time. Suppose that Nikita sends messages to Michael by
representing each alphabetic character as an integer between 0 and 26
(A corresponds to 1, B to 2, etc., and a space Ã to 0), then encrypts
each number separately using Michael’s RSA cryptosystem. Is this
method secure? Explain your answer.

4.7 Nikita creates an RSA cryptosystem with public key

(n, e) = (1433811615146881, 329222149569169).

In the following two problems, show the steps you take to factor n.
(Don’t simply factor n directly using a computer.)

(a) Somehow you discover that d = 116439879930113. Show how
to use the probabilistic algorithm of Section 4.3.3 to use d to
factor n.
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(b) In part (a) you found that the factors p and q of n are very
close. Show how to use the Fermat factorization method of Sec-
tion 4.3.2 to factor n.

4.8 Nikita and Michael decide to agree on a secret encryption key using
the Diffie-Hellman key exchange protocol. You observe the following:

(a) Nikita chooses p = 13 for the modulus and g = 2 as generator.

(b) Nikita sends 6 to Michael.

(c) Michael sends 11 to Nikita.

What is the secret key?

4.9 Consider the RSA public-key cryptosystem defined by (n, e) = (77, 7).

(a) Encrypt the number 4 using this cryptosystem.

(b) Find an integer d such that ed ≡ 1 (mod ϕ(n)).

4.10 Research the following: What is the current status of the RSA patent?
Could you write a commercial program that implements the RSA
cryptosystem without having to pay anyone royalties? What about
a free program? Same questions, but for the Diffie-Hellman key ex-
change.

4.11 For any positive integer n, let σ(n) be the sum of the divisors of n;
for example, σ(6) = 1+2+3+6 = 12 and σ(10) = 1+2+5+10 = 18.

(a) (10 points) Suppose that n = pqr with p, q, and r primes. Devise
an “efficient” algorithm that given n, ϕ(n) and σ(n), computes
the factorization of n. For example, if n = 105, then p = 3,
q = 5, and r = 7, so the input to the algorithm would be

n = 105, ϕ(n) = 48, and σ(n) = 192,

and the output would be 3, 5, 7.

(b) (3 points) Use your algorithm to factor n = 60071026003 given
that ϕ(n) = 60024000000 and σ(n) = 60118076016.
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5
The Structure of (Z/p)×

This chapter is about the structure of the group (Z/p)× of units modulo p.
The main result is that this group is always cyclic.

Definition 5.0.5 (Primitive root). A primitive rootmodulo an integer n
is an element of (Z/n)× of order ϕ(n).

We prove that there is a primitive root modulo every prime p. Since
(Z/p)× has order p − 1, this implies that (Z/p)× is a cyclic group, a fact
this will be extremely useful, since it completely determines the structure
of (Z/p)× as an abelian group.

If n is an odd prime power, then there is also a primitive root modulo n
(see the exercises), but there is no primitive root modulo the even prime
power 23.

Section 5.1 is the key input in our proof that (Z/p)× is cyclic; here we
show that for every divisor d of p−1 there are exactly d elements of (Z/p)×

whose order divides d. We then use this result in Section 5.2 to produce
an element of (Z/p)× of order qr when qr is a prime power that exactly
divides p − 1 (i.e., qr divides p − 1, but qr+1 does not divide p − 1), and
combine together these to obtain an element of (Z/p)× of order p− 1.

5.1 Polynomials over Z/p

Proposition 5.1.1. Let f ∈ (Z/p)[x] be a nonzero polynomial over the ring
Z/p. Then there are at most deg(f) elements α ∈ Z/p such that f(α) = 0.
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Proof. We induct on deg(f). The cases with deg(f) ≤ 1 are clear. Write
f = anx

n + · · · a1x+ a0. If f(α) = 0 then

f(x) = f(x)− f(α)

= an(x
n − αn) + · · · a1(x− α) + a0(1− 1)

= (x− α)(an(x
n−1 + · · ·+ αn−1) + · · ·+ a2(x+ α) + a1)

= (x− α)g(x),

for some polynomial g(x) ∈ (Z/p)[x]. Next suppose that f(β) = 0 with
β 6= α. Then (β − α)g(β) = 0, so, since β − α 6= 0, we have g(β) = 0. By
our inductive hypothesis, g has at most n − 1 roots, so there are at most
n− 1 possibilities for β. It follows that f has at most n roots.

Proposition 5.1.2. Let p be a prime number and let d be a divisor of
p− 1. Then f = xd − 1 ∈ (Z/p)[x] has exactly d solutions.

Proof. Let e = (p− 1)/d. We have

xp−1 − 1 = (xd)e − 1

= (xd − 1)((xd)e−1 + (xd)e−2 + · · ·+ 1)

= (xd − 1)g(x),

where g ∈ (Z/p)[x] and deg(g) = de−d = p−1−d. Theorem 3.3.14 implies
that xp−1 − 1 has exactly p− 1 roots in Z/p, since every nonzero element
of Z/p is a root! By Proposition 5.1.1, g has at most p − 1 − d roots and
xd − 1 has at most d roots. Since a root of (xd − 1)g(x) is a root of either
xd − 1 or g(x) and xp−1 − 1 has p− 1 roots, g must have exactly p− 1− d
roots and xd − 1 must have exactly d roots, as claimed.

The analogue of Proposition 5.1.2 is false when p is replaced by a com-
posite integer n, since a root mod n of a product of two polynomials need
not be a root of either factor. For example, if n = n1 · n2 with n1, n2 6= 1,
then f = n1x has at least two distinct zeros, namely 0 and n2 6= 0.

5.2 Existence of Primitive Roots

In this section, we prove that (Z/p)× is cyclic by using the results of Sec-
tion 5.2 to produce an element of (Z/p)× of order d for each prime power
divisor d of p − 1, then multiply these together to obtain an element of
order p− 1.

The following lemma will be used to assemble together elements of orders
dividing p− 1 to produce an element of order p− 1.

Lemma 5.2.1. Suppose a, b ∈ (Z/n)× have orders r and s, respectively,
and that gcd(r, s) = 1. Then ab has order rs.

Proof. This is a general fact about commuting elements of any finite group.
Since

(ab)rs = arsbrs = 1,
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the order of ab is a divisor of rs. Write this divisor as r1s1 where r1 | r and
s1 | s. Raise both sides of

ar1s1br1s1 = (ab)r1s1 = 1.

to the power r2 = r/r1 to obtain

ar1r2s1br1r2s1 = 1.

Since ar1r2s1 = (ar1r2)s1 = 1, we have

br1r2s1 = 1,

so s | r1r2s1. Since gcd(s, r1r2) = gcd(s, r) = 1, it follows that s = s1.
Similarly r = r1, so the order of ab is rs.

Theorem 5.2.2. There is a primitive root modulo any prime p.

Proof. Write p− 1 as a product of distinct prime powers qni

i :

p− 1 = qn1
1 qn2

2 · · · qnr
r .

By Proposition 5.1.2, the polynomial xq
ni
i − 1 has exactly qni

i roots, and

the polynomial xq
ni−1

i − 1 has exactly qni−1
i roots. There are qni

i − qni−1
i =

qni−1
i (qi − 1) elements a ∈ Z/p such that aq

ni
i = 1 but aq

ni−1

i 6= 1; each of
these elements has order qni

i . Thus for each i = 1, . . . , r, we can choose an
ai of order q

ni

i . Then, using Lemma 5.2.1 repeatedly, we see that

a = a1a2 · · · ar

has order qn1
1 · · · qnr

r = p− 1, so a is a primitive root modulo p.

Example 5.2.3. We illustrate the proof of Theorem 5.2.2 when p = 13. We
have

p− 1 = 12 = 22 · 3.
The polynomial x4 − 1 has roots {1, 5, 8, 12} and x2 − 1 has roots {1, 12},
so we may take a1 = 5. The polynomial x3 − 1 has roots {1, 3, 9}, and we
set a2 = 3. Then a = 5 · 3 = 15 ≡ 2 is a primitive root. To verify this, note
that the successive powers of 2 modulo 13 are

2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1.

Example 5.2.4. Theorem 5.2.2 is false if, e.g., p is replaced by a power of 2
bigger than 4. For example, the four elements of (Z/8)× each have order
dividing 2, but ϕ(8) = 4.

Theorem 5.2.5. Let pn be a power of an odd prime. Then there is a
primitive root modulo pn.

The proof is left as Exercise 3.

Proposition 5.2.6. If there is a primitive root modulo n, then there are
exactly ϕ(ϕ(n)) primitive roots modulo n.
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Proof. The primitive roots modulo n are the generators of (Z/n)×, which
by assumption is cyclic of order ϕ(n). Thus they are in bijection with the
generators of any cyclic group of order ϕ(n). In particular, the number of
primitive roots modulo n is the same as the number of elements of Z/ϕ(n)
with additive order ϕ(n). An element of Z/ϕ(n) has additive order ϕ(n)
if and only if it is coprime to ϕ(n). There are ϕ(ϕ(n)) such elements, as
claimed.

Example 5.2.7. For example, there are ϕ(ϕ(17)) = ϕ(16) = 24 − 23 =
8 primitive roots mod 17, namely 3, 5, 6, 7, 10, 11, 12, 14. The ϕ(ϕ(9)) =
ϕ(6) = 2 primitive roots modulo 9 are 2 and 5. There are no primitive
roots modulo 8, even though ϕ(ϕ(8)) = ϕ(4) = 2 > 0.

5.3 Artin’s Conjecture

Conjecture 5.3.1 (Emil Artin). Suppose a ∈ Z is not −1 or a perfect
square. Then there are infinitely many primes p such that a is a primitive
root modulo p.

There is no single integer a such that Artin’s conjecture is known to be
true. For any given a, Pieter [47] proved that there are infinitely many p
such that the order of a is divisible by the largest prime factor of p− 1.

Hooley [32] proved that the Generalized Riemann Hypothesis implies
Conjecture 5.3.1. This Generalized Riemann Hypothesis is, as its name
suggests, a generalization of the Riemann Hypothesis; it asserts that cer-
tain functions, called “zeta functions”, have zeros only on the vertical line
Re(s) = 1

2 .

Remark 5.3.2. Artin conjectured more precisely that if N(x, a) is the num-
ber of primes p ≤ x such that a is a primitive root modulo p, then N(x, a)
is asymptotic to C(a)π(x), where C(a) is a positive constant that depends
only on a and π(x) is the number of primes up to x.
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Exercises

5.1 Prove that there is no primitive root modulo 2n for any n ≥ 3. [Hint:
Relate the statement for n = 3 to the statement for n > 3.]

5.2 Characterize the integers n such that there is a primitive root mod-
ulo n in terms of their prime factorization.

5.3 Let p be an odd prime.

(a) Prove that there is a primitive root modulo p2. [Hint: Write down
an element of (Z/p2)× that looks like it might have order p, and
prove that it does. Recall that if a, b have orders n,m, with
gcd(n,m) = 1, then ab has order nm.]

(b) Prove that for any n, there is a primitive root modulo pn.



56 5. The Structure of (Z/p)×



This is page 57
Printer: Opaque this

6
Quadratic Reciprocity

Let a be an integer. The quadratic reciprocity law of Gauss provides a
beautiful and precise answer to the following question: “For which primes p
is the image of a in (Z/p)× a perfect square?” Amazingly, the answer only
depends on the residue of p modulo 4a.

The quadratic reciprocity law has been proved in a huge number of ways
(see [40] for a list). We give two distinct proofs. The first, which is ele-
mentary and involves tediously keeping track of integer points in intervals,
is given Section 6.3. The second, given in Section 6.4, is extremely alge-
braic and uses congruences between sums of powers of the complex number
ζ = e2πi/p. You should read Sections 6.1 and 6.2, then at least one of Sec-
tion 6.3 or Section 6.4, depending on taste.

In Section 6.5, we return to the computational question of actually find-
ing square roots in practice.

6.1 Statement of the Quadratic Reciprocity Law

In this section we motivate, then precisely state, the quadratic reciprocity
law.

Definition 6.1.1 (Quadratic Residue). An integer a not divisible by a
prime p is called a quadratic residue modulo p if a is a square modulo p.
If a is not a square modulo p then a is called a quadratic non-residue.

The quadratic reciprocity theorem connects the question of whether or
not a is a quadratic residue modulo p to the question of whether p is a
quadratic residue modulo each of the prime divisors of a. To express it
precisely, we introduce some new notation. Let p be an odd prime and let a
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TABLE 6.1. When is 5 a square modulo p?

p
(

5
p

)

p mod 5

7 −1 2
11 1 1
13 −1 3
17 −1 2
19 1 4
23 −1 3
29 1 4
31 1 1
37 −1 2
41 1 1
43 −1 3
47 −1 2

be an integer coprime to p. Set

(

a

p

)

=

{

+1 if a is a quadratic residue, and

−1 otherwise.

This notation is well entrenched in the literature, even though it is identical
to the notation for “a divided by p”; be careful not to confuse the two.

Just as we defined gcd(a, b) for a, b ∈ Z/n, define
(

a
p

)

for a ∈ Z/p to be
(

ã
p

)

for any lift ã of a to Z.

Proposition 6.2.1 below implies that
(

a

p

)

≡ a(p−1)/2 (mod p),

so the map a 7→
(

a
p

)

is a multiplicative function in the sense that

(

a

p

)

·
(

b

p

)

=

(

ab

p

)

.

The symbol
(

a
p

)

only depends on the residue class of a modulo p. Thus

tabulating the value of
(

a
5

)

for hundreds of a would be silly, since it is so
easy.

Question 6.1.2. Would it be equally silly to make a table of
(

5
p

)

for many

of primes p?

We find out by constructing Table 6.1 and looking for a simple pattern.

It appears that
(

5
p

)

depends only on the congruence class of p modulo 5.

More precisely,
(

5
p

)

= 1 if and only if p ≡ 1, 4 (mod 5), i.e.,
(

5
p

)

= 1

if and only if p is a square modulo 5. We might try to prove this using
Proposition 6.2.1 below; however, I see no simple reason that knowing that
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p ≡ 1, 4 (mod 5) helps us to evaluate 5(p−1)/2 (mod p). See Exercise 4 for
further a discussion about proving our observation directly.

Based on similar observations, in the 18th century various mathemati-
cians found a conjectural explanation for the mystery suggested by Ta-
ble 6.1. Finally, on April 8, 1796, at the age of only 19, Gauss proved the
following theorem.

Theorem 6.1.3 (Quadratic Reciprocity Law). Suppose that p and q
are distinct odd primes. Then

(

p

q

)

= (−1) p−1
2 · q−1

2

(

q

p

)

.

Also
(−1

p

)

= (−1)(p−1)/2 and

(

2

p

)

=

{

1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8).

We will give two proofs of Gauss’s formula for
(

p
q

)

. The first very ele-

mentary proof is in Section 6.3, and the second more algebraic proof is in

Section 6.4. The assertion about
(

−1
p

)

will follow from Proposition 6.2.1

below. We only prove the assertion about
(

2
p

)

in Section 6.3 (see Proposi-

tion 6.3.4), but do not give a corresponding proof in Section 6.4.
As expected, in our example Gauss’s theorem implies that

(

5

p

)

= (−1)2· p−1
2

(p

5

)

=
(p

5

)

=

{

+1 if p ≡ 1, 4 (mod 5)

−1 if p ≡ 2, 3 (mod 5).

The following example illustrates how to answer questions like “is a a
square modulo b” using Theorem 6.1.3.

Example 6.1.4. Is 69 a square modulo 389? We have
(

69

389

)

=

(

3 · 23
389

)

=

(

3

389

)

·
(

23

389

)

= (−1) · (−1) = 1.

Here
(

3

389

)

=

(

389

3

)

=

(

2

3

)

= −1,

and
(

23

389

)

=

(

389

23

)

=

(

21

23

)

=

(−2
23

)

=

(−1
23

)(

2

23

)

= (−1) 23−1
2 · 1 = −1.

Thus 69 is a square modulo 389.
Though we know that 69 is a square modulo 389, we don’t know an

explicit x such that x2 ≡ 6 (mod 389)! This is similar to how we could
prove using Theorem 3.3.14 that certain numbers are composite without
knowing a factorization, except that it is easy in practice to find square
roots, as we’ll discuss in Section 6.5 and Example 6.5.1.
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6.2 Euler’s Criterion

Let p be an odd prime and a an integer not divisible by p. Euler used

the existence of primitive roots to show that
(

a
p

)

is congruent to a(p−1)/2

modulo p. We will use this fact repeatedly below in both proofs of Theo-
rem 6.1.3.

Proposition 6.2.1 (Euler’s Criterion). Then
(

a
p

)

= 1 if and only if

a(p−1)/2 ≡ 1 (mod p).

Proof. By Theorem 5.2.2, there is an integer g that has order p−1 modulo p,
so every integer coprime to p is congruent to a power of g. First suppose
that a is congruent to a perfect square modulo p, so

a ≡ (gr)2 ≡ g2r (mod p)

for some r. Then by Theorem 3.3.14

a(p−1)/2 ≡ g2r·
p−1
2 ≡ gr(p−1) ≡ 1 (mod p).

Conversely, suppose that a(p−1)/2 ≡ 1 (mod p). We have a ≡ gr (mod p)
for some integer r. Thus gr(p−1)/2 ≡ 1 (mod p), so

p− 1 | r(p− 1)/2

which implies that r is even. Thus a ≡ (gr/2)2 (mod p), so a is congruent
to a square modulo p.

Corollary 6.2.2. The equation x2 ≡ a (mod p) has no solution if and

only if a(p−1)/2 ≡ −1 (mod p). Thus
(

a
p

)

≡ a(p−1)/2 (mod p).

Proof. This follows from Proposition 6.2.1 and the fact that the polyno-
mial x2 − 1 has no roots besides +1 and −1 (which follows from Proposi-
tion 5.1.2).

Example 6.2.3. Suppose p = 11. By squaring each element of (Z/11)×, we
see that the squares modulo 11 are {1, 3, 4, 5, 9}. We compute a(p−1)/2 = a5

for each a ∈ (Z/11)× and get

15 = 1, 25 = −1, 35 = 1, 45 = 1, 55 = 1,

65 = −1, 75 = −1, 85 = −1, 95 = 1, 105 = −1.

Thus the a with a5 = 1 are {1, 3, 4, 5, 9}, just as Proposition 6.2.1 predicts.

Example 6.2.4. We determine whether or not 3 is a square modulo the
prime p = 726377359. Using a computer we find that

3(p−1)/2 ≡ −1 (mod 726377359).
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Thus 3 is not a square modulo p. This computation wasn’t difficult, but it
would have been tedious by hand. The law of quadratic reciprocity provides
a way to answer this questions that could easily be carried out by hand:

(

3

726377359

)

= (−1)(3−1)/2·(726377359−1)/2
(

726377359

3

)

= (−1) ·
(

1

3

)

= −1.

It is a general fact that if G is any abelian group and n is any integer, then
the map x 7→ xn is a homomorphism. Thus, in group-theoretic language,
Proposition 6.2.1 asserts that the map

(•
p

)

: (Z/p)× → {±1}

that sends a to
(

a
p

)

is a homomorphism of groups.

Proposition 6.2.5. The homomorphism
(

•
p

)

: (Z/p)× → {±1} is surjec-

tive.

Proof. If
(

•
p

)

is not surjective, then
(

a
p

)

= 1 for every a ∈ (Z/p)×. This

means that the squaring map a 7→ a2 on (Z/p)× is surjective. But −1 is in
the kernel of squaring and (Z/p)× is finite, so squaring is not surjective.

6.3 First Proof of Quadratic Reciprocity

Our first proof of quadratic reciprocity is elementary. The proof involves
keeping track of integer points in intervals. Proving Gauss’s lemma is the

first step; this lemma computes
(

a
p

)

in terms of the number of integers of

a certain type that lie in a certain interval. Next we prove Lemma 6.3.2,
which controls how the parity of the number of integer points in an interval
changes when an endpoint of the interval is changed. Then we prove that
(

a
p

)

only depends on p modulo 4a by applying Gauss’s lemma and keeping

careful track of intervals as they are rescaled and their endpoints changed.
Finally, in Section 6.3.2 we use some basic algebra to deduce the quadratic
reciprocity law using the tools we’ve just developed.

Lemma 6.3.1 (Gauss’s Lemma). Let p be an odd prime and let a be an
integer 6≡ 0 (mod p). Form the numbers

a, 2a, 3a, . . . ,
p− 1

2
a

and reduce them modulo p to lie in the interval (− p
2 ,

p
2 ). Let ν be the

number of negative numbers in the resulting set. Then
(

a

p

)

= (−1)ν .
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Proof. In defining ν, we expressed each number in

S =

{

a, 2a, . . . ,
p− 1

2
a

}

as congruent to a number in the set

{

1,−1, 2,−2, . . . , p− 1

2
,−p− 1

2

}

.

No number 1, 2, . . . , p−12 appears more than once, with either choice of sign,
because if it did then either two elements of S are congruent modulo p or
0 is the sum of two elements of S, and both events are impossible. Thus
the resulting set must be of the form

T =

{

ε1 · 1, ε2 · 2, . . . , ε(p−1)/2 ·
p− 1

2

}

,

where each εi is either +1 or −1. Multiplying together the elements of S
and of T , we see that

(1a) · (2a) · (3a) · · ·
(

p− 1

2
a

)

≡

(ε1 · 1) · (ε2 · 2) · · ·
(

ε(p−1)/2 ·
p− 1

2

)

(mod p),

so

a(p−1)/2 ≡ ε1 · ε2 · · · ε(p−1)/2 (mod p).

The lemma then follows from Proposition 6.2.1, since
(

a
p

)

= a(p−1)/2.

6.3.1 Euler’s Conjecture

For rational numbers a, b ∈ Q, let

(a, b) ∩ Z = {x ∈ Z : a ≤ x ≤ b}

be the set of integers between a and b. The following lemma will help us to
keep track of how many integers lie in certain intervals.

Lemma 6.3.2. Let a, b ∈ Q. Then for any integer n,

#((a, b) ∩ Z) ≡ #((a, b+ 2n) ∩ Z) (mod 2)

and

#((a, b) ∩ Z) ≡ #((a− 2n, b) ∩ Z) (mod 2),

provided that each interval involved in the congruence is nonempty.

The statement is illustrated in Figure 6.1. Note that if one of the intervals
is empty, then the statement is false; e.g., if (a, b) = (−1/2, 1/2) and n = −1
then #((a, b) ∩ Z) = 1 but #(a, b− 2) ∩ Z = 0.
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���� ���� ��

a b b+2n

even number of integers added to the interval

FIGURE 6.1. Illustration of Lemma 6.3.2

Proof. Since n > 0,

(a, b+ 2n) = (a, b) ∪ [b, b+ 2n),

where the union is disjoint. Recall that dxe denotes the least integer ≥ x.
There are 2n integers,

dbe, dbe+ 1, . . . , dbe+ 2n− 1,

in the interval [b, b + 2n), so the first congruence of the lemma is true in
this case. We also have

(a, b− 2n) = (a, b)\[b− 2n, b)

and [b− 2n, b) also contains exactly 2n integers, so the lemma is also true
when n is negative. The statement about # ((a− 2n, b) ∩ Z) is proved in a
similar manner.

The following proposition was conjectured by Euler, based on extensive
numerical evidence. Once we have proved this proposition, it will be easy
to deduce the quadratic reciprocity law.

Proposition 6.3.3 (Euler’s Conjecture). Let p be an odd prime and a
a positive integer with p - a.

1. The symbol
(

a
p

)

depends only on p modulo 4a.

2. If q is a prime with q ≡ −p (mod 4a), then
(

a
p

)

=
(

a
q

)

.

Proof. We will apply Lemma 6.3.1 to compute
(

a
p

)

. Let

S =

{

a, 2a, 3a, . . . ,
p− 1

2
a

}

and

I =

(

1

2
p, p

)

∪
(

3

2
p, 2p

)

∪ · · · ∪
((

b− 1

2

)

p, bp

)

,

where b = 1
2a or 12 (a− 1), whichever is an integer. We check that every

element of S that reduces to something in the interval (− p
2 , 0) lies in I.

This is clear if b = 1
2a < p−1

2 a. If b = 1
2 (a − 1), then bp + p

2 >
p−1
2 a, so

((b − 1
2 )p, bp) is the last interval that could contain an element of S that

reduces to (− p
2 , 0). Note that the integer endpoints of I are not in S, since
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those endpoints are divisible by p, but no element of S is divisible by p.
Thus, by Lemma 6.3.1,

(

a

p

)

= (−1)#(S∩I).

To compute #(S ∩ I), first rescale by a to see that

#(S ∩ I) = #

(

Z ∩ 1

a
I

)

,

where

1

a
I =

(

( p

2a
,
p

a

)

∪
(

3p

2a
,
2p

a

)

∪ · · · ∪
(

(2b− 1)p

2a
,
bp

a

))

.

Write p = 4ac+ r, and let

J =

(

( r

2a
,
r

a

)

∪
(

3r

2a
,
2r

a

)

∪ · · · ∪
(

(2b− 1)r

2a
,
br

a

))

.

The only difference between I and J is that the endpoints of intervals are
changed by addition of an even integer. By Lemma 6.3.2,

ν = #

(

Z ∩ 1

a
I

)

≡ #(Z ∩ J) (mod 2).

Thus
(

a
p

)

= (−1)ν depends only on r, i.e., only on p modulo 4a.

If q ≡ −p (mod 4a), then the only change in the above computation is
that r is replaced by 4a− r. This changes 1aI into

K =
(

2− r

2a
, 4− r

a

)

∪
(

6− 3r

2a
, 8− 2r

a

)

∪ · · ·

∪
(

4b− 2− (2b− 1)r

2a
, 4b− br

a

)

.

Thus K is the same as − 1aI, except even integers have been added to the
endpoints. By Lemma 6.3.2,

#(K ∩ Z) ≡ #

((

1

a
I

)

∩ Z
)

(mod 2),

so
(

a
p

)

=
(

a
q

)

, which completes the proof.

The following more careful analysis in the special case when a = 2 helps
illustrate the proof of the above lemma, and is frequently useful in compu-
tations.

Proposition 6.3.4. Let p be an odd prime. Then

(

2

p

)

=

{

1 if p ≡ ±1 (mod 8)

−1 if p ≡ ±3 (mod 8).
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Proof. When a = 2, the set S = {a, 2a, . . . , 2 · p−12 } is

{2, 4, 6, . . . , p− 1}.

We must count the parity of the number of elements of S that lie in the
interval I = ( p2 , p). Writing p = 8c+ r, we have

# (I ∩ S) = #

(

1

2
I ∩ Z

)

= #
((p

4
,
p

2

)

∩ Z
)

= #
((

2c+
r

4
, 4c+

r

2

)

∩ Z
)

≡ #
((r

4
,
r

2

)

∩ Z
)

(mod 2),

where the last equality comes from Lemma 6.3.2. The possibilities for r are
1, 3, 5, 7. When r = 1, the cardinality is 0, when r = 3, 5 it is 1, and when
r = 7 it is 2.

6.3.2 Proof of Quadratic Reciprocity

It is now straightforward to deduce the quadratic reciprocity law.

First Proof of Theorem 6.1.3. First suppose that p ≡ q (mod 4). By swap-
ping p and q if necessary, we may assume that p > q, and write p− q = 4a.
Since p = 4a+ q,

(

p

q

)

=

(

4a+ q

q

)

=

(

4a

q

)

=

(

4

q

)(

a

q

)

=

(

a

q

)

,

and
(

q

p

)

=

(

p− 4a

p

)

=

(−4a
p

)

=

(−1
p

)

·
(

a

p

)

.

Proposition 6.3.3 implies that
(

a
q

)

=
(

a
p

)

, since p ≡ q (mod 4a). Thus

(

p

q

)

·
(

q

p

)

=

(−1
p

)

= (−1) p−1
2 = (−1) p−1

2 · q−1
2 ,

where the last equality is because p−1
2 is even if and only if q−1

2 is even.
Next suppose that p 6≡ q (mod 4), so p ≡ −q (mod 4). Write p+ q = 4a.

We have
(

p

q

)

=

(

4a− q

q

)

=

(

a

q

)

, and

(

q

p

)

=

(

4a− p

p

)

=

(

a

p

)

.

Since p ≡ −q (mod 4a), Proposition 6.3.3 implies that
(

p
q

)

=
(

q
p

)

. Since

(−1) p−1
2 · q−1

2 = 1, the proof is complete.

Example 6.3.5. Is 3 a square modulo p = 726377359? We proved that the
answer is “no” in the previous lecture by computing 3p−1 (mod p). It’s
easier to prove that the answer is no using Theorem 6.1.3:

(

3

726377359

)

= (−1)1· 7263773582 ·
(

726377359

3

)

= −
(

1

3

)

= −1.
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FIGURE 6.2. Gauss sum g2 for p = 5

6.4 A Proof of Quadratic Reciprocity Using Gauss
Sums

In this section we present a beautiful proof of Theorem 6.1.3 using algebraic
identities satisfied by sums of “roots of unity”. The objects we introduce
in the proof are of independent interest, and provide a powerful tool to
prove higher-degree analogues of quadratic reciprocity. (For more on higher
reciprocity see [34]. See also Section 6 of [34] on which the proof below is
modeled.)

Recall that a complex number is a number of the form a+b
√
−1, where a

and b are real numbers. The set of complex numbers forms a field, and this
field is algebraically closed, so every polynomial f(x) ∈ C[x] has a zero in
C.

Definition 6.4.1 (Root of Unity). An nth root of unity is a complex
number ζ such that ζn = 1. A root of unity is a primitive nth root of unity
if n is the smallest positive integer such that ζn = 1.

Since for θ a real number, eiθ = cos(θ) + i sin(θ), the complex number
e2πi/n is a primitive nth root unity. For the rest of this section, fix a prime p
and a primitive pth root ζ of unity, e.g., ζ = e2πi/p.

Definition 6.4.2 (Gauss Sum). The Gauss sum associated to an inte-
ger a is

ga =

p−1
∑

n=0

(

n

p

)

ζan.

(Note that p is implicit in the definition of ga. If we were to change p, then
the Gauss sum ga associated to a would be different.)

Figure 6.2 illustrates the Gauss sum g2 for p = 5. The Gauss sum is got
by adding the points on the unit circle, with signs as indicated, to obtain
the real number −

√
5. This suggests the following proposition, whose proof

will require some work.

Proposition 6.4.3. For any a not divisible by p,

g2a = (−1)(p−1)/2p.

In order to prove the proposition, we introduce a few lemmas.
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Lemma 6.4.4. For any integer a,

p−1
∑

n=0

ζan =

{

p, if a ≡ 0 (mod p)

0, otherwise.

Proof. If a ≡ 0 (mod p), then ζa = 1, so the sum equals the number of
summands, which is p. If a 6≡ 0 (mod p), we use the telescopic identity
xp − 1 = (x − 1)(xp−1 + · · · + x + 1) with x = ζa. We have ζa 6= 1, so
ζa − 1 6= 0 and

p−1
∑

n=0

ζan =
ζap − 1

ζa − 1
= 0.

Lemma 6.4.5. Let x and y be integers and let δ(x, y) be 1 if x ≡ y (mod p)
or 0 otherwise. Then

p−1
∑

n=0

ζ(x−y)n = p · δ(x, y).

Proof. This follows immediately from Lemma 6.4.4 by setting a = x−y.

Lemma 6.4.6. Let p be a prime. Then

g0 =

p−1
∑

n=0

(

n

p

)

= 0.

Proof. By Proposition 6.2.5, the map

(•
p

)

: (Z/p)× → {±1}

is a surjective homomorphism of groups. Thus exactly half the elements of
(Z/p)× map to +1 and half map to −1 (the subgroup that maps to +1 has

index 2). Since
(

0
p

)

= 0, the sum in the statement of the lemma is 0.

Lemma 6.4.7. Let p be a prime and a any integer. Then

ga =

(

a

p

)

g1.

Proof. When a ≡ 0 (mod p) the lemma follows immediately from Lemma 6.4.6,
so suppose that a 6≡ 0 (mod p). Then

(

a

p

)

ga =

(

a

p

) p−1
∑

n=0

(

n

p

)

ζan =

p−1
∑

n=0

(

an

p

)

ζan =

p−1
∑

m=0

(

m

p

)

ζm = g1.

Now multiply both sides by
(

a
p

)

and use that
(

a
p

)2

= 1.

We now have enough lemmas to prove Proposition 6.4.3.
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Proof of Proposition 6.4.3. We evaluate the sum
∑p−1

a=0 gag−a in two dif-
ferent ways. By Lemma 6.4.7, since a 6≡ 0 (mod p) we have

gag−a =

(

a

p

)

g1

(−a
p

)

g1 =

(−1
p

)(

a

p

)2

g21 = (−1)(p−1)/2g21 ,

where the last step follows from Proposition 6.2.1 and the fact that
(

a
p

)

∈
{±1}. Thus

p−1
∑

a=0

gag−a = (p− 1)(−1)(p−1)/2g21 . (6.1)

On the other hand, by definition

gag−a =

p−1
∑

n=0

(

n

p

)

ζan ·
p−1
∑

m=0

(

m

p

)

ζ−am

=

p−1
∑

n=0

p−1
∑

m=0

(

n

p

)(

m

p

)

ζanζ−am

=

p−1
∑

n=0

p−1
∑

m=0

(

n

p

)(

m

p

)

ζan−am.

Thus by Lemma 6.4.5,

p−1
∑

a=0

gag−a =

p−1
∑

a=0

p−1
∑

n=0

p−1
∑

m=0

(

n

p

)(

m

p

)

ζan−am

=

p−1
∑

n=0

p−1
∑

m=0

(

n

p

)(

m

p

) p−1
∑

a=0

ζan−am

=

p−1
∑

n=0

p−1
∑

m=0

(

n

p

)(

m

p

)

pδ(n,m)

=

p−1
∑

n=0

(

n

p

)2

p = p(p− 1).

Equating (6.1) and the above equality then canceling (p− 1) shows that

g21 = (−1)(p−1)/2p.

Since a 6≡ 0 (mod p), we have
(

a
p

)2

= 1, so by Lemma 6.4.7,

g2a =

(

a

p

)2

g21 = g21 ,

and the proposition is proved.
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6.4.1 Proof of Quadratic Reciprocity

We are now in a position to prove Theorem 6.1.3 using Gauss sums.

Proof. Let q be an odd prime with q 6= p. Set p∗ = (−1)(p−1)/2p and recall

that Proposition 6.4.3 asserts that p∗ = g2, where g = g1 =
∑p−1

n=0

(

n
p

)

ζn

is a Gauss sum with ζ = e2πi/p a primitive pth root of unity.
Proposition 6.2.1 trivially implies that

(p∗)(q−1)/2 ≡
(

p∗

q

)

(mod q).

We have gq−1 = (g2)(q−1)/2 = (p∗)(q−1)/2, so multiplying both sides of the
displayed equation by g yields a congruence

gq ≡ g

(

p∗

q

)

(mod q). (6.2)

But what does this congruence mean, given that gq is not an integer?
In Exercise 8, you will prove that every Z-linear combination of powers
of ζ can be written uniquely as a Z-linear combination of elements of
B = {1, ζ, . . . , ζp−2}. The above congruence means that if we write gq and

g
(

p∗

q

)

as Z-linear combinations of the elements of B then the coefficients

of the linear combination are congruent modulo q.
Another useful property of congruences, which you will prove in Exer-

cise 9, is that if x and y are two Z-linear combinations of powers of ζ, then
(x+ y)q ≡ xq + yq (mod q). Applying this, we see that

gq =

(

p−1
∑

n=0

(

n

p

)

ζn

)q

≡
p−1
∑

n=0

(

n

p

)q

ζnq ≡
p−1
∑

n=0

(

n

p

)

ζnq ≡ gq (mod q).

By Lemma 6.4.7,

gq ≡ gq ≡
(

q

p

)

g (mod q).

Combining this with (6.2) yields

(

q

p

)

g ≡
(

p∗

q

)

g (mod q).

Since g2 = p∗ and p 6= q, we can cancel g from both sides to find that
(

q
p

)

≡
(

p∗

q

)

(mod q). Since both residue symbols are ±1 and q is odd, it

follows that
(

q
p

)

=
(

p∗

q

)

. Finally, we note using Proposition 6.2.1 that

(

p∗

q

)

=

(

(−1)(p−1)/2p
q

)

=

(−1
q

)(p−1)/2(
p

q

)

= (−1)
q−1
2 · p−1

2 ·
(

p

q

)

.
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6.5 How To Find Square Roots

After all this theory, we return in this section to the computational question
of computing square roots.

One of the first things a school child learns in their algebra course is
the quadratic formula, which asserts that the solutions to the quadratic
equation

ax2 + bx+ c = 0 (with a 6= 0)

are

x =
−b±

√
b2 − 4ac

2a
,

as one can see, e.g., by substituting the formula on the right back into the
quadratic equation.

In school, a 6= 0, b, and c are typically chosen to be real or complex
numbers. We’re grown up now, so let p be an odd prime, and suppose
instead that a, b, c ∈ Z/p. Then the quadratic formula still gives solutions
to ax2+ bx+ c = 0, and using Proposition 5.1.1 we can see that it gives all
of them.

Using Theorem 6.1.3, we can decide whether or not b2 − 4ac is a perfect
square, and hence whether or not ax2 + bx+ c = 0 has a solution in Z/p.
If b2 − 4ac is a perfect square, Theorem 6.1.3 says nothing about finding
an actual square root. Also, note that for this problem we do not need
quadratic reciprocity; in practice to decide whether an element of Z/p is a
perfect square Proposition 6.2.1 is fast, in light of Section 3.5.

Suppose a ∈ Z/p is a nonzero quadratic residue. If p ≡ 3 (mod 4) then

b = a
p+1
4 is a square root of a because

b2 = a
p+1
2 = a

p−1
2 +1 = a

p−1
2 · a =

(

a

p

)

· a = a.

There is no known (published) deterministic polynomial-time algorithm
to compute a square root of a when p ≡ 1 (mod 4). The following is a
standard probabilistic algorithm to compute a square root of a. Let R be
the ring (Z/p)[x]/(x2 − a). Thus

R = {u+ vx : u, v ∈ Z/p}
with

(u+ vx)(z + wx) = (uz + awv) + (uw + vz)x.

Let b and c be the square roots of a (we can’t compute b and c at this
stage, but we can consider them in order to deduce an algorithm to find
them). Then by a generalization of the Chinese Remainder Theorem, there
is a ring isomorphism

ϕ : R −→ Z/p× Z/p
given by ϕ(u+vx) = (u+vb, u+vc). Let z be a random element of (Z/p)×

and let u+vx = (1+zx)
p−1
2 . If v 6= 0 we can quickly find b and c as follows.

The quantity u+ vb is a (p− 1)/2th power in Z/p, so it equals either 0, 1,
or −1. Thus b = −u/v, (1−u)/v, or (−1−u)/v. Since we know u and v we
can try each of −u/v, (1− u)/v, and (−1− u)/v and see which is a square
root of a.
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Example 6.5.1. Continuing example 6.1.4, we find a square root of 69 mod-
ulo 389. We apply the algorithm described above in the case p ≡ 1 (mod 4).
We first choose the random element 1+24x, and find that (1+24x)194 = −1.
The coefficient of x in the power is 0, so we try again. This time we have
(1 + 51x)194 = 239x = u + vx. The inverse of 239 in Z/389 is 153, so we
consider the following three possibilities for a square root of 69:

−u
v
= 0

1− u

v
= 153 − 1− u

v
= −153.

Thus 153 and −153 are the square roots of 69 in Z/389.
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Exercises

6.1 Calculate the following symbols by hand:
(

3
97

)

,
(

5
389

)

,
(

2003
11

)

, and
(

5!
7

)

.

6.2 Prove that for p ≥ 5 prime,

(

3

p

)

=

{

1 if p ≡ 1, 11 (mod 12),

−1 if p ≡ 5, 7 (mod 12).

6.3 Use the fact that (Z/p)× is cyclic to give a direct proof that
(

−3
p

)

= 1

when p ≡ 1 (mod 3). [Hint: There is an c ∈ (Z/p)× of order 3. Show
that (2c+ 1)2 = −3.]

6.4 If p ≡ 1 (mod 5), show directly that
(

5
p

)

= 1 by the method of

Exercise 3. [Hint: Let c ∈ (Z/p)× be an element of order 5. Show
that (c+ c4)2 + (c+ c4)− 1 = 0, etc.]

6.5 For which primes p is

p−1
∑

a=1

(

a

p

)

= 0?

6.6 How many natural numbers x < 213 satisfy the equation

x2 ≡ 5 (mod 213 − 1)?

(You may assume that 213 − 1 is prime.)

6.7 Find the natural number x < 97 such that x ≡ 448 (mod 97). (Note
that 97 is prime.)

6.8 Let p be a prime and let ζ be a primitive pth root of unity. Prove that
every Z-linear combination of powers of ζ can be written uniquely as
a Z-linear combination of elements of B = {1, ζ, . . . , ζp−2}. [Hint:
ζp− 1 = 0, so ζp−1+ · · ·+ ζ +1 = 0, so ζp−1 = −(ζp−2+ · · ·+ ζ +1).
Next prove that the polynomial xp−1 + · · · + x + 1 does not factor
over Q.]

6.9 Let p be a prime and let ζ be a primitive pth root of unity. Suppose
that x and y are Z-linear combinations of powers of ζ. Prove that
(x+ y)p ≡ xp + yp (mod p).

6.10 Formulate an analogue of quadratic reciprocity for
(

a
q

)

but without

the restriction that q be a prime. By “analogue of quadratic reci-
procity”, I mean an easy way to tell whether or not a is a square
modulo q. [Hint: Use Theorem 3.4.2 to reduce to the case where q is
a prime power. Prove that if p is an odd prime that doesn’t divide a
then a is a square modulo p if and only if a is a square modulo pn for
any positive n.]
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7
Continued Fractions

A continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

where the ai are real numbers and ai > 0 for i ≥ 1; the expression may or
may not go on indefinitely. We denote the value of this continued fraction
by

[a0, a1, a2, . . .].

For example,

[1, 2] = 1 +
1

2
=

3

2
,

[3, 7, 15, 1, 293] = 3 +
1

7 +
1

15 +
1

1 +
1

293

=
104348

33215
= 3.1415926539214210447087159 . . . ,
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and

[2, 1, 2, 1, 1, 4, 1, 1, 6] = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

1 +
1

1 +
1

6

=
1264

465
= 2.7182795698924731182795698 . . .

(The second two examples were chosen to foreshadow that continue frac-
tions can be used to obtain good rational approximations to numbers.)

Continued fractions have many applications, from the abstract to the
concrete. For example, they are useful in finding explicit solutions to Pell’s
equation x2−dy2 = 1, they give good rational approximations to irrational
numbers, and provide a superb computational way to recognize a decimal
approximation to a rational number. Continued fractions also suggest a
sense in which e might be “less transcendental” than π (see Example 7.2.3
and Section 7.3).

There are many places to read about continued fractions, including [31,
Ch. X], [9, §13.3], and [35].

In Section 7.1 we study continued fractions [a0, a1, . . . , an] of finite length
and lay the foundations for our later investigations. In Section 7.2 we give
the continued fraction algorithm, which associates to a real number x a se-
quence a0, a1, . . . of integers such that x = limn→∞[a0, a1, . . . , an]. We also
prove that if a0, a1, . . . is any infinite sequence of positive integers, then the
sequence cn = [a0, a1, . . . , an] converges; more generally, we prove that if
the an are arbitrary positive real numbers and

∑∞
n=0 an diverges then (cn)

converges. In Section 7.4, we prove that a continued fraction with ai ∈ Z
is (eventually) periodic if and only if its value is a non-rational root of a
quadratic polynomial, then discuss our extreme ignorance about continued
fractions of roots of irreducible polynomials of degree greater than 2. In
Section 7.5 we conclude the chapter with applications of continued frac-
tions to recognizing approximations to rational numbers and solving Pell’s
equation x2 − dy2 = 1.

7.1 Finite Continued Fractions

This section is about continued fractions of finite length, i.e., of the form
[a0, a1, . . . , an] for some n ≥ 0. We give a recursive definition of numbers
pn and qn such that

[a0, a1, . . . , an] =
pn
qn
,

and a formula for the determinants of the 2 × 2 matrices
( pn pn−1
qn qn−1

)

and
( pn pn−2
qn qn−2

)

. We will repeatedly use the determinant formulas to deduce prop-
erties of the sequence of partial convergents [a0, . . . , ak], and the Euclidean
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algorithm to prove that every rational number is represented by a continued
fraction.

Definition 7.1.1. A finite continued fraction is an expression

a0 +
1

a1 +
1

a2 +
1

· · ·+ 1
an

,

where each am is a real number and am > 0 for all m ≥ 1. If the am are
all integers, we say that the continued fraction is integral.

To get a feeling for continued fractions, observe that

[a0] = a0,

[a0, a1] = a0 +
1

a1
=
a0a1 + 1

a1
,

[a0, a1, a2] = a0 +
1

a1 +
1

a2

=
a0a1a2 + a0 + a2

a1a2 + 1
.

Also,

[a0, a1, . . . , an−1, an] = [a0, a1, . . . , an−2, an−1 +
1

an
]

= a0 +
1

[a1, . . . , an]

= [a0, [a1, . . . , an]].

7.1.1 Partial Convergents

Fix a continued fraction [a0, . . . , an].

Definition 7.1.2. For 0 ≤ m ≤ n, the mth convergent of the continued
fraction [a0, . . . , an] is [a0, . . . , am].

For each n with −2 ≤ m ≤ n, define real numbers pm and qm as follows:

p−2 = 0, p−1 = 1, p0 = a0, · · · pm = ampm−1 + pm−2,
q−2 = 1, q−1 = 0, q0 = 1, · · · qm = amqm−1 + qm−2.

Proposition 7.1.3. For n ≥ 0 we have [a0, . . . , an] =
pn
qn
.

Proof. We use induction. We already verified the assertion when n = 0, 1.
Suppose the proposition is true for all continued fractions of length n− 1.
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Then

[a0, . . . , an] = [a0, . . . , an−2, an−1 +
1

an
]

=

(

an−1 +
1
an

)

pn−2 + pn−3
(

an−1 +
1
an

)

qn−2 + qn−3

=
(an−1an + 1)pn−2 + anpn−3
(an−1an + 1)qn−2 + anqn−3

=
an(an−1pn−2 + pn−3) + pn−2
an(an−1qn−2 + qn−3) + qn−2

=
anpn−1 + pn−2
anqn−1 + qn−2

=
pn
qn
.

Proposition 7.1.4. Suppose n ≤ m.

1. The determinant of

(

pn pn−1
qn qn−1

)

is (−1)n−1; equivalently,

pn
qn
− pn−1
qn−1

= (−1)n−1 · 1

qnqn−1
.

2. The determinant of

(

pn pn−2
qn qn−2

)

is (−1)nan; equivalently,

pn
qn
− pn−2
qn−2

= (−1)n · an
qnqn−2

.

Proof. For the first statement, we proceed by induction. The case n = 0
holds because the determinant of

(

a0 1
1 0

)

is −1 = (−1)−1. Suppose the
statement is true for n− 1. Then

pnqn−1 − qnpn−1 = (anpn−1 + pn−2)qn−1 − (anqn−1 + qn−2)pn−1

= pn−2qn−1 − qn−2pn−1

= −(pn−1qn−2 − pn−2qn−1)

= −(−1)n−2 = (−1)n−1.

This completes the proof of the first statement. For the second statement,

pnqn−2 − pn−2qn = (anpn−1 + pn−2)qn−2 − pn−2(anqn−1 + qn−2)

= an(pn−1qn−2 − pn−2qn−1)

= (−1)nan.

Corollary 7.1.5. The fraction
pn
qn

is in lowest terms.

Proof. If p | pn and p | qn then p | (−1)n−1.
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7.1.2 How the Convergents Converge

Let [a0, . . . , am] be a continued fraction and for n ≤ m let

cn = [a0, . . . , an] =
pn
qn

denote the nth convergent.

Proposition 7.1.6. The even convergents c2n increase strictly with n,
and the odd convergents c2n+1 decrease strictly with n. Moreover, the odd
convergents c2n+1 are greater than all of the even convergents.

Proof. For n ≥ 1 the an are positive, so the qn are all positive. By Propo-
sition 7.1.4, for n ≥ 2,

cn − cn−2 = (−1)n · an
qnqn−2

,

which proves the first claim.
Next, Proposition 7.1.4 implies that for n ≥ 1,

cn − cn−1 = (−1)n−1 · 1

qnqn−1

has the sign of (−1)n−1, so that c2n+1 > c2n. Thus if there exists r, n
such that c2n+1 < c2r, then r 6= n. If r < n, then c2n+1 < c2r < c2n, a
contradiction. If r > n, then c2r+1 < c2n+1 < c2r, also a contradiction.

7.1.3 Every Rational Number is Represented

Proposition 7.1.7. Every rational number is represented by a continued
fraction (but not uniquely).

Proof. Without loss of generality we may assume that the rational num-
ber is a/b, with b > 1 and gcd(a, b) = 1. the Euclidean algorithm (Algo-
rithm 3.1.8) gives:

a = b · a0 + r1, 0 < r1 < b

b = r1 · a1 + r2, 0 < r2 < r1

· · ·
rn−2 = rn−1 · an−1 + rn, 0 < rn < rn−1

rn−1 = rn · an + 0.

Note that ai > 0 for i > 0 (also rn = 1 since gcd(a, b) = 1). Rewrite the
equations as follows:

a/b = a0 + r1/b = a0 + 1/(b/r1),

b/r1 = a1 + r2/r1 = a1 + 1/(r1/r2),

r1/r2 = a2 + r3/r2 = a2 + 1/(r2/r3),

· · ·
rn−1/rn = an.
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It follows that
a

b
= [a0, a1, . . . , an].

A rational number can be represented in more than one way since, for
example, 2 = [1, 1] = [2].

7.2 Infinite Continued Fractions

This section begins with the continued fraction algorithm, which associates
to a real number x a sequence a0, a1, . . . of integers. After giving several
examples, we prove that x = limn→∞[a0, a1, . . . , an] by proving that the
odd and even partial convergents become arbitrarily close to each other. We
also show that if a0, a1, . . . is any infinite sequence of positive integers, then
the sequence of cn = [a0, a1, . . . , an] converges, and, more generally, if an
is an arbitrary sequence such that

∑∞
n=0 an diverges then (cn) converges.

7.2.1 The Continued Fraction Algorithm

Let x ∈ R and write
x = a0 + t0

with a0 ∈ Z and 0 ≤ t0 < 1. If t0 6= 0, write

1

t0
= a1 + t1

with a1 ∈ N and 0 ≤ t1 < 1. Thus t0 = 1
a1+t1

= [0, a1 + t1], which is a
(non-integral) continued fraction expansion of t0. Continue in this manner
so long as tn 6= 0 writing

1

tn
= an+1 + tn+1

with an+1 ∈ N and 0 ≤ tn+1 < 1. This process, which associates to a
real number x the sequence of integers a0, a1, a2, . . ., is called the continued
fraction algorithm.

Example 7.2.1. Let x = 8
3 . Then x = 2 + 2

3 , so a0 = 2 and t0 = 2
3 . Then

1
t0

= 3
2 = 1 + 1

2 , so a1 = 1 and t1 =
1
2 . Then

1
t1

= 2, so a2 = 2, t2 = 0, and
the sequence terminates. Notice that

8

3
= [2, 1, 2],

so the continued fraction algorithm produces the continued fraction of 83 .

Example 7.2.2. Let x = 1+
√
5

2 . Then

x = 1 +
−1 +

√
5

2
,

so a0 = 1 and t0 =
−1+

√
5

2 . We have

1

t0
=

2

−1 +
√
5
=
−2− 2

√
5

−4 =
1 +

√
5

2
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so again a1 = 1 and t1 =
−1+

√
5

2 . Likewise, an = 1 for all n. As we will see
below, the following crazy-looking equality makes sense.

1 +
√
5

2
= 1 +

1

1 + 1
1+ 1

1+ 1
1+ 1

1+···

Example 7.2.3. Suppose x = e = 2.71828182 . . .. Applying the continued
fraction algorithm, we have

a0, a1, a2, . . . = 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .

We have

[a0, a1, a2, a3, a4, a5] =
87

32
= 2.71875

which is a good rational approximation to e. The continued fraction of e
obeys a simple pattern, a fact we will prove in Section 7.3.

Let’s do the same thing with π = 3.14159265358979 . . .: We have

a0, a1, a2, . . . = 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, . . .

The first few partial convergents are

3,
22

7
,
333

106
,
355

113
,
103993

33102
, · · ·

These are all good rational approximations to π; for example,

103993

33102
= 3.14159265301 . . . .

Notice that the continued fraction of e exhibits a nice pattern (which
we will prove in Section 7.3, whereas the continued fraction of π exhibits
no obvious pattern. In some vague sense, this suggests that π is “more
transcendental” than e.

7.2.2 Convergence of Infinite Continued Fractions

Lemma 7.2.4. For every n such that an is defined, we have

x = [a0, a1, . . . , an + tn],

and if tn 6= 0 then x = [a0, a1, . . . , an,
1
tn
].

Proof. Use induction. The statements are both true when n = 0. If the
second statement is true for n− 1, then

x = [a0, a1, . . . , an−1,
1

tn−1
]

= [a0, a1, . . . , an−1, an + tn]

= [a0, a1, . . . , an−1, an,
1

tn
].

Similarly, the first statement is true for n if it is true for n− 1.
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Theorem 7.2.5. Let a0, a1, a2, . . . be a sequence of integers such that an >
0 for all n ≥ 1, and for each n ≥ 0, set cn = [a0, a1, . . . an]. Then lim

n→∞
cn

exists.

Proof. For anym ≥ n, the number cn is a partial convergent of [a0, . . . , am].
By Proposition 7.1.6 the even convergents c2n form a strictly increasing
sequence and the odd convergents c2n+1 form a strictly decreasing sequence.
Moreover, the even convergents are all ≤ c1 and the odd convergents are
all ≥ c0. Hence α0 = limn→∞ c2n and α1 = limn→∞ c2n+1 both exist and
α0 ≤ α1. Finally, by Proposition 7.1.4

|c2n − c2n−1| =
1

q2n · q2n−1
≤ 1

2n(2n− 1)
→ 0,

so α0 = α1.

We define

[a0, a1, . . .] = lim
n→∞

cn.

Example 7.2.6. We illustrate the theorem with x = π. As in the proof of
Theorem 7.2.5, let cn be the nth partial convergent to π. The cn with n
odd converge down to π

c1 = 3.1428571 . . . , c3 = 3.1415929 . . . , c5 = 3.1415926 . . .

whereas the cn with n even converge up to π

c2 = 3.1415094 . . . , c4 = 3.1415926 . . . , c6 = 3.1415926 . . . .

Theorem 7.2.7. Let a0, a1, a2, . . . be a sequence of real numbers such that
an > 0 for all n ≥ 1, and for each n ≥ 0, set cn = [a0, a1, . . . an]. Then
lim
n→∞

cn exists if and only if the sum
∑∞

n=0 an diverges.

Proof. We only prove that if
∑

an diverges then limn→∞ cn exists. A proof
of the converse can be found in [66, Ch. 2, Thm. 6.1].

Let qn be the sequence of “denominators” of the partial convergents, as
defined in Section 7.1.1, so q−2 = 1, q−1 = 0, and for n ≥ 0,

qn = anqn−1 + qn−2.

As we saw in the proof of Theorem 7.2.5, the limit limn→∞ cn exists pro-
vided that the sequence (qnqn−1) diverges to infinity, in the sense that for
every M there exists N for which qnqn−1 > M for all n > N .

For n even,

qn = anqn−1 + qn−2

= anqn−1 + an−2qn−3 + qn−4

= anqn−1 + an−2qn−3 + an−4qn−5 + qn−6

= anqn−1 + an−2qn−3 + · · ·+ a2q1 + q0
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and for n odd,

qn = anqn−1 + an−2qn−3 + · · ·+ a1q0 + q−1.

Since an > 0 for n > 0, the sequence (qn) is increasing; also q0 = a0q−1 +
q−2 = 1. Thus qi ≥ 1 for all i ≥ 0. Applying this fact to the above expres-
sions for qn, we see that for n even

qn ≥ an + an−2 + · · ·+ a2,

and for n odd

qn ≥ an + an−2 + · · ·+ a1.

If
∑

an diverges, then at least one of
∑

a2n or
∑

a2n+1 must diverge.
The above inequalities then imply that at least one of the sequences (q2n)
or (q2n+1) diverge to infinity. Since (qn) is an increasing sequence, it follows
that (qnqn−1) diverges to infinity.

Example 7.2.8. Let an = 1
n log(n) for n ≥ 2 and a0 = a1 = 0. By the

integral test,
∑

an diverges, so by Theorem 7.2.7 the continued fraction
[a0, a1, a2, . . .] converges. This convergence is very slow, since e.g.

[a0, a1, . . . , a9999] = 0.5750039671012225425930 . . .

yet

[a0, a1, . . . , a10000] = 0.7169153932917378550424 . . . .

Theorem 7.2.9. Let x ∈ R be a real number. Then

x = [a0, a1, a2, . . .],

where a0, a1, a2, . . . is the sequence produced by the continued fraction algo-
rithm.

Proof. If the sequence is finite then some tn = 0 and the result follows by
Lemma 7.2.4. Suppose the sequence is infinite. By Lemma 7.2.4,

x = [a0, a1, . . . , an,
1

tn
].

By Proposition 7.1.3 (which we apply in a case when the partial quotients
of the continued fraction are not integers!), we have

x =

1

tn
· pn + pn−1

1

tn
· qn + qn−1

.
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Thus if cn = [a0, a1, . . . , an], then

x− cn = x− pn
qn

=
1
tn
pnqn + pn−1qn − 1

tn
pnqn − pnqn−1

qn

(

1
tn
qn + qn−1

) .

=
pn−1qn − pnqn−1

qn

(

1
tn
qn + qn−1

)

=
(−1)n

qn

(

1
tn
qn + qn−1

) .

Thus

|x− cn| =
1

qn

(

1
tn
qn + qn−1

)

<
1

qn(an+1qn + qn−1)

=
1

qn · qn+1
≤ 1

n(n+ 1)
→ 0.

(In the inequality we use that an+1 is the integer part of 1
tn
, and is hence

≤ 1
tn
< 1, since tn < 1.)

The following corollary follows from the proof of the above theorem.

Corollary 7.2.10. Let a0, a1, . . . define an integral continued fraction, and
let x = [a0, a1, . . .] ∈ R be its value. Then for all m,

∣

∣

∣

∣

x− pm
qm

∣

∣

∣

∣

<
1

qm · qm+1
.

Proposition 7.2.11. If x is a rational number then the sequence a0, a1, a2, . . .
produced by the continued fraction algorithm terminates.

Proof. Let [b0, b1, . . . , bm] be the continued fraction representation of x that
we obtain using the Euclidean algorithm. Then

x = b0 + 1/[b1, . . . , bm].

If [b1, . . . , bm] = 1 then m = 1 and b1 = 1, which will not happen using
the Euclidean algorithm, since it would give [b0 + 1] for the continued
fraction of the integer b0 + 1. Thus [b1, . . . , bm] > 1, so in the continued
fraction algorithm we choose a0 = b0 and t0 = 1/[b1, . . . , bm]. Repeating
this argument enough times proves the claim.
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7.3 The Continued Fraction of e

While working with the transcendental number e, Euler wrote down its
continued fraction expansion. He observed a pattern and noted that it
seemed to continue, but did not publish a proof, which suggests that finding
a proof might not be trivial. The statement appears to be much more well
known than its proof. The continued fraction representation of e is treated
in [49], but the proof requires substantial background from elsewhere in the
text.

The proof below draws on a proof in the short paper [17], which we have
modified and slightly extended. According to Cohn, the idea of this proof
is originally due to Hermite.

7.3.1 Preliminaries

If we apply the continued fraction algorithm to e = 2.718281828 . . ., we
have

[a0, a1, a2, . . .] = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .].

In this paper, we prove that the pattern above persists in the continued
fraction expansion of e, that is, we will demonstrate a method of comput-
ing this particular aperiodic infinite continued fraction, and show that it
converges to e.

First, we’ll write the sequence in a slightly altered form. Instead of writing
[2, 1, 2, 1, 1, 4, . . .], we can start the sequence of coefficients [1, 0, 1, 1, 2, 1, 1, 4, . . .]
to make the pattern the same throughout. Here are the recurrences for the
numerators and denominators of the convergents given by this new se-
quence. Using ri as a stand-in for pi or qi, we have

r3n = r3n−1 + r3n−2

r3n−1 = r3n−2 + r3n−3

r3n−2 = 2(n− 1)r3n−3 + r3n−4.

Our first goal is to collapse these three recurrences into one recurrence
that only makes mention of r3n, r3n−3, and r3n−6. To achieve this, we have
a little bit of algebraic manipulation on our hands:

r3n = r3n−1 + r3n−2

= (r3n−2 + r3n−3) + (2(n− 1)r3n−3 + r3n−4)

= (4n− 3)r3n−3 + 2r3n−4.

This same method of simplification also shows us that

r3n−3 = 2r3n−7 + (4n− 7)r3n−6.

To get rid of 2r3n−4 in the first equation, we make the substitutions

2r3n−4 = 2(r3n−5 + r3n−6)

= 2((2(n− 2)r3n−6 + r3n−7) + r3n−6)

= (4n− 6)r3n−6 + 2r3n−7.
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TABLE 7.1. Convergents

n 0 1 2 3 4 · · ·
xn 1 3 19 193 2721 · · ·
yn 1 1 7 71 1001 · · ·

xn/yn 1 3 2.714 . . . 2.71830 . . . 2.7182817 . . . · · ·

Substituting for 2r3n−4 and then 2r3n−7, we finally have the needed col-
lapsed recurrence,

r3n = 2(2n− 1)r3n−3 + r3n−6.

7.3.2 Two Integral Sequences

We define the sequences xn = p3n, yn = q3n. Since the 3n-convergents will
converge to the same real number that the n-convergents do, xn/yn also
converges to the limit of the continued fraction. Each sequence {xn}, {yn}
will obey the recurrence relation derived in the previous section (where zn
is a stand-in for xn or yn):

zn = 2(2n− 1)zn−1 + zn−2, for all n ≥ 2. (7.1)

The two sequences can be found in Table 7.1. (The initial conditions
x0 = 1, x1 = 3, y0 = y1 = 1 are taken straight from the first few convergents
of the original continued fraction.) Notice that since we are skipping several
convergents at each step, the ratio xn/yn converges to e very quickly.

7.3.3 A Related Sequence of Integrals

Now, we define a sequence of real numbers T0, T1, T2, . . . by the following
integrals:

Tn =

∫ 1

0

tn(t− 1)n

n!
etdt.

Below, we compute the first two terms of this sequence explicitly. (When
we compute T1, we are doing the integration by parts u = t(t−1), dv = etdt.
Since the integral runs from 0 to 1, the boundary condition is 0 when
evaluated at each of the endpoints. This vanishing will be helpful when we
do the integral in the general case.)

T0 =

∫ 1

0

etdt = e− 1,

T1 =

∫ 1

0

t(t− 1)etdt

= −
∫ 1

0

((t− 1) + t)etdt

= −(t− 1)et

∣

∣

∣

∣

∣

1

0

− tet

∣

∣

∣

∣

∣

1

0

+ 2

∫ 1

0

etdt

= 1− e+ 2(e− 1) = e− 3.
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The reason that we defined this series now becomes apparent: T0 =
y0e−x0 and that T1 = y1e−x1. In general, it will be true that Tn = yne−xn.
We will now prove this fact.

It is clear that if the Tn were to satisfy the same recurrence that the
xi and yi do, in equation (7.1), then the above statement holds by induc-
tion. (The initial conditions are correct, as needed.) So we simplify Tn by
integrating by parts twice in succession:

Tn =

∫ 1

0

tn(t− 1)n

n!
etdt

= −
∫ 1

0

tn−1(t− 1)n + tn(t− 1)n−1

(n− 1)!
etdt

=

∫ 1

0

(

tn−2(t− 1)n

(n− 2)!
+ n

tn−1(t− 1)n−1

(n− 1)!
+ n

tn−1(t− 1)n−1

(n− 1)!
+
tn(t− 1)n−2

(n− 2)!

)

etdt

= 2nTn−1 +

∫ 1

0

tn−2(t− 1)n−2

n− 2!
(2t2 − 2t+ 1) etdt

= 2nTn−1 + 2

∫ 1

0

tn−1(t− 1)n−1

n− 2!
etdt+

∫ 1

0

tn−2(t− 1)n−2

n− 2!
etdt

= 2nTn−1 + 2(n− 1)Tn−1 + Tn−2

= 2(2n− 1)Tn−1 + Tn−2,

which is the desired recurrence.
Therefore Tn = yne − xn. To conclude the proof, we consider the limit

as n approaches infinity:

lim
n→∞

∫ 1

0

tn(t− 1)n

n!
etdt = 0,

by inspection, and therefore

lim
n→∞

xn
yn

= lim
n→∞

(e− Tn
yn

) = e.

Therefore, the ratio xn/yn approaches e, and the continued fraction expan-
sion [2, 1, 2, 1, 1, 4, 1, 1, . . .] does in fact converge to e.

7.3.4 Extensions of the Argument

The method of proof of this section generalizes to show that the continued
fraction expansion of e1/k is

[1, (k − 1), 1, 1, (3k − 1), 1, 1, (5k − 1), 1, 1, (7k − 1), . . .]

for all k ∈ N. See Exercise 7.14.

7.4 Quadratic Irrationals

The main result of this section is that the continued fraction expansion of
a number is eventually repeating if and only if the number is a quadratic
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irrational. This can be viewed as an analogue for continued fractions of
the familiar fact that the decimal expansion of x is eventually repeating if
and only if x is rational. The proof that continued fractions of quadratic
irrationals eventually repeats is surprisingly difficult and involves an inter-
esting finiteness argument. Section 7.4.3 emphasizes our striking ignorance
about continued fractions of real roots of irreducible polynomials over Q
of degree bigger than 2.

7.4.1 Quadratic Irrationals

Definition 7.4.1. An element α ∈ R is a quadratic irrational if it is
irrational and satisfies a quadratic polynomial with coefficients in Q.

Thus, e.g., (1 +
√
5)/2 is a quadratic irrational. Recall that

1 +
√
5

2
= [1, 1, 1, . . .].

The continued fraction of
√
2 is [1, 2, 2, 2, 2, 2, . . .], and the continued frac-

tion of
√
389 is

[19, 1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1, 1, 1, 2, 1, 38, . . .].

Does the [1, 2, 1, 1, 1, 1, 2, 1, 38] pattern repeat over and over again?

7.4.2 Periodic Continued Fractions

Definition 7.4.2. A periodic continued fraction is a continued fraction
[a0, a1, . . . , an, . . .] such that

an = an+h

for a fixed positive integer h and all sufficiently large n. We call h the period
of the continued fraction.

Example 7.4.3. Consider the periodic continued fraction [1, 2, 1, 2, . . .] =
[1, 2]. What does it converge to?

[1, 2] = 1 +
1

2 +
1

1 +
1

2 +
1

1 + · · ·

,

so if α = [1, 2] then

α = 1 +
1

2 +
1

α

. = 1 +
1

2α+ 1

α

= 1 +
α

2α+ 1
=

3α+ 1

2α+ 1
.

Thus 2α2 − 2α− 1 = 0, so

α =
1 +

√
3

2
.
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Theorem 7.4.4. An infinite integral continued fraction is periodic if and
only if it represents a quadratic irrational.

Proof. (=⇒) First suppose that

[a0, a1, . . . , an, an+1, . . . , an+h]

is a periodic continued fraction. Set α = [an+1, an+2, . . .]. Then

α = [an+1, . . . , an+h, α],

so by Proposition 7.1.3

α =
αpn+h + pn+h−1
αqn+h + qn+h−1

.

(We use that α is the last partial convergent.) Thus α satisfies a quadratic
equation. Since the ai are all integers, the number

[a0, a1, . . .] = [a0, a1, . . . , an, α]

= a0 +
1

a1 +
1

a2+···+α

can be expressed as a polynomial in α with rational coefficients, so [a0, a1, . . .]
also satisfies a quadratic polynomial. Finally, α 6∈ Q because periodic con-
tinued fractions have infinitely many terms (the continued fraction algo-
rithm applied to the value of an infinite integral continued fraction does
not terminate).

(⇐=) This direction was first proved by Lagrange. The proof is much more
exciting than the proof of (=⇒)! Suppose α ∈ R satisfies a quadratic
equation

aα2 + bα+ c = 0

with a, b, c ∈ Z. Let [a0, a1, . . .] be the continued fraction expansion of α.
For each n, let

rn = [an, an+1, . . .],

so that
α = [a0, a1, . . . , an−1, rn].

Our goal is to prove that the set of all rn is finite, because then periodicity
will follow easily. We have

α =
pn
qn

=
rnpn−1 + pn−2
rnqn−1 + qn−2

.

Substituting this expression for α into the quadratic equation for α, we see
that

Anr
2
n +Bnrn + Cn = 0,

where

An = ap2n−1 + bpn−1qn−1 + cq2n−1,

Bn = 2apn−1pn−2 + b(pn−1qn−2 + pn−2qn−1) + 2cqn−1qn−2,

Cn = ap2n−2 + bpn−2qn−2 + cp2n−2.
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Note that An, Bn, Cn ∈ Z, that Cn = An−1, and that

B2 − 4AnCn = (b2 − 4ac)(pn−1qn−2 − qn−1pn−2)
2 = b2 − 4ac.

Recall from the proof of Theorem 7.2.9 that

∣

∣

∣

∣

α− pn−1
qn−1

∣

∣

∣

∣

<
1

qnqn−1
.

Thus

|αqn−1 − pn−1| <
1

qn
<

1

qn−1
,

so

pn−1 = αqn−1 +
δ

qn−1
with |δ| < 1.

Hence

An = a

(

αqn−1 +
δ

qn−1

)2

+ b

(

αqn−1 +
δ

qn−1

)

qn−1 + cq2n−1

= (aα2 + bα+ c)q2n−1 + 2aαδ + a
δ2

q2n−1
+ bδ

= 2aαδ + a
δ2

q2n−1
+ bδ.

Thus

|An| =
∣

∣

∣

∣

2aαδ + a
δ2

q2n−1
+ bδ

∣

∣

∣

∣

< 2|aα|+ |a|+ |b|.

Thus there are only finitely many possibilities for the integer An. Also,

|Cn| = |An−1| and |Bn| =
√

b2 − 4(ac−AnCn),

so there are only finitely many triples (An, Bn, Cn), and hence only finitely
many possibilities for rn as n varies. Thus there exists n and h > 0 such
that

rn = rn+h,

so

[an+h, an+h+1, . . .] = [an, an+1, . . .]

hence

[an, an+1, . . .] = [an, an+1, . . . , an+h, . . .]

= [an, an+1, . . . , an, an+1, . . .]

= [an, . . . , an+h−1].

It follows that the continued fraction for α is periodic.
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7.4.3 Higher Degree

Definition 7.4.5. An algebraic number is a root of a polynomial f ∈ Q[x].

Open Problem 7.4.6. Give a simple description of the complete contin-
ued fraction expansion of the algebraic number 3

√
2. It begins

[1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, 2, 1, 3, 4, 1, 1, 2, 14,

3, 12, 1, 15, 3, 1, 4, 534, 1, 1, 5, 1, 1, . . .]

The author does not see a pattern, and the 534 reduces my confidence
that I will. Lang and Trotter (see [37]) analyzed a many terms of the con-
tinued fraction statistically. Their work suggests that 3

√
2 has an “unusual”

continued fraction; later work in [38] suggests that maybe it does not.

Khintchine (see [35, pg. 59])

No properties of the representing continued fractions, analogous
to those which have just been proved, are known for algebraic
numbers of higher degree [as of 1963]. [...] It is of interest to
point out that up till the present time no continued fraction
development of an algebraic number of higher degree than the
second is known. It is not even known if such a development has
bounded elements. Generally speaking the problems associated
with the continued fraction expansion of algebraic numbers of
degree higher than the second are extremely difficult and vir-
tually unstudied.

Richard Guy (see [29, pg. 260])

Is there an algebraic number of degree greater than two whose
simple continued fraction has unbounded partial quotients? Does
every such number have unbounded partial quotients?

7.5 Applications

In this section we will learn about two applications of continued fractions.
The first is a solution to the computational problem of recognizing a ra-
tional number using a computer. The second application is to the solution
of “Pell’s Equation”: Given a positive non-square integer d, find integers x
and y such that x2 − dy2 = 1.

7.5.1 Recognizing Rational Numbers

Suppose that you can compute approximations to a rational number using
a computer, and desperately want to know what the rational number is.
Henri Cohen gives a superb explanation in [15] of how continued fraction
are helpful in recognizing rational numbers.
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Consider the following apparently simple problem. Let x ∈ R
be given by an approximation (for example a decimal or binary
one). Decide if x is a rational number or not. Of course, this
question as posed does not really make sense, since an approx-
imation is usually itself a rational number. In practice however
the question does make a lot of sense in many different contexts,
and we can make it algorithmically more precise. For example,
assume that one has an algorithm which allows us to compute x
to as many decimal places as one likes (this is usually the case).
Then, if one claims that x is (approximately) equal to a rational
number p/q, this means that p/q should still be extremely close
to x whatever the number of decimals asked for, p and q being
fixed. This is still not completely rigorous, but it comes quite
close to actual practice, so we will be content with this notion.

Now how does one find p and q if x is indeed a rational num-
ber? The standard (and algorithmically excellent) answer is to
compute the continued fraction expansion [a0, a1, . . .] of x. The
number x is rational if and only if its continued fraction expan-
sion is finite, i.e., if and only if one of the ai is infinite. Since x
is only given with the finite precision, x will be considered ra-
tional if x has a very large partial quotient ai in its continued
fraction expansion.

The following example illustrates Cohen’s remarks:

Example 7.5.1. Let

x = 9495/3847 = 2.46815700545879906420587470756433584611385 . . . .

The continued fraction of the truncation 2.468157005458799064 is

[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1, 328210621945, 2, 1, 1, 1, . . .]

We have

[2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1] =
9495

3847
.

Notice that no repeat is evident in the digits of x given above, though we
know that the decimal expansion of x must be eventually periodic, since all
decimal expansions of fractions are eventually periodic. In fact, the length
of the period of the decimal expansion of 1/3847 is 3846 (the order of 10
modulo 3847; see Exercise 15).

7.5.2 Pell’s Equation

In February of 1657, Pierre Fermat issued the following challenge:

Given an integer d > 1, give a systematic way to find a positive
integer y such that dy2 + 1 is a perfect square.

In other words, find a solution to x2 − dy2 = 1 with y ∈ N.
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Note Fermat’s emphasis on integer solutions. It is easy to find rational
solutions to the equation x2 − dy2 = 1. Simply divide the relation

(r2 + d)2 − d(2r)2 = (r2 − d)2

by (r2 − d)2 to arrive at

x =
r2 + d

r2 − d
, y =

2r

r2 − d
.

Fermat said: “Solutions in fractions, which can be given at once from the
merest elements of arithmetic, do not satisfy me.”

The equation x2 − dy2 = 1 is called Pell’s equation. This is because
Euler (in about 1759) accidentally called it “Pell’s equation” and the name
stuck, though Pell (1611–1685) had nothing to do with it.

Joke 7.5.2 (Hendrik Lenstra). Pell’s equation was not named after
Pell; rather Pell was named after the equation.

If d is a perfect square, d = n2, then

(x+ ny)(x− ny) = x2 − dy2 = 1

which implies that x+ ny = x− ny = 1, so

x =
x+ ny + x− ny

2
=

1 + 1

2
= 1,

and y = 0 as well. We will always assume that d is not a perfect square.

7.5.3 Units in Real Quadratic Fields

From an algebraic point of view, Pell’s equation is best understood in terms
of units in real quadratic fields.

Let d be a nonsquare positive integer. Set

Q(
√
d) = {a+ b

√
d : a, b ∈ Q} and Z[

√
d] = {a+ b

√
d : a, b ∈ Z}.

Then Q(
√
d) is a real quadratic field and Z[

√
d] is a ring. There is a homo-

morphism called norm:

N : Q(
√
d)× → Q×, N

(

a+ b
√
d
)

=
(

a+ b
√
d
)(

a− b
√
d
)

= a2−b2d.

Definition 7.5.3. An element x ∈ R is a unit if there exists y ∈ R such
that xy = 1.

Proposition 7.5.4. The units of Z[
√
d] are exactly the elements of norm ±1

in Z[
√
d].

Proof. First suppose u ∈ Z[
√
d] is a unit. Then

1 = N(1) = N(uu−1) = N(u) ·N(u−1).

Since N(u), N(u−1) ∈ Z, we have N(u) = N(u−1) = ±1.
Next suppose a+ b

√
d has norm ±1. Then (a+ b

√
d)(a− b

√
d) = ±1, so

±(a− b
√
d) is an inverse of a+ b

√
d, so a+ b

√
d is a unit.
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Fermat’s challenge amounts to determining the group U+ of units in
Z[
√
d] of the form a+b

√
d with a, b ≥ 0. We will prove part of the following

theorem in Section 7.5.4.

Theorem 7.5.5. The group U+ is an infinite cyclic group. It is generated
by pm + qm

√
d, where pm

qm
is one of the partial convergents of the contin-

ued fraction expansion of
√
d. (In fact, if n is the period of the continued

fraction of
√
d then m = n− 1 when n is even and 2n− 1 when n is odd.)

The theorem implies that Pell’s equation always has a solution! Warning:
the smallest solution is typically shockingly large. For example, the value
of x in the smallest solution to x2 − 1000099y2 = 1 has 1118 digits. For
some brilliant ideas about how to deal with huge solutions, see Lenstra’s
beautiful article [42]

The following example illustrates how to use Theorem 7.5.5 to solve Pell’s
equation when d = 61, where the simplest solution is already quite large.

Example 7.5.6. Suppose d = 61. Then

√
d = [7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14],

which has odd period n = 11. Thus Theorem 7.5.5 asserts that U+ is
generated by

x = p21 = 1766319049

y = q21 = 226153980.

That is, we have

U+ = 〈u〉 = 〈1766319049 + 226153980
√
61〉,

and x = 1766319049, y = 226153980 is a solution to x2−dy2 = 1. All other
solutions arise from un for some n. For example,

u2 = 6239765965720528801 + 798920165762330040
√
61

leads to another solution.

Remark 7.5.7. Let n be an integer with n 6= −1, 0, 1. If the equation

x2 − dy2 = n

has at least one (nonzero) solution (x0, y0) ∈ Z × Z, then it must have
infinitely many. This is because if x20 − dy20 = n and u is a generator of the
cyclic group U+, then for any integer i,

N(ui(x0 + y0
√
d)) = N(ui) ·N(x0 + y0

√
d) = 1 · n = n,

so

x1 + y1
√
d = ui(x0 + y0

√
d)

provides another solution to x2 + dy2 = n.
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7.5.4 Some Proofs

The rest of this section is devoted to proving most of Theorem 7.5.5. We
will prove that certain partial convergents to continued fractions contribute
infinitely many solutions to Pell’s equation. We will not prove that every
solution to Pell’s equation is a partial convergent, though this is true (see,
e.g., [9, §13.5]).

Fix a positive nonsquare integer d.

Definition 7.5.8. A quadratic irrational α = a+ b
√
d is reduced if α > 1

and if the conjugate of α, denoted by α′, satisfies −1 < α′ < 0.

For example, the number α = 1 +
√
2 is reduced.

Definition 7.5.9. A continued fraction is purely periodic if it is of the form
[a0, a1, . . . , an].

The continued fraction [2] of 1 +
√
2 is purely periodic.

Lemma 7.5.10. If α is a reduced quadratic irrational, then the continued
fraction expansion of α is purely periodic. (The converse is also easily seen
to be true.)

Lemma 7.5.11. The continued fraction expansion of
√
d is of the form

[a0, a1, . . . , an−1, 2a0].

Proof. Let a0 be the floor of
√
d. Then α =

√
d + a0 is reduced because

α > 1 and α′ = −
√
d+ a0 satisfies −1 < α′ < 0. Let [a0, a1, a2, . . .] be the

continued fraction expansion of
√
d. Then the continued fraction expansion

of
√
d + a0 is [2a0, a1, a2, . . .]. By Lemma 7.5.10, the continued fraction

expansion of
√
d+ a0 is purely periodic, so

[2a0, a1, a2, . . .] = [2a0, a1, a2, . . . , an−1],

where n is the period. It follows that an = 2a0, as claimed.

The following proposition shows that there are infinitely many solutions
to Pell’s equation that arise from continued fractions.

Proposition 7.5.12. Let pk/qk be the partial convergents of the continued
fraction expansion of

√
d, and let n be the period of the expansion of

√
d.

Then

p2kn−1 − dq2kn−1 = (−1)kn

for k = 1, 2, 3, . . ..

Proof. (This proof is taken from [9, §13.5].) By Lemma 7.5.11, for k ≥ 1,
the continued fraction of

√
d can be written in the form

√
d = [a0, a1, a2, . . . , akn−1, rkn]

where

rkn = [2a0, a1, a2, . . . , an] = a0 +
√
d.
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Because
√
d is the last partial convergent of the continued fraction above,

we have √
d =

rknpkn−1 + pkn−2
rknqkn−1 + qkn−2

.

Upon substituting rkn = a0 +
√
d and simplifying, this reduces to

√
d(a0akn−1 + qkn−2 − pkn−1) = a0pkn−1 + pkn−2 − dqkn−1.

Because the right-hand side is rational and
√
d is irrational,

a0akn−1 + qkn−2 = pkn−1, and a0pkn−1 + pkn−2 = dqkn−1.

Multiplying the first of these equations by pkn−1 and the second by −qkn−1,
and then adding them, gives

p2kn−1 − dq2kn−1 = pkn−1qkn−2 − qkn−1pkn−2.

But
pkn−1qkn−2 − qkn−1pkn−2 = (−1)kn−2 = (−1)kn,

which proves the proposition.
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Exercises

7.1 Compute the pn and qn for the continued fractions [−3, 1, 1, 1, 1, 3]
and [0, 2, 4, 1, 8, 2]. Observe that the propositions in Section 7.1.1
hold.

7.2 If cn = pn/qn is the nth convergent of the continued fraction [a0, a1, . . . , an]
and a0 > 0, show that

[an, an−1, . . . , a1, a0] =
pn
pn−1

and
[an, an−1, . . . , a2, a1] =

qn
qn−1

.

(Hint: In the first case, notice that pn

pn−1
= an + pn−2

pn−1
= an + 1

pn−1
pn−2

.)

7.3 Evaluate each of the following infinite continued fractions:

(a) [2, 3]

(b) [2, 1, 2, 1]

(c) [0, 1, 2, 3]

7.4 Determine the infinite continued fraction of each of the following num-
bers:

(a)
√
5

(b)
1 +

√
13

2

(c)
5 +

√
37

4

7.5 (a) For any positive integer n, prove that
√
n2 + 1 = [n, 2n].

(b) Find a convergent to
√
5 that approximates

√
5 to within four

decimal places.

7.6 A theorem of Hurwitz (1891) asserts that for any irrational number x,
there exists infinitely many rational numbers a/b such that

∣

∣

∣
x− a

b

∣

∣

∣
<

1√
5b2

.

Take x = e, and obtain four rational numbers that satisfy this in-
equality.

7.7 The continued fraction expansion of e is

[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, . . .].

It is a theorem that the obvious pattern continues indefinitely. Do
you think that the continued fraction expansion of e2 also exhibits a
nice pattern? If so, what do you think it is?
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7.8 (a) Show that there are infinitely many even integers n with the
property that both n+ 1 and n

2 + 1 are perfect squares.

(b) Exhibit two such integers that are greater than 389.

7.9 A primitive Pythagorean triple is a triple x, y, z of integers such
that x2 + y2 = z2. Prove that there exists infinitely many primitive
Pythagorean triples x, y, z in which x and y are consecutive integers.

7.10 Find two distinct continued fractions a0, a1, a2, . . . and b0, b1, b2, . . .
such that

[a0, a1, a2, . . .] = [b0, b1, b2, . . .].

(Note that necessarily the ai and bi won’t all be integers.)

7.11 (a) Find the continued fraction expansion of (1+2
√
3)/4. Prove that

your answer is correct.

(b) Evaluate the infinite continued fraction [0, 1, 3]

7.12 Let a0 ∈ R and a1, . . . , an and b be positive real numbers. Prove that

[a0, a1, . . . , an + b] < [a0, a1, . . . , an]

if and only if n is odd.

7.13 Let s(n) = 1 + 2 + · · · + n = n(n+1)
2 be the sum of the first n posi-

tive integers. Prove that there are infinitely many n such that s(n)
is a perfect square. (Hint: Find a relationship between such n and
solutions to a certain Pell’s equation.)

7.14 (*) Extend the method presented in the text to show that the con-
tinued fraction expansion of e1/k is

[1, (k − 1), 1, 1, (3k − 1), 1, 1, (5k − 1), 1, 1, (7k − 1), . . .]

for all k ∈ N.

(a) Compute p0, p3, q0, and q3 for the above continued fraction.
Your answers should be in terms of k.

(b) Condense three steps of the recurrence for the numerators and
denominators of the above continued fraction. That is, produce
a simple recurrence for r3n in terms of r3n−3 and r3n−6 whose
coefficients are polynomials in n and k.

(c) Define a sequence of real numbers by

Tn(k) =
1

kn

∫ 1/k

0

(kt)n(kt− 1)n

n!
etdt.

i. Compute T0(k), and verify that it equals q0e
1/k − p0.

ii. Compute T1(k), and verify that it equals q3e
1/k − p3.

iii. Integrate Tn(k) by parts twice in succession, following the
method in Section 7.3, and verify that Tn(k), Tn−1(k), and
Tn−2(k) satisfy the recurrence produced in part 14b, for
n ≥ 2.
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(d) Conclude that the continued fraction

[1, (k − 1), 1, 1, (3k − 1), 1, 1, (5k − 1), 1, 1, (7k − 1), . . .]

must represent e1/k.

7.15 (a) Prove that for every positive integer r,

1

1− 10r
=
∑

n≥1
10−rn.

(b) Let d be an integer that is coprime to 10. Prove that the decimal
expansion of 1d has period equal to the order of 10 modulo d.

7.16 Let α be a real number, and let pk/qk denote the partial convergents
of the integral continued fraction for α.

(a) Prove that for every k ≥ 0,

∣

∣

∣

∣

α− pk
qk

∣

∣

∣

∣

< 1/q2k.

(b) Let the decimal expansion of α be

α = b+
b1
10

+
b2
102

+
b3
103

+
b4
104

+ · · · ,

where 0 ≤ bn ≤ 9 for all n. Suppose that for some convergent
pk/qk we have qk = 100. Prove that either b3 = b4 = 0 or
b3 = b4 = 9. (This problem is inspired by [63, pg. 210].)
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8
p-adic Numbers

This chapter is about p-adic numbers, which pop up everywhere in number
theory. To give a single p-adic integer is the same as giving for every prime
power pr an element ar ∈ Z/pr such that if s ≤ r then as is the reduction of
ar modulo ps. In this chapter we construct the field Qp of p-adic numbers
topologically as the completion of Q with respect to the p-adic metric,
in exact analogy with the construction of R as the completion of Q with
respect to the usual metric.

We begin in Section 8.1 with the definition of the N -adic numbers for
any positive integer N . Section 8.2 is about the N -adics in the special
case N = 10; these are fun because they can be represented as decimal
expansions that go off infinitely far to the left. Section 8.4 is about how the
topology of QN is nothing like the topology of R. Finally, in Section 8.5
we state the Hasse-Minkowski theorem, which shows how to use p-adic
numbers to decide whether or not a quadratic equation in n variables has
a rational zero; this theorem is the jumping off point for a huge amount of
arithmetic geometry.

Though p-adics appear frequently in number theory, they make no ap-
pearance in this book outside this chapter (except in part III), so the reader
can safely skip this chapter.

8.1 The N -adic Numbers

Lemma 8.1.1. Let N be a positive integer. Then for any nonzero rational
number α there exists a unique e ∈ Z and integers a, b with b positive such
that α = Ne · ab with N - a, gcd(a, b) = 1, and gcd(N, b) = 1.

Proof. Write α = c/d with c, d ∈ Z and d > 0. First suppose d is exactly
divisible by a power of N , so for some r we have N r | d but gcd(N, d/N r) =
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1. Then
c

d
= N−r

c

d/Nr
.

If Ns exactly divides c then e = s − r, a = c/N s, b = d/N r satisfy the
conclusion of the lemma.

By unique factorization of integers (see Theorem 3.1.5), there is a mul-
tiple f of d such that fd is exactly divisible by N . Now apply the above
argument with c and d replaced by cf and df .

Definition 8.1.2 (N-adic valuation). Let N be a positive integer. For
any positive α ∈ Q, the N -adic valuation of α is e, where e is as in
Lemma 8.1.1. The N -adic valuation of 0 is ∞.

We denote the N -adic valuation of α by vN (α).

Definition 8.1.3 (N-adic metric). For x, y ∈ Q the N -adic!distance
between x and y is

dN (x, y) = N−vN (x−y).

We let dN (x, x) = 0, since vN (x− x) = vN (0) =∞.

For example, x, y ∈ Z are close in the N -adic metric if their difference is
divisible by a large power of N . E.g., if N = 10 then 93427 and 13427 are
close because their difference is 80000, which is divisible by a large power
of 10.

Definition 8.1.4 (Metric). A metric on a set X is a map

d : X ×X → R
such that for all x, y, z ∈ X,

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x), and

3. d(x, z) ≤ d(x, y) + d(y, z).

We recall from a basic analysis course the following facts about comple-
tion with respect to a metric. A Cauchy sequence is a sequence (xn) in X
such that for all ε > 0 there exists M such that for all n,m > M we have
d(xn, xm) < ε. The completion of X is the set of Cauchy sequences (xn)
in X modulo the equivalence relation in which two Cauchy sequences (xn)
and (yn) are equivalent if limn→∞ d(xn, yn) = 0. A metric space is complete
if every Cauchy sequence converges, and one can show that the completion
of X with respect to a metric is complete.

For example, d(x, y) = |x − y| defines a metric on Q. The completion
of Q with respect to this metric is the field R of real numbers. In certain
parts of number theory the N -adic numbers, which we introduce shortly,
are just as important as R.

Proposition 8.1.5. The distance dN on Q defined above is a metric.
Moreover, for all x, y, z ∈ Q we have

d(x, z) ≤ max(d(x, y), d(y, z)).

(This is the “nonarchimedean” triangle inequality.)
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Proof. The first two properties of Definition 8.1.4 are immediate. For the
third, we first prove that if α, β ∈ Q then

vN (α+ β) ≥ min(vN (α), vN (β)).

Assume, without loss, that vN (α) ≤ vN (β) and that both α and β are
nonzero. Using Lemma 8.1.1 write α = N e(a/b) and β = Nf (c/d) with a
or c possibly negative. Then

α+ β = Ne
(a

b
+Nf−e c

d

)

= Ne

(

ad+ bcNf−e

bd

)

.

Since gcd(N, bd) = 1 it follows that vN (α+β) ≥ e. Now suppose x, y, z ∈ Q.
Then

x− z = (x− y) + (y − z),

so
vN (x− z) ≥ min(vN (x− y), vN (y − z)),

hence dN (x, z) ≤ max(dN (x, y), dN (y, z)).

We can finally define the N -adic numbers.

Definition 8.1.6 (The N-adic Numbers). The set of N -adic numbers,
denoted QN , is the completion of Q with respect to the metric dN .

The set QN is a ring, but it need not be a field as you will show in
Exercises 4 and 5. It is a field if and only if N is prime. Also, QN has a
“bizarre” topology, as we will see in Section 8.4.

8.2 The 10-adic Numbers

It’s a familiar fact that every real number can be written in the form

dn . . . d1d0.d−1d−2 . . . = dn10
n+ · · ·+d110+d0+d−110

−1+d−210
−2+ · · ·

where each digit di is between 0 and 9, and the sequence can continue
indefinitely to the right.

The 10-adic numbers also have decimal expansions, but everything is
backward! To get a feeling for why this might be the case, we consider
Euler’s nonsensical series

∞
∑

n=1

(−1)n+1n! = 1!− 2! + 3!− 4! + 5!− 6! + · · · .

You will prove in Exercise 2 that this series converges in Q10 to some
element α ∈ Q10.

What is α? How can we write it down? First note that for all M ≥ 5,
the terms of the sum are divisible by 10, so the difference between α and
1! − 2! + 3! − 4! is divisible by 10. Thus we can compute α modulo 10
by computing 1! − 2! + 3! − 4! modulo 10. Likewise, we can compute α
modulo 100 by compute 1!−2!+ · · ·+9!−10!, etc. We obtain the following
table:
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α mod 10r

1 mod 10
81 mod 102

981 mod 103

2981 mod 104

22981 mod 105

422981 mod 106

Continuing we see that

1!− 2! + 3!− 4! + · · · = . . . 637838364422981 in Q10 !

Here’s another example. Reducing 1/7 modulo larger and larger powers
of 10 we see that

1

7
= . . . 857142857143 in Q10.

Here’s another example, but with a decimal point.

1

70
=

1

10
· 1
7
= . . . 85714285714.3

We have
1

3
+

1

7
= . . . 66667 + . . . 57143 =

10

21
= . . . 23810,

which illustrates that addition with carrying works as usual.

8.2.1 FLT in Q10

An amusing observation, which people used to endlessly argue about on
USENET back in the 1990s, is that Fermat’s last theorem is false in Q10.
For example, x3 + y3 = z3 has a nontrivial solution, namely x = 1, y = 2,
and z = . . . 60569. Here z is a cube root of 9 in Q10. Note that it takes
some work to prove that there is a cube root of 9 in Q10 (see Exercise 3).

8.3 The Field of p-adic Numbers

The ring Q10 of 10-adic numbers is isomorphic to Q2×Q5 (see Exercise 5),
so it is not a field. For example, the element . . . 8212890625 corresponding to
(1, 0) under this isomorphism has no inverse. (To compute n digits of (1, 0)
use the Chinese remainder theorem to find a number that is 1 modulo 2n

and 0 modulo 5n.)
If p is prime then Qp is a field (see Exercise 4). Since p 6= 10 it is a little

more complicated to write p-adic numbers down. People typically write
p-adic numbers in the form

a−d
pd

+ · · ·+ a−1
p

+ a0 + a1p+ a2p
2 + a3p

3 + · · ·

where 0 ≤ ai < p for each i.
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8.4 The Topology of QN (is Weird)

Definition 8.4.1 (Connected). Let X be a topological space. A subset S
of X is disconnected if there exist open subsets U1, U2 ⊂ X with U1 ∩U2 ∩
S = ∅ and S = (S ∩U1)∪ (S ∩U2) with S ∩U1 and S ∩U2 nonempty. If S
is not disconnected it is connected.

The topology on QN is induced by dN , so every open set is a union of
open balls

B(x, r) = {y ∈ QN : dN (x, y) < r}.
Recall Proposition 8.1.5, which asserts that for all x, y, z,

d(x, z) ≤ max(d(x, y), d(y, z)).

This translates into the following shocking and bizarre lemma:

Lemma 8.4.2. Suppose x ∈ QN and r > 0. If y ∈ QN and dN (x, y) ≥ r,
then B(x, r) ∩B(y, r) = ∅.

Proof. Suppose z ∈ B(x, r) and z ∈ B(y, r). Then

r ≤ dN (x, y) ≤ max(dN (x, z), dN (z, y)) < r,

a contradiction.

You should draw a picture to illustrates Lemma 8.4.2.

Lemma 8.4.3. The open ball B(x, r) is also closed.

Proof. Suppose y 6∈ B(x, r). Then r < d(x, y) so

B(y, d(x, y)) ∩B(x, r) ⊂ B(y, d(x, y)) ∩B(x, d(x, y)) = ∅.
Thus the complement of B(x, r) is a union of open balls.

The lemmas imply thatQN is totally disconnected, in the following sense.

Proposition 8.4.4. The only connected subsets of QN are the singleton
sets {x} for x ∈ QN and the empty set.

Proof. Suppose S ⊂ QN is a nonempty connected set and x, y are distinct
elements of S. Let r = dN (x, y) > 0. Let U1 = B(x, r) and U2 be the
complement of U1, which is open by Lemma 8.4.3. Then U1 and U2 satisfies
the conditions of Definition 8.4.1, so S is not connected, a contradiction.

8.5 The Local-to-Global Principle of Hasse and
Minkowski

Section 8.4 might have convinced you that QN is a bizarre pathology. In
fact,QN is omnipresent in number theory, as the following two fundamental
examples illustrate.

In the statement of the following theorem, a nontrivial solution to a ho-
mogeneous polynomial equation is a solution where not all indeterminates
are 0.
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Theorem 8.5.1 (Hasse-Minkowski). The quadratic equation

a1x
2
1 + a2x

2
2 + · · ·+ anx

2
n = 0 (8.1)

with ai ∈ Q× has a nontrivial solution with x1, . . . , xn in Q if and only if
(8.1) has a solution in R and in Qp for all primes p.

This theorem is very useful in practice because the p-adic condition turns
out to be easy to check. For more details, including a complete proof, see
[55, IV.3.2].

The analogue of Theorem 8.5.1 for cubic equations is false. For example,
Selmer proved that the cubic

3x3 + 4y3 + 5z3 = 0

has a nontrivial solution inR and inQp for all primes p but has no solutions
in Q (for a proof see [12, §18]).
Open Problem 8.5.2. Give an algorithm that decides whether or not a
cubic ax3 + by3 + cz3 = 0 has a nontrivial solution in Q.

This open problem is closely related to the Birch and Swinnerton-Dyer
Conjecture for elliptic curves. The truth of the conjecture would follow if
we knew that “Shafarevich-Tate Groups” of elliptic curves were finite.
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Exercises

8.1 Compute the first 5 digits of the 10-adic expansions of the following
rational numbers:

13

2
,

1

389
,

17

19
, the 4 square roots of 41.

8.2 Let N > 1 be an integer. Prove that the series

∞
∑

n=1

(−1)n+1n! = 1!− 2! + 3!− 4! + 5!− 6! + · · · .

converges in QN .

8.3 Prove that −9 has a cube root in Q10 using the following strategy
(this is a special case of “Hensel’s Lemma”).

(a) Show that there is α ∈ Z such that α3 ≡ 9 (mod 103).

(b) Suppose n ≥ 3. Use induction to show that if α1 ∈ Z and
α3 ≡ 9 (mod 10n), then there exists α2 ∈ Z such that α32 ≡ 9
(mod 10n+1). (Hint: Show that there is an integer b such that
(α1 + b10n)3 ≡ 9 (mod 10n+1).)

(c) Conclude that 9 has a cube root in Q10.

8.4 Let N > 1 be an integer.

(a) Prove that QN is equipped with a natural ring structure.

(b) If N is prime, prove that QN is a field.

8.5 (a) Let p and q be distinct primes. Prove that Qpq
∼= Qp ×Qq.

(b) Is Qp2 isomorphic to either of Qp ×Qp or Qp?
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9
Binary Quadratic Forms and Ideal
Class Groups

This chapter is about binary quadratic forms such as

f(x, y) = x2 + y2.

We begin in Section 9.1 by answering the following question:

For which integers n do there exist integer x and y such that
x2 + y2 = n?

We give both an arithmetic and algebraic proof of our answer.
In Section 9.2 we turn to the general theory of binary quadratic forms,

beginning with the notion of SL2(Z)-equivalence in Section 9.2.2. Next
in Section 9.2.3, we divide binary quadratic forms up by their discrim-
inants and in Section 9.2.5 link certain binary quadratic forms of given
discriminant with quadratic number fields. We turn to reduction theory
in Section 9.3, which allows us to decide whether two quadratic forms are
equivalent. Section 9.4 summarizes a major theorem about the number of
equivalence classes of quadratic forms of given discriminant.

In Section 9.5 we make a precise link between binary quadratic forms
and ideal classes in the ring of integers of a quadratic field. This link estab-
lishes a group structure on equivalence classes of binary quadratic forms,
which will look very similar to the group structure on elliptic curves (see
Section 10.2).

This chapter benefited immensely from [16] and [22].

9.1 Sums of Two Squares

Theorem 9.1.1. A number n is a sum of two squares if and only if all
prime factors of n of the form 4m + 3 have even exponent in the prime
factorization of n.
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In this section we give two very different proofs of Theorem 9.1.1. The
first is very arithmetic and builds on results about continued fractions from
Chapter 7. The second, more algebraic, proof uses quadratic reciprocity
from Chapter 6 to understand splitting of ideals in the ring Z[i] of Gaussian
integers.

Before tackling the proofs, we consider a few examples. Notice that 5 =
12+22 is a sum of two squares, but 7 is not a sum of two squares, because
the congruence x2+y2 ≡ 7 (mod 8) has no solution. Since 2001 is divisible
by 3 (because 2 + 1), but not by 9 (since 2 + 1 is not), Theorem 9.1.1
implies that 2001 is not a sum of two squares. The theorem implies that
2 · 34 · 5 · 72 · 13 is a sum of two squares, but that 21 = 3 · 7 is not a sum of
two squares even though 21 ≡ 1 (mod 4).

Remark 9.1.2. More generally, every natural number is a sum of four integer
squares. A natural number is a sum of three squares if and only if it is
not a power of 4 times a number that is congruent to 7 modulo 8. For
example, 7 is not a sum of three squares, as one can easily see by considering
x2 + y2 + z2 ≡ 7 (mod 8). See for proofs.

Definition 9.1.3 (Primitive). A representation n = x2 + y2 is primitive
if x and y are coprime.

Lemma 9.1.4. If n is divisible by a prime p of the form 4m + 3, then n
has no primitive representations.

Proof. Suppose p = 4m+ 3 divides n. If n has a primitive representation,
n = x2 + y2, then

p | x2 + y2 and gcd(x, y) = 1,

so p - x and p - y. Since Z/p is a field we divide by y2 in the equation
x2+ y2 ≡ 0 (mod p) to see that (x/y)2 ≡ −1 (mod p). Thus the quadratic

residue symbol
(

−1
p

)

equals +1. However, by Proposition 6.2.1,

(−1
p

)

= (−1)(p−1)/2 = (−1)(4m+3−1)/2 = (−1)2m+1 = −1,

a contradiction. Thus no prime of the form 4m+ 3 divides n.

Proof of Theorem 9.1.1 (=⇒). Suppose that p is of the form 4m+ 3, that
pr || n (i.e., pr | n but pr+1 - n) with r odd, and that n = x2 + y2. Letting
d = gcd(x, y), we have

x = dx′, y = dy′, n = d2n′

with gcd(x′, y′) = 1 and

(x′)2 + (y′)2 = n′.

Because r is odd, p | n′, so Lemma 9.1.4 implies that gcd(x′, y′) > 1, a
contradiction.
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To prepare for our two proofs of the (⇐=) direction of Theorem 9.1.1,
we reduce the problem to the case when n is prime. Write n = n21n2 where
n2 has no prime factors of the form 4m + 3. It suffices to show that n2 is
a sum of two squares. Also note that

(x21 + y21)(x
2
2 + y22) = (x1x2 − y1y2)

2 + (x1y2 + x2y1)
2,

so a product of two numbers that are sums of two squares is also a sum
of two squares. (This algebraic identity is the assertion that the norm N :
Q(i)× → Q× sending x + iy to (x + iy)(x − iy) = x2 + y2 is a group
homomorphism.) Also, 2 = 12 + 12 is a sum of two squares.

It thus suffices to show that if p = 4m+1, then p is a sum of two squares.

9.1.1 Arithmetic Proof of Theorem 9.1.1

Lemma 9.1.5. If x ∈ R and n ∈ N, then there is a fraction
a

b
in lowest

terms such that 0 < b ≤ n and

∣

∣

∣
x− a

b

∣

∣

∣
≤ 1

b(n+ 1)
.

Proof. Consider the continued fraction expansion [a0, a1, . . .] of x. By Corol-
lary 7.2.10, for each m

∣

∣

∣

∣

x− pm
qm

∣

∣

∣

∣

<
1

qm · qm+1
.

Since qm+1 ≥ qm + 1 and q0 = 1, either there exists an m such that
qm ≤ n < qm+1, or the continued fraction expansion of x is finite and n
is larger than the denominator of the rational number x, in which case we
take a

b = x and are done. In the first case,

∣

∣

∣

∣

x− pm
qm

∣

∣

∣

∣

<
1

qm · qm+1
≤ 1

qm · (n+ 1)
,

so
a

b
=
pm
qm

satisfies the conclusion of the lemma.

Proof of Theorem 9.1.1 (⇐=). Suppose p = 4m+ 1 is a prime. Since

(−1)(p−1)/2 = (−1)(4m+1−1)/2 = +1,

Proposition 6.2.1 implies that −1 is a square modulo p; i.e., there exists r ∈
Z such that r2 ≡ −1 (mod p). Lemma 9.1.5, with n = b√pc and x = − r

p ,
implies that there are integers a, b such that 0 < b <

√
p and

∣

∣

∣

∣

−r
p
− a

b

∣

∣

∣

∣

≤ 1

b(n+ 1)
<

1

b
√
p
.

Let c = rb+ pa; then

|c| < pb

b
√
p
=

p√
p
=
√
p
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and
0 < b2 + c2 < 2p.

But c ≡ rb (mod p), so

b2 + c2 ≡ b2 + r2b2 ≡ b2(1 + r2) ≡ 0 (mod p).

Thus b2 + c2 = p.

9.1.2 Algebraic Proof of Theorem 9.1.1

Let p be a prime that is congruent to 1 modulo 4. In this section we show
that p is a sum of two squares by factoring the ideal generated by p in the
Gaussian integers as a product of principal ideals.

The Gaussian integers are

R = Z[i] = {a+ bi : a, b ∈ Z} ⊂ C,

where i2 = −1. The ideal generated by x1, . . . , xn ∈ R is the set (in fact,
“R-module”)

(x1, . . . , xn) = Rx1 + · · ·+Rxn ⊂ R

of R-linear combinations of the xi.

Lemma 9.1.6. There is an integer r such that

(p) = (i− r, p)(i+ r, p),

where the equality is an equality of ideals in R.

Proof. Because p ≡ 1 (mod 4), we have (−1)(p−1)/2 = 1, so by Proposi-
tion 6.2.1, there is an r ∈ Z such that r2 ≡ −1 (mod p). The ideal product
(i − r, p)(i + r, p) is, by definition, the ideal generated by all products of
elements in (i − r, p) with elements in (i + r, p). In particular, it contains
p2, 1 + r2 = −(i− r)(i+ r), and −2pr = p(i− r)− p(i+ r). Since p is odd
and divides 1 + r2, the greatest common divisor of p2, 1 + r2, and −2pr
is p, so (p) ⊂ (i− r, p)(i+ r, p). Since (i− r)(i+ r) = −1− r2 is a multiple
of p we see that every element of (i− r, p)(i+ r, p) is a multiple of p, which
completes the proof.

The lemma is not quite enough to conclude that p is of the form a2+ b2.
For that, we show that (i− r, p) is generated by a single element, i.e., it is
principal. The following proposition asserts that every ideal of R is principal
by observing that an analogue of the division algorithm holds in R.

Proposition 9.1.7. The ring R is a principal ideal domain (because it is
a Euclidean domain).

Proof. First we show that R is a Euclidean domain, i.e., there is a function
λ : R → Z≥0 = N∪{0} such that for all x, y ∈ R with x 6= 0, there exist
q, r ∈ R such that y = xq + r with λ(r) < λ(x). To see this, let

λ(a+ bi) = N(a+ bi) = a2 + b2
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be the norm. Then if x = a+ bi 6= 0 and y = c+ di, we have

y

x
=
c+ di

a+ bi
=
ac+ bd

N(x)
+
ad− bc

N(x)
i.

Let e and f be the integers that are closest to the real and imaginary parts
of y/x, respectively. Let q = e+ if and r = y − xq. Then

N(r) = N(y/x− q)N(x) ≤ 1

2
·N(x).

It is now easy to deduce that R is a principal ideal domain. Suppose
I ⊂ R is any nonzero ideal. Let x be an element of I with N(x) minimal.
If y ∈ I then y = qx+ r with N(r) < N(x). Since r = qx− y ∈ I, it follows
that N(r) = 0, so r = 0 and y ∈ (x). Thus I = (x).

Recall that
(p) = (i− r, p)(i+ r, p).

By Proposition 9.1.7 the ideals on the right side are principal, so there
exists a+ bi ∈ R such that

(p) = (a+ bi)(a− bi).

Since (a + bi)(a − bi) = (a2 + b2), it follows that p = (a2 + b2)u for some
unit u. The units of R are ±1,±i, so since p and a2 + b2 are positive
real numbers, the only possibility is that u = 1. Thus p = a2 + b2, which
completes our algebraic proof of Theorem 9.1.1.

This proof is longer than the proof in Section 9.1.1, but every step in-
volves learning about the structure of interesting basic number-theoretic
objects. Moreover, the underlying idea of the proof is clear and suggests
generalizations to the problem of representation of primes by more general
expressions.

9.2 Binary Quadratic Forms

9.2.1 Introduction

A binary quadratic form is a homogeneous polynomial

f = ax2 + bxy + cy2 ∈ Z[x, y].

We say that n is represented by f if there are integers x, y ∈ Z such that
f(x, y) = n. The representability problem will partially motivate our inter-
est in quadratic forms.

Problem 9.2.1. Given a binary quadratic form f , give a good way to
determine whether or not any given integer n is represented by f .

We gave a simple solution to this problem in Section 9.1 in the case when
f = x2 + y2. The set of sums of two squares is the set of integers n such
that any prime divisor p of n of the form 4m + 3 exactly divides n to an
even power (along with 0).
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9.2.2 Equivalence

For simplicity below we will sometimes write f

(

x
y

)

for f(x, y).

Definition 9.2.2 (Modular group). The modular group SL2(Z) is the
group of all 2× 2 integer matrices with determinant +1.

If γ = ( p qr s ) ∈ SL2(Z) and f(x, y) = ax2+ bxy+ cy2 is a quadratic form,
let

f |γ(x, y) = f(px+ qy, rx+ sy) = f

((

p q
r s

)(

x
y

))

.

Proposition 9.2.3. The above formula defines a right action of the group
SL2(Z) on the set of binary quadratic forms, in the sense that

f |γδ = (f |γ)|δ,

for any γ, δ ∈ SL2(Z).

Proof. Suppose γ, δ ∈ SL2(Z). Then

f |γδ
(

x
y

)

= f

(

γδ

(

x
y

))

= f |γ
(

δ

(

x
y

))

= (f |γ)|δ
(

x
y

)

.

Proposition 9.2.4. Let γ ∈ SL2(Z) and let f be a binary quadratic form.
The set of integers represented by f is exactly the same as the set of integers
represented by f |γ . (The converse is not true; see Example 9.3.4.)

Proof. If f(x0, y0) = n then since γ−1 ∈ SL2(Z), we have γ−1
(

x0
y0

)

∈ Z2,
so

f |γ
(

γ−1
(

x0
y0

))

= f

(

x0
y0

)

= n.

Thus every integer represented by f is also represented by f |γ . Conversely,
if f |γ

(

x0
y0

)

= n, then f

(

γ

(

x0
y0

))

= n, so f represents n.

Define an equivalence relation ∼ on the set of all binary quadratic forms
by f ∼ f ′ if and only if there exists γ ∈ SL2(Z) such that f |γ = f ′.

For simplicity, we will sometimes denote the quadratic form ax2+ bxy+
cy2 by (a, b, c). Then, for example, since γ =

(

0 −1
1 0

)

∈ SL2(Z), we see that
(a, b, c) ∼ (c,−b, a), since if f(x, y) = ax2 + bxy + cy2, then f(−y, x) =
ay2 − bxy + cx2.

Example 9.2.5. Consider the binary quadratic form

f(x, y) = 458x2 + 214xy + 25y2.
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Solving the representation problem for f might, at first glance, look hope-
less. We find f(x, y) for a few values of x and y:

f(−1,−1) = 17 · 41
f(−1, 0) = 2 · 229
f(0,−1) = 52

f(1, 1) = 269

f(−1, 2) = 2 · 5 · 13
f(−1, 3) = 41

Each number is a sum of two squares! Letting γ =
(

4 −3
−17 13

)

, we have

f |γ = 458(4x− 3y)2 + 214(4x− 3y)(−17x+ 13y) + 25(−17x+ 13y)2

= · · · = x2 + y2!!

Thus by Proposition 9.2.4, f represents an integer n if and only if n is a
sum of two squares.

9.2.3 Discriminants

Definition 9.2.6. The discriminant of f(x, y) = ax2+bxy+cy2 is b2−4ac.

Example 9.2.7. Notice that disc(x2 + y2) = −4 and

disc(458, 214, 25) = 2142 − 4 · 25 · 458 = −4.

That the discriminants are the same indicates that (1, 0, 1) and (458, 214, 25)
are closely related.

Proposition 9.2.8. If f ∼ f ′, then disc(f) = disc(f ′).

Proof. By elementary algebra, one sees that if γ ∈ SL2(Z), then

disc(f |γ) = disc(f) · det(γ)2 = disc(f).

Since f ′ = f |γ for some γ ∈ SL2(Z), the proposition follows.

The converse of the proposition is false. Forms with the same discrimi-
nant need not be equivalent. For example, the forms (1, 0, 6) and (2, 0, 3)
have discriminant −24, but are not equivalent. To see this, observe that
(1, 0, 6) represents 1, but 2x2 + 3y2 can not represent 1.

Proposition 9.2.9. The set of all discriminants of forms is exactly the
set of integers d such that d ≡ 0 or 1 (mod 4).

Proof. First note that b2 − 4ac is a square modulo 4, so it must equal 0
or 1 modulo 4. Next suppose d is an integer such that d ≡ 0 or 1 (mod 4).
If we set

c =

{

−d/4, if d ≡ 0 (mod 4)

−(d− 1)/4 if d ≡ 1 (mod 4),

then disc(1, 0, c) = d in the first case and disc(1, 1, c) = d in the second.
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Definition 9.2.10. The form (1, 0,−d/4) or (1, 1,−(d− 1)/4) of discrim-
inant d that appears in the proof of the previous proposition is called the
principal form of discriminant d.

d principal form

−4 (1,0,1) x2 + y2

5 (1,1,-1) x2 + xy − y2

−7 (1,1,2) x2 + xy + 2y2

8 (1,0,-2) x2 − 2y2

−23 (1,1,6) x2 + xy + 6y2

389 (1,1,-97) x2 + xy − 97y2

9.2.4 Definite and Indefinite Forms

Definition 9.2.11. A quadratic form with negative discriminant is called
definite. A form with positive discriminant is called indefinite.

This definition is motivated by the fact that the nonzero integers repre-
sented by a definite form are all either positive or negative. To see this, let
(a, b, c) be a quadratic form, multiply by 4a and complete the square:

4a(ax2 + bxy + cy2) = 4a2x2 + 4abxy + 4acy2

= (2ax+ by)2 + (4ac− b2)y2

If disc(a, b, c) < 0 then 4ac − b2 = −disc(a, b, c) > 0, so the nonzero
values taken on by ax2 + bxy + cy2 are only positive or only negative,
depending on the sign of a. On the other hand, if disc(a, b, c) > 0, then
(2ax+by)2+(4ac−b2)y2 takes both positive and negative values, so (a, b, c)
does also.

9.2.5 Rings of Integers in Quadratic Fields

We have seen quadratic number fields, such as Q(i), several times before.
We now make the theory more precise, in order to see how the arithmetic of
quadratic number fields is closely linked to the theory of quadratic forms.

Let D 6= 0, 1 be a square-free integer. The quadratic field obtained by
adjoining

√
D to Q is

K = Q(
√
D) = {a+ b

√
D | a, b ∈ Q}.

Definition 9.2.12 (Integral). An element x ∈ K is integral over Z if it
is the root of a quadratic polynomial of the form x2+ ax+ b with a, b ∈ Z.

The integral elements of K form an important subring of K.

Definition 9.2.13 (Ring of Integers). The ring of integers in K is

OK = {x ∈ K | x is integral over Z}.

It’s not at all clear from the definition just what OK is, or even that it’s
a ring. Proposition 9.2.16 below will give a more explicit description of OK .
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Lemma 9.2.14. The map K → K given by

a+ b
√
D 7→ a+ b

√
D = a− b

√
D

is an isomorphism of fields.

Proof. We have

(a+ b
√
D)(c+ d

√
D) = (ac+ bd) + (ad+ bc)

√
D

= (ac+ bd)− (ad+ bc)
√
D

= (a− b
√
D)(c− d

√
D)

= a+ b
√
Dc+ d

√
D.

Lemma 9.2.15. Let α ∈ K. The determinant of left multiplication by α
on the 2-dimensional Q-vector space K is N(α) = αα. The trace of left
multiplication is Tr(α) = α+ α. The characteristic polynomial of left mul-
tiplication by α is x2 − Tr(α)x+N(α).

Proof. A basis for K as a Q-vector space is 1,
√
D. The matrix of left

multiplication by α = a+ b
√
D on this basis is

(

a Db
b a

)

. Since T (α) = 2a

and N(α) = a2 −Db2, the lemma follows.

Proposition 9.2.16. If D ≡ 1 (mod 4) let α = (1+
√
D)/2, and otherwise

let α =
√
D. Then

OK = Z[α] = {a+ bα : a, b ∈ Z}.

Proof. First we prove that if x = a + bα ∈ Z[α], then x ∈ OK . By
Lemma 9.2.15 it suffices to show that Tr(x) and N(x) lie in Z. First we
verify this for x = α by noting that Tr(α) = 1 and

N(α) =

{

(1−D)/4 if D ≡ 1 (mod 4)

D otherwise.

More generally, if x = a+ bα with a, b ∈ Z, then

Tr(x) = Tr(a+ bα) = 2a+ bTr(α) = 2a+ b ∈ Z,

and

N(x) = (a+ bα)(a+ bα)

= a2 + ab(α+ α) + b2αα

= a2 + abTr(α) + b2N(α) ∈ Z.

For the other inclusion, suppose x = a + b
√
D ∈ Q(

√
D) is integral

over Z. Then Tr(x) = 2a ∈ Z and N(x) = a2− b2D ∈ Z. Thus a = a′/2 for
some a′ ∈ Z and (a′)2/4− b2D ∈ Z. Thus (2b)2D ∈ Z, so since D is square
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free the denominator of b is either 1 or 2. The denominator of b is 2 if and
only if the denominator of a is 2 since a2−b2D ∈ Z. If the denominator of b
is 1, then a, b ∈ Z and we are done, and if the denominator of b is 2, then
2b ∈ Z and (a′)2 ≡ (2b)2D (mod 4), so D is a perfect square modulo 4 and
hence D ≡ 1 (mod 4) (since D is square free) and x ∈ Z[α].

Definition 9.2.17 (Field Discriminant). Let γ1, γ2 be any basis forOK ,
e.g., γ1 = 1, γ2 = α where α is as in Proposition 9.2.16. The discriminant
of OK is

d = disc(OK) = det

((

γ1 γ′1
γ2 γ′2

))2

.

Making a different choice of basis γ1, γ2 amounts to changing the deter-
minant in the definition by ±1, so the discriminant is well defined.

Proposition 9.2.18. Let K = Q[
√
D] with D square free. Then the dis-

criminant of K is D if D ≡ 1 (mod 4) and 4D otherwise.

Proof. First suppose D ≡ 1 (mod 4). Then 1 and α = (1 +
√
D)/2 are a

basis for OK , so

d = det

((

1 α
1 α′

))2

= (−α′ − α)2

= (−
√
D)2 = D.

On the other hand, if D 6≡ 1 (mod 4), then α =
√
D and d = (−

√
D −√

D)2 = 4D.

Let d be the discriminant of Q[
√
D]. In Section 9.5 we will see that there

is an bijection between certain equivalence classes of ideals in OK and
equivalence classes of binary quadratic forms of discriminant d. The set of
equivalence classes of ideals in OK will have the structure of finite abelian
group induced by multiplication of ideals. Understanding whether or not
numbers are represented by certain quadratic forms, is related to deciding
whether or not certain ideals are principal in OK ; this leads to class field
theory, one of the major accomplishments of 20th century number theory.

9.3 Reduction Theory

Recall that a binary quadratic form is a polynomial of the form f(x, y) =
ax2+bxy+cy2. Our motivating problem is to decide which numbers are rep-
resented by f ; i.e., for which integers n do there exist integers x, y such that

ax2+bxy+cy2 = n? If g ∈ SL2(Z) then f(x, y) and f |g(x, y) = f

(

g

(

x
y

))

represent exactly the same set of integers. Also, disc(f) = disc(f |g), where
disc(f) = b2−4ac, and f is called positive definite if disc(f) < 0 and a > 0.

This section is about reduction theory, which allows us to decide whether
or not two positive definite binary quadratic forms are equivalent under the
action of SL2(Z).
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9.3.1 Reduced Forms

Definition 9.3.1 (Reduced). A positive definite quadratic form (a, b, c)
is reduced if |b| ≤ a ≤ c and if, in addition, when one of the two inequalities
is an equality (i.e., either |b| = a or a = c), then b ≥ 0.

There is a geometric interpretation of the notion of being reduced. Let

D = disc(a, b, c) = b2 − 4ac and set τ = −b+
√
D

2a , so τ is the root of
ax2 + bx + c with positive imaginary part. The right action of SL2(Z)
on positive definite binary quadratic forms corresponds to the left action
of SL2(Z) by linear fractional transformations on the complex upper half
plane h = {z ∈ C : Im(z) > 0}. The standard “fundamental domain” for
the action of SL2(Z) on h is

F =

{

τ ∈ h : Re(τ) ∈
[

−1

2
,
1

2

)

, |τ | > 1 or |τ | = 1 and Re(τ) ≤ 0

}

.

Then (a, b, c) is reduced if and only if the corresponding complex num-
ber τ lies in F . For example, if (a, b, c) is reduced then Re(τ) = −b/2a ∈
[−1/2, 1/2) since |b| ≤ a and if |b| = a then b ≥ 0. Also

|τ | =
√

b2 + 4ac− b2

4a2
=

√

c

a
≥ 1

and if |τ | = 1 then b ≥ 0 so Re(τ) ≤ 0.
The following theorem highlights the importance of reduced forms.

Theorem 9.3.2. There is exactly one reduced form in each equivalence
class of positive definite binary quadratic forms.

Proof. We have to prove two things. First, that every class contains at least
one reduced form, and second that this reduced form is the only one in the
class.

We first prove that there is a reduced form in every class. Let C be an
equivalence class of positive definite quadratic forms of discriminant D.
Let (a, b, c) be an element of C such that a is minimal (among elements of
C). Note that for any such form we have c ≥ a, since (a, b, c) is equivalent to
(c,−b, a) (use the matrix

(

0 −1
1 0

)

). Applying the element ( 1 k0 1 ) ∈ SL2(Z) to
(a, b, c) for a suitably chosen integer k (precisely, k = b(a− b)/2ac) results
in a form (a′, b′, c′) with a′ = a and b′ ∈ (−a′, a′]. Since a′ = a is minimal,
we have just as above that a′ ≤ c′, hence (a′, b′, c′) is “just about” reduced.
The only possible remaining problem would occur if a′ = c′ and b′ < 0.
In that case, changing (a′, b′, c′) to (c′′, b′′, a′′) = (c′,−b′, a′) results in an
equivalent form with b′′ > 0, so that (c′′, b′′, a′′) is reduced.

Next suppose (a, b, c) is a reduced form. We will now establish that
(a, b, c) is the only reduced form in its equivalence class. First, we check
that a is minimal among all forms equivalent to (a, b, c). Indeed, every other
a′ has the form a′ = ap2 + bpr+ cr2 with p, r coprime integers (see this by
hitting (a, b, c) by ( p qr s )). The identities

ap2 + bpr + cr2 = ap2
(

1 +
b

a

r

p

)

+ cr2 = ap2 + cr2
(

1 +
b

c

p

r

)
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then imply our claim since |b| ≤ a ≤ c (use the first identity if r/p < 1 and
the second otherwise). Thus any other reduced form (a′, b′, c′) equivalent
to (a, b, c) has a′ = a. But the same identity implies that the only forms
equivalent to (a, b, c) with a′ = a are obtained by applying a transformation

of the form

(

1 k
0 1

)

(corresponding to p = 1, r = 0). Thus b′ = b+2ak for

some k. Since a = a′ we have b, b′ ∈ (−a, a], so k = 0. Finally

c′ =
(b′)2 −D

4a′
=
b2 −D

4a
= c,

so (a′, b′, c′) = (a, b, c).

9.3.2 Finding an Equivalent Reduced Form

Here is how to find the reduced form equivalent to a given positive definite
form (a, b, c). Consider the following two operations, which can be used to
diminish one of a and |b|, without altering the other:

1. If c < a, replace (a, b, c) by the equivalent form (c,−b, a).
2. If |b| > a, replace (a, b, c) by the equivalent form (a, b′, c′) where

b′ = b + 2ka and k is chosen so that b′ ∈ (−a, a] (more precisely,
k = ba−b2a c), and c′ is found from the fact that (b′)2 − 4ac′ = D =

disc(a, b, c), so c′ = (b′)2−D
4a .

Starting with (a, b, c), if you iterate the appropriate operation, eventually
you will find the reduced form that is equivalent to (a, b, c).

Example 9.3.3. Let f = 458x2 + 214xy + 25y2.

Equivalent form What I did Matrix
(458, 214, 25)

(25,−214, 458) (1)
(

0 −1
1 0

)

(25,−14, 2) (2) with k = 4 ( 1 40 1 )

(2, 14, 25) (1)
(

0 −1
1 0

)

(2, 2, 1) (2) with k = −3
(

1 −3
0 1

)

(1,−2, 2) (1)
(

0 −1
1 0

)

(1, 0, 1) (2) with k = 1 ( 1 10 1 )

Let

g =

(

0 −1
1 0

)

·
(

1 4
0 1

)

·
(

0 −1
1 0

)

·
(

1 −3
0 1

)

·
(

0 −1
1 0

)

·
(

1 1
0 1

)

=

(

3 4
−13 −17

)

.

Then
f |g = x2 + y2!

Example 9.3.4. If f1 and f2 are binary quadratic forms that represent
exactly the same integers, is f1 ∼ f2? The answer is no. For example,
f1 = (2, 1, 3) = 2x2 + xy + 3y2 and f2 = (2,−1, 3) = 2x2 − xy + 3y2 are
inequivalent reduced positive definite binary quadratic forms that represent
exactly the same integers. Note that disc(f1) = disc(f2) = −23.
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9.4 Class Numbers

Proposition 9.4.1. Let D < 0 be a discriminant. There are only finitely
many equivalence classes of positive definite binary quadratic forms of dis-
criminant D.

Proof. Since there is exactly one reduced binary quadratic form in each
equivalence class, it suffices to show that there are only finitely many re-
duced forms of discriminant D. Recall that if a form (a, b, c) is reduced,
then |b| ≤ a ≤ c. If (a, b, c) has discriminant D then b2 − 4ac = D. Since
b2 ≤ a2 ≤ ac, we have D = b2 − 4ac ≤ −3ac, so

3ac ≤ −D.
There are only finitely many positive integers a, c that satisfy this inequal-
ity.

Definition 9.4.2. A binary quadratic form (a, b, c) is called primitive if
gcd(a, b, c) = 1.

Definition 9.4.3. The class number hD of discriminant D < 0 is the
number of equivalence classes of primitive positive definite binary quadratic
forms of discriminant D.

Table 9.1 lists the class numbers hD for −D ≤ 599 with D odd. Notice
that there are just a few 1s at the beginning and then no more.

Theorem 9.4.4 (Heegner, Stark-Baker, Goldfeld-Gross-Zagier).
Suppose D is a negative fundamental discriminant. Then

• hD = 1 only for D = −3,−4,−7,−8,−11,−19,−43,−67,−163.
• hD = 2 only for D = −15,−20,−24,−35,−40,−51,−52,−88,−91,
−115,−123,−148,−187,−232,−235,−267,−403,−427.

• hD = 3 only for D = −23,−31,−59,−83,−107,−139,−211,−283,−307,
−331,−379,−499,−547,−643,−883,−907.

• hD = 4 only for D = −39,−55,−56,−68, . . . ,−1555.

To quote Henri Cohen from [15, ref?]: “The first two statements con-
cerning class numbers 1 and 2 are very difficult theorems proved in 1952
by Heegner and in 1968–1970 by Stark and Baker. The general problem of
determining all imaginary quadratic fields with a given class number has
been solved in principle by Goldfeld-Gross-Zagier, but to my knowledge the
explicit computations have been carried to the end only for class numbers 3
and 4 (in addition to the already known class numbers 1 and 2).

9.5 Correspondence Between Binary Quadratic
Forms and Ideals

In this section we describe a bijection between certain equivalence classes
of ideals and certain equivalence classes of binary quadratic forms. Since
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TABLE 9.1. Class Numbers For D Odd

−D hD
3 1
7 1
11 1
15 2
19 1
23 3
27 1
31 3
35 2
39 4
43 1
47 5
51 2
55 4
59 3
63 4
67 1
71 7
75 2
79 5
83 3
87 6
91 2
95 8
99 2
103 5
107 3
111 8
115 2
119 10

−D hD
123 2
127 5
131 5
135 6
139 3
143 10
147 2
151 7
155 4
159 10
163 1
167 11
171 4
175 6
179 5
183 8
187 2
191 13
195 4
199 9
203 4
207 6
211 3
215 14
219 4
223 7
227 5
231 12
235 2
239 15

−D hD
243 3
247 6
251 7
255 12
259 4
263 13
267 2
271 11
275 4
279 12
283 3
287 14
291 4
295 8
299 8
303 10
307 3
311 19
315 4
319 10
323 4
327 12
331 3
335 18
339 6
343 7
347 5
351 12
355 4
359 19

−D hD
363 4
367 9
371 8
375 10
379 3
383 17
387 4
391 14
395 8
399 16
403 2
407 16
411 6
415 10
419 9
423 10
427 2
431 21
435 4
439 15
443 5
447 14
451 6
455 20
459 6
463 7
467 7
471 16
475 4
479 25

−D hD
483 4
487 7
491 9
495 16
499 3
503 21
507 4
511 14
515 6
519 18
523 5
527 18
531 6
535 14
539 8
543 12
547 3
551 26
555 4
559 16
563 9
567 12
571 5
575 18
579 8
583 8
587 7
591 22
595 4
599 25
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equivalence classes of ideals have a natural group structure, this bijection
induces a group structure on equivalence classes of binary quadratic forms.

For the rest of this section, K = Q(
√
d) is a quadratic field with discrim-

inant d (see Definition 9.2.17). Thus d ≡ 1 (mod 4) and d is square free
(not divisible by the square of any prime), or d ≡ 0 (mod 4) and d/4 is
square free and d/4 6≡ 1 (mod 4). Let OK denote the ring of all algebraic
integers in K, as in Section 9.2.5.

9.5.1 Correctly Ordered Basis For Ideals

Proposition 9.5.1. Suppose I ⊂ OK is an ideal. Then there exists α, β ∈
OK such that

I = Zα+ Zβ = {xα+ yβ : x, y ∈ Z}.

Proof. As an abelian group, OK is isomorphic to Z2. By the structure
theorem for finitely generated abelian groups[] and the fact that subgroups
of finitely generated abelian groups are finitely generated, I is isomorphic
to Zr for some positive integer r. Thus there is an inclusion Zr → Z2. This
extends to an injective vector space homomorphism Qr → Q2, so r ≤ 2.
Since I is an ideal, I has finite index in OK (see Exercise 6), so r ≥ 2.
Thus I is generated as a Z-module by two elements, α and β.

We view [α, β] as remembering our choice of ordered basis α, β. When
used as an ideal, interpret [α, β] to mean Zα+Zβ. Thus Proposition 9.5.1
asserts that for every ideal I is of the form [α, β] for some α, β ∈ OK . Note,
however, that there are many choices of α, β so that [α, β] is not an ideal.
For example, [2, i] in Z[i] is not equal to Z[i], but it contains the unit i, so
if it were an ideal then it would have to equal Z[i].

It is natural to define a binary quadratic form associated to I = [α, β]
as follows:

Q = N(αx+ βy)

= (αx+ βy)(α′x+ β′y)

= (αα′)x2 + (αβ′ + βα′)xy + ββ′y2.

Surprisingly, this definition would lead to a disastrous breakdown of the
theory! The quadratic form associated to I and the conjugate I ′ = [α′, β′]
would be the same. In Section 9.5.3 we will define a group structure on cer-
tain equivalence classes of ideals, and in this group the equivalence classes
[I] and [I ′] are inverses. Since there should be a bijection between equiv-
alence classes of binary quadratic forms and ideal classes, we would have
to have that [I][I] = [I][I ′] = 1, so the group of ideals would be a finite
2-torsion group, hence have order a power of 2, which is generally not the
case. We must be much more careful in how we associate a binary quadratic
form to an ideal.

Definition 9.5.2 (Correctly Ordered). A basis [α, β] for an ideal I is
correctly ordered if

αβ′ − βα′√
d

> 0.
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Example 9.5.3. Let d = −4 and let I be the ideal generated by (5, i − 2).
Note that OK = Z[i], so OK/I ∼= Z/5. We have I = [5, i − 2], since
[5, i − 2] ⊂ I and det

(

5 −2
0 1

)

= 5 (so that #(OK/[5, i − 2]) = 5). Notice
that [5, i− 2] is not correctly ordered because

5(−i− 2)− (i− 2)5√
−4 = −5 < 0.

The basis [i− 2, 5] is correctly ordered.

Proposition 9.5.4. Any two correctly ordered bases of an ideal I are equiv-
alent by an element in SL2(Z), and conversely.

Proof. Suppose [α, β] = [γ, δ] are two correctly ordered basis for an ideal I.
Because these are two different basis for the same free Z-module, there are
a, b, c, d ∈ Z such that

(

α
β

)

=

(

a b
c d

)(

γ
δ

)

= A

(

γ
δ

)

,

and det(A) = ±1 (this is just like a change of basis matrix in linear algebra;
its determinant is a unit in the base ring). Since a, b, c, d ∈ Z and the
conjugation automorphism fixes Z, we have

(

α α′

β β′

)

=

(

a b
c d

)(

γ γ′

δ δ′

)

.

Taking determinants, we have

αβ′ − βα′ = det(A)(γδ′ − δγ′). (9.1)

Since [α, β] and [γ, δ] are correctly oriented, we must have det(A) = +1, so
A ∈ SL2(Z).

Conversely, if A ∈ SL2(Z) and [γ, δ] is a correctly oriented basis then,
(

a b
c d

)(

γ γ′

δ δ′

)

=

(

α α′

β β′

)

and by (9.1) [α, β] is also correctly oriented.

9.5.2 Norms of Ideals

Definition 9.5.5 (Norm). The norm of a nonzero ideal I of OK is the
positive integer

N(I) = #(OK/I).

Proposition 9.5.6. II ′ = (N(I))

A complete proof is given in [16, pp.128–129]. This fact follows from
“Hurwitz’s Lemma”, i.e., it is nontrivial, and we will not give a proof here.

Lemma 9.5.7. Let (a, b) and (c, d) be elements of Z ⊕ Z such that D =
|det

(

a b
c d

)

| 6= 0. Then the quotient abelian group

M = (Z⊕ Z)/(Z(a, b) + Z(c, d))
is finite of order D.
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Proof. Let A =
(

a b
c d

)

. By repeatedly swapping rows, swapping columns,
adding a multiple of one row to another row, or adding a multiple of one
column to another column, we can transform A into a diagonal matrix
(

e 0
0 f

)

. Each swapping and adding operations changes at most change the
sign of the determinant, so |det(A)| = |ef |. We may thus assume that A is
diagonal, in which case the lemma is clear.

Lemma 9.5.8. Suppose I is an ideal of OK with basis [α, β], and let d be
the discriminant of K. Then

det

(

α α′

β β′

)2

= d ·N(I)2.

Proof. Let γ1, γ2 be a basis for OK . Since α and β can be written as a
Z-linear combination of γ1 and γ2 there is a 2 × 2 integer matrix A such
that

A

(

γ1
γ2

)

=

(

α
β

)

.

We have

det

(

α α′

β β′

)2

= det

(

A ·
(

γ1 γ′1
γ2 γ′2

))2

= det(A)2d

= N(I)2d,

where we use Lemma 9.5.7 to see that det(A) = N(I).

9.5.3 The Ideal Class Group

For the rest of this section, let K = Q(
√
d) be a quadratic field with

discriminant d.

Definition 9.5.9. Two ideals I, J ⊂ OK are equivalent, written I ∼ J , if
there are α, β ∈ OK such that

αI = βJ and N(αβ) > 0.

We will denote the set of equivalence classes of nonzero ideals in OK by
Cl+(OK).

Proposition 9.5.10. Multiplication of ideals gives Cl+(OK) an abelian
group structure in which the ideal class of OK = (1) is the identity element.

Proof. If I and J are ideals of OK then their product IJ = {xy : x ∈ I, y ∈
J} is again an ideal in OK . Multiplication of ideals is easily seen to be
associative and commutative, since the usual multiplication of elements in
OK is associative and commutative. Next we check that multiplication of
ideals induces a well-defined multiplication of ideal classes. If I0 ∼ J0 and
I1 ∼ J1, then there exists α0, β0, α1, β1 ∈ OK such that αiIi = βiJi for i =
0, 1. Multiplying these two equalities, we see that α0I0α1I1 = β0J0β1J1, so
α0α1I0I1 = β0β1J0J1, hence I0I1 ∼ J0J1. This proves that multiplication
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of ideals induces a well-defined associative commutative multiplication of
ideal classes.

To finish the proof, we verify that every element of Cl+(OK) has an
inverse. Let I = [α, β] be an ideal in OK . Then the ideal I ′ generated by
the conjugates of elements of I is [α′, β′]. By Proposition 9.5.6, the product
II ′ is the principal ideal generated by the positive integer #(OK/I). Thus
II ′ ∼ (1), so I has an inverse.

Example 9.5.11. Let K = Q[
√
−20]. Then Cl+(OK) is cyclic of order 2. A

non-identity element of Cl+(OK) is I = [1 +
√
−5, 2].

9.5.4 Correspondence Between Ideals and Forms

Recall that a binary quadratic form Q = ax2 + bxy + cy2 is primitive if
gcd(a, b, c) = 1 and has discriminant b2 − 4ac. The following proposition
associates a primitive binary quadratic form to an ideal of OK .

Proposition 9.5.12. Let I be an ideal in OK and let [α, β] be a correctly
ordered basis for I. Then the quadratic form

Q =
N(αx+ βy)

N(I)
= ax2 + bxy + cy2

has integral coefficients and is a primitive form of discriminant d.

Note that the numerator N(αx + βy) in the definition of Q depends on
the order of α and β.

Proof. We have

N(αx+ βy) = (αx+ βy)(α′x+ β′y)

= αα′x2 + (αβ′ + α′β)xy + ββ′y2

= Ax2 +Bxy + Cy2.

The coefficients A, B, and C are elements of Z because they are norms and
traces. They are also elements of (N(I)), since they are visibly elements of
II ′ and by Proposition 9.5.6, II ′ = (N(I)). Thus there exists a, b, c ∈ OK

such that
A = αα′ = aN(I),
B = αβ′ + α′β = bN(I),
C = ββ′ = cN(I).

Since A and N(I) are both in Z and a ∈ OK , we see that a ∈ Z; likewise,
b, c ∈ Z. Thus Q = ax2 + bxy + cy2 has coefficients in Z.

By Lemma 9.5.8,

b2 − 4ac = (B2 − 4AC)/N(I)2

= (αβ′ − βα′)2/N(I)2 = d,

where d is the discriminant of K.
All that remains is to show that gcd(a, b, c) = 1. If f is a positive divisor

of gcd(a, b, c), then f2 | b2 − 4ac = d. If d ≡ 1 (mod 4) then d is square
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free so f = 1. If d ≡ 0 (mod 4) then d′ = d/4 is square free and d′ 6≡ 1
(mod 4), so f = 1 or f = 2. If f = 2 write a = 2a′, b = 2b′, and c = 2c′ for
integers a′, b′, c′ with b′ odd. Then

b2 − 4ac = 4b′2 − 16a′c′ = 4d′.

Reducing this equation modulo 16 implies that 4b′2 ≡ 4d′ (mod 16). Di-
viding this congruence through by 4 implies that b′2 ≡ d′ (mod 4). Since
b′ is odd, b′2 ≡ 1 (mod 4), which contradicts the fact that d′ 6≡ 1 (mod 4).
Thus f = 1 in all cases, so ax2 + bxy + cy2 is primitive.

Example 9.5.13. Let K = Q[
√
−20] and I = [1 +

√
−5, 2], as in Exam-

ple 9.5.11. Then

N(αx+ βy) = ((1 +
√
−5)x+ 2y)((1−

√
−5)x+ 2y)

= 6x2 + 4xy + 4y2.

The norm of I is |det(( 1 21 0 ))| = 2. Thus Q = 3x2 + 2xy+ 2y2. Notice, as a
check, that disc(Q) = b2 − 4ac = 22 − 4 · 3 · 2 = −20.
Example 9.5.14. Let K = Q[

√
23], which has discriminant d = 92. The

ideal I = (
√
23) is principal, but it is not equivalent to (1) ∈ Cl+(OK).

The quadratic form associated to I = [
√
23, 23] is

Q =
−23x2 + 232y2

23
= −x2 + 23y2.

The quadratic form associated to (1) = [
√
23, 1] is R = −23x2 + y2. These

two forms can not be equivalent since Q represents −1 but R doesn’t (since
modulo 4 we have R ≡ x2 + y2, which never takes on the value 3 mod 4).

Proposition 9.5.15. Let Q = ax2 + bxy + cy2 be a primitive binary
quadratic form of discriminant d (if d < 0 assume that a > 0). Then

I = [α, β] =

{

[a, b−
√
d

2 ] if a > 0,

[a
√
d, ( b−

√
d

2 )
√
d] if a < 0.

is an ideal of OK and [α, β] is a correctly ordered basis for I.

Example 9.5.16. Let d = −20 and Q = 3x2 + 2xy + 2y2. Then I =
[3, 1 −

√
−5]. Notice that I 6= [1 +

√
−5, 2], so the operations of the two

propositions are not inverses before passing to equivalence classes.

Proof. All we have to do is check that γ = (b −
√
d)/2 is in OK and

that I is correctly ordered. If d ≡ 1 (mod 4) then b is odd, so γ ∈ OK =
Z[(1 +

√
d)/2], and if d ≡ 0 (mod 4) then b is even, so

γ =
2b′ − 2

√

d′/4

2
∈ OK = Z[

√
d′].

It is straightforward but tedious to check that the given basis is ordered.
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Theorem 9.5.17. Let K be a quadratic field with discriminant d. Let
Q(d) be the set of equivalence classes of primitive binary quadratic forms
of discriminant d (if d < 0 include only positive definite forms in Q).
Then Propositions 9.5.12 and 9.5.15 induce a bijection between Q(d) and
Cl+(OK). In particular, Q(d) has the structure of finite abelian group.

The proof is in [16, 204–206]. It is not difficult, but is long, so we will
omit it.
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Exercises

9.1 Which of the following numbers is a sum of two squares? Express
those that are as a sum of two squares.

−389, 12345, 91210, 729, 1729, 68252

9.2 (a) Write a simple computer program that takes a positive integer n
as input and outputs a sequence [x,y,z,w] of four integers such
that x2 + y2 + z2 + w2 = n.

(b) Write 2001 as a sum of three squares.

9.3 Find a positive integer that has at least three different representations
as the sum of two squares, disregarding signs and the order of the
summands.

9.4 Show that a natural number n is the sum of two integer squares if
and only if it is the sum of two rational squares.

9.5 Show that an odd prime p is of the form 8m + 1 or 8m + 3 if and
only if it can be written as p = x2+2y2 for some choice of integers x
and y.

9.6 Let K be a quadratic field and let I be a nonzero ideal in OK . Use
Lemma 9.5.7 to prove the OK/I is finite.

9.7 A triangular number is a number that is the sum of the firstm integers
for some positive integer m. If n is a triangular number, show that
all three of the integers 8n2, 8n2 + 1, and 8n2 + 2 can be written as
a sum of two squares.

9.8 Prove that of any four consecutive integers, at least one is not repre-
sentable as a sum of two squares.

9.9 Show directly that 13x2 + 36xy + 25y2 and 58x2 + 82xy + 29y2 are
each equivalent to the form x2 + y2, then find integers x and y such
that 13x2 + 36xy + 25y2 = 389.

9.10 What are the discriminants of the forms 199x2 − 162xy + 33y2 and
35x2 − 96xy + 66y2? Are these forms equivalent?

9.11 For any negative discriminant D, let CD denote the finite abelian
group of equivalence classes of primitive positive definite quadratic
forms of discriminant D. Use a computer to compute representatives
for CD and determine the structure of CD as a produce of cyclic
groups for each of the following five values of D:

D = −155,−231,−660,−12104,−10015.
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10
Introduction to Elliptic Curves

Elliptic curves are central to modern number theory. Andrew Wiles proved
a deep conjecture about them which implied Fermat’s Last Theorem, and
the Birch and Swinnerton-Dyer conjecture remains a tantalizing open prob-
lem. Cryptographers use elliptic curves to make potent cryptosystems with
small key sizes and mathematicians also use elliptic curves to factor large
integers. After introducing elliptic curves in this chapter, we will discuss
cryptographic applications in Chapter 11, Fermat’s Last Theorem in Chap-
ter 12, and the Birch and Swinnerton-Dyer conjecture in Chapter 13.

In this chapter we define elliptic curves and discuss why the set of points
on an elliptic curve forms a group. We begin with the definition of an elliptic
curve over the complex numbers in Section 10.1. Section 10.2 is about the
group law on an elliptic curve. In Section 10.3 we return to number theory,
and consider the subgroup of points on an elliptic curve with coordinates
in a fixed number field, such as the rational numbers. This part of the book
assumes more geometry, analysis and algebra than the preceding chapters.
Dive in and learn some modern number theory!

The reader may wish to consult the following books while reading this
chapter. For basics about elliptic curves, see [58]; for more advanced results
about elliptic curves, see [57]; for abstract algebra, see [4]; for algebraic
geometry, see [43].

10.1 Elliptic Curves Over the Complex Numbers

We define elliptic curves over the complex numbers by first considering a
curve in the plane and adding an extra point at infinity. Let a, b ∈ C be
complex numbers and let

Y = {(x, y) ∈ C2 : y2 = x3 + ax+ b}.



130 10. Introduction to Elliptic Curves

Missing point

FIGURE 10.1. Y is Homeomorphic to a Torus With a Point Removed

Assume that x3 + ax + b has distinct roots, so Y has no singularities. (A
curve F = 0 has a singularity at a point (c, d) if F (c, d) = ∂F/∂x(c, d) =
∂F/∂y(c, d).) Excluding roots of x3 + ax+ b, for each value of x there are
two values of y that satisfy the equation y2 = x3 + ax+ b, so the subset Y
of C×C ∼= R4 has dimension 2.

The general theory of elliptic functions implies that there is a homeo-
morphism between Y and a torus with one point removed (Figure 10.1).
Notice that Y is “incomplete” since it is missing a point. We now try to
find the missing point.

The set Y is closed when viewed as a subset of C2, since it is the inverse
image of 0 under the continuous map C2 → C given by

(x, y) 7→ y2 − x3 − ax− b.

Thus we will not find the missing point by taking the closure of Y in C2.
We instead consider Y as a subset of the complex projective plane P2,
which we will define below. We find the missing point in the closure of Y
in P2.

10.1.1 A Review of Basic Topology

In order to define the projective plane, we must first review some basic
topology. In this section we define topological space, continuous map, con-
nectedness, and the induced topology.

A topological space is a set X together with a collection of open subsets
U ⊂ X that are closed under arbitrary unions, finite intersections, and X
and ∅ are open. A subset A ⊂ X is closed if X \A is open.

A continuous map f : X → Y of topological spaces is a map such that
whenever U ⊂ Y is open, the inverse image f−1(U) is open in X. Because
f−1(X\A) = X\f−1(A), one sees that f is also continuous if and only if the
inverse image of every closed subset of Y is closed in X. A homeomorphism
is a continuous bijection with continuous inverse.

A subset U ⊂ X is clopen if it is both open and closed. A topological
space X is connected if it has no clopen subsets besides ∅ and X. The
continuous image of a connected set is connected (see Exercise 10.1).
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FIGURE 10.2. The Projective Plane: The usual plane along with a projective
line at infinity

Suppose X is a topological space and f : X → Y is a map from X to a
set Y . The induced topology on Y is the topology in which the open subsets
of Y are the subsets U ⊂ Y such that f−1(U) is an open subset of X. This
is the “coarsest” topology on Y that makes the map f continuous.

10.1.2 The Projective Plane

Definition 10.1.1 (Projective Plane). The projective plane P2 is the
set of triples (a, b, c) ∈ C3 with a, b, c not all 0, modulo the equivalence
relation

(a, b, c) ∼ (λa, λb, λc)

for all nonzero λ ∈ C. Denote by (a : b : c) the equivalence class of (a, b, c).
The topology on P2 is the one induced by viewing it as a quotient of
C3 \ {0}.

The projective plane is a bigger than the usual plane, in the following
sense. There is a map C2 ↪→ P2 that sends (a, b) to (a : b : 1), and the
complement of the image is a projective line:

P2 \C2 ∼= {(a : 1 : 0) : a ∈ C} ∪ {(1 : 0 : 0)}.

Thus P2 is set-theoretically the disjoint union

C2 ∪C ∪ {point}

(see Figure 10.2). Since P2 is a continuous image of the connected set C3 \
{0}, we see that P2 is also connected, so we should not view P2 “topolog-
ically” as the above disjoint union. The inverse image of C2 in C3 \ {0} is
the complement of the (closed) plane {(a, b, 0) : a, b ∈ C}, so C2 is an open
subset of P2. Since P2 is connected, C2 is not a closed subset of P2.

Exploring this idea further, it is useful to view P2 as being covered by 3
copies of C2, though not disjointly. We consider three ways to embed C2

as an open subset of P2; these three embeddings send (a, b) to (1 : a : b),
(a : 1 : b), and (a : b : 1), respectively. We will denote the three images of
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C2 by U1, U2, and U3, respectively. Notice that P2 = U1 ∪ U2 ∪ U3, but
that the union is not disjoint. In order to “see” a subset S of P2, it is often
useful to look at S ∩ Ui for each i.

Lemma 10.1.2. Let Y be the set of solutions to the equation y2 = x3 +
ax+ b. Then

Y ∩ U2 =
{(

x

y
: 1 :

1

y

)

: y2 = x3 + ax+ b and y 6= 0

}

.

In particular, Y is not closed in P2, since (0 : 1 : 0) is a limit point of Y ∩U2
that is not contained in Y ∩ U2.

Proof. The first equality follows from the definitions. To see that (0 : 1 : 0)
is a limit point, let α1/2 denote the positive square root of the positive real
number α. Then as |x| → ∞ we have |x/y| = |x|/|x3 + ax+ b|1/2 → 0 and
|1/y| = 1/|x3 + ax+ b|1/2 → 0.

For example, let Y ⊂ C2 ∼= U3 be the set of solutions to y
2 = x3−x. We

can draw a graph of Y ∩ Ui for i = 1, 2, 3. The intersection Y ∩ U1 is the
set of projective points (1 : y : z) ∼ (1/z : y/z : 1) ∈ P2 such that z 6= 0
and

(y

z

)2

=

(

1

z

)3

− 1

z
.

Multiplying through by z3 we see that

Y ∩ U1 = {(y, z) : y2z = 1− z2 and z 6= 0}.

Similarly,
Y ∩ U2 = {(x, z) : z = x3 − xz2 and z 6= 0}.

The graphs of Y ∩U1 in the y-z plane, Y ∩U2 in the x-z plane and Y ∩U3
in the y-z plane are given in Figure 10.3.

10.1.3 The Closure of Y in P2 Contains One Extra Point

Proposition 10.1.3. The closure of the graph Y of y2 = x3 + ax + b in
P2 is the graph E of y2z = x3 + axz2 + bz3 in P2. We have

E = {(x : y : z) ∈ P2 : y2z = x3 + axz2 + bz3}
= Y ∪ {(0 : 1 : 0)}.

Proof. The inverse of image of E in C3 \{0} is the inverse image of 0 under
the continuous map C3 \ {0} → C defined by

(x, y, z) 7→ y2z − (x3 + axz2 + bz3),

so E is closed. The difference E \ Y is the set of points (x : y : 0) that
satisfy y2z = x3 + axz2 + bz3, so E \ Y = {(0 : 1 : 0)}. Thus E is closed
and E = Y ∪ {(0 : 1 : 0)}. By Lemma 10.1.2, Y is not closed in P2, so E
is the closure of Y in P2.
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FIGURE 10.3. Graphs of real solutions to y2 = x3
− x from three points of view

We will refer to the point (0 : 1 : 0) on E as the point at infinity.

Definition 10.1.4 (Elliptic Curve). An elliptic curve over the complex
numbers C is the closure E ⊂ P2 of the solution set Y ⊂ C2 of an equation

y2 = x3 + ax+ b,

with a, b ∈ C and ∆ = −16(4a3 + 27b2) 6= 0.

If 4a3+27b2 = 0 then the cubic x3+ax+b has a repeated root α. Locally
at (α, 0), Y is does not behave like an open subset of C. The geometry of
such singular curves is much different than the geometry of elliptic curves,
which is why we exclude them. See Figure 10.4 for graphs of the real points
on the two singular curves y2 = x2(x− 1) and y2 = x3.

An ellipse is the graph of ax2+by2 = r with a, b, r > 0. Elliptic curves are
not ellipses! They are called “elliptic” because they arise when studying arc
lengths of ellipses (see Exercise 10.16). Elliptic curves aren’t always called
elliptic curves; e.g., in the early 1960s Cassels called them “abelian varieties
of dimension one” (see [13]).

We could have considered curves Y defined instead as the set of complex
solutions of a general cubic equation

F (x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + ex+ hy + i = 0.

As long as Y is nonsingular (i.e., F = ∂F/∂x = ∂F/∂y = 0 has no common
solution), there is a change of variables that transforms F = 0 into the form
y2 = x3 + ax + b (see [58, §I.3] where this is explained beautifully). This
statement is no longer true if C is replaced by a field in which 2 or 3 is
not invertible, and in Chapter 11 we will consider elliptic curves over finite
fields, so it will be necessary to consider more general equations for elliptic
curves.
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FIGURE 10.4. Graphs of the Singular Curves y2 = x2(x+ 1) and y2 = x3

10.2 The Group Structure on an Elliptic Curve

Let E be an elliptic curve over C. There is a natural structure of abelian
group on the set E ⊂ P2. We first describe it geometrically in Section 10.2.1,
then in Sections 10.2.2–10.2.5 we give a detailed description from the point
of view of algebraic geometry, which brings out a connection with the group
of nonzero ideal classes in the ring of integers of an imaginary quadratic
field (see Section 9.5). In Section 10.2.7 we mention an analytic descrip-
tion of the group law that involves elliptic functions from complex analysis.
Finally in Section 10.2.9 we give formulas that make the group law explicit.

The reader is encouraged to also look at [58, §I.2].
There is also a very geometric description of composition of binary quadratic

forms, due to Manjul Bhargava, that closely resembles the geometric de-
scription of the group law.

Remark 10.2.1. Any nonempty set can be endowed with an abelian group
structure (see Exercise 10.12), so it is not interesting to prove that a set has
a group structure, unless that group structure is in some way “natural”.

The geometric description of the group law is easy to understand but
it is tedious to give a purely geometric proof that the group operation
satisfies the associative law. The description using algebraic geometry in-
troduces several beautiful structures on curves (not just elliptic curves),
but requires nontrivial algebraic machinery (free abelian groups, maximal
ideals, properties of rational functions), but associativity of the group law
fallows naturally from the construction. The reader whose algebraic back-
ground is not strong may safely skip or skim Sections 10.2.2–10.2.5. We do
not give complete proofs of everything below, but come close.
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FIGURE 10.5. The Group Law: (1, 0) + (0, 2) = (3, 4) on y2 = x3
− 5x+ 4

10.2.1 Geometric Description of the Group Law

Given two points P 6= Q in E ⊂ P2, we obtain a point R = P + Q ∈ E
as illustrated in Figure 10.5. Let L ⊂ P2 be the unique line that passes
through P and Q, and if P = Q let L be the line tangent to E at P .
Counting multiplicities properly, e.g., a point of tangency has multiplicity 2,
the line L meets E in precisely three points P , Q, and R′. Let L′ be the
line in P2 that goes through R′ and O. Again, L′ meets E in three points
R′, O, and R. This point R is the sum of P and Q.

Notice that R′ is the additive inverse of R since to obtain R + R′ we
draw the line through R′ and R; the third intersection point is O. The line
tangent to O has a triple tangent at O (i.e., O is an inflection point), so
R′ +R = O. See the second graph in Figure 10.3, which illustrates that O
is an inflection point. In summary, the point O = (0 : 1 : 0) ∈ E at infinity
is the identity element of the group, and P+Q+R = O if and only if P , Q,
and R are collinear.

10.2.2 Divisors

Let S be a set. The free abelian group F (S) on S is the group whose
elements are the set of all finite formal linear combinations

∑r
i=1 nixi where

x1, . . . , xr ∈ S and n1, . . . , nr ∈ Z. The addition operation is

r
∑

i=1

nixi +

r
∑

i=1

mixi =

r
∑

i=1

(ni +mi)xi.
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For example, if S = ∅, then F (S) = {0}, and if #S = 1, then F (S) is
isomorphic to the additive group of integers.

Definition 10.2.2 (Divisors). The group Div(E) of divisors on E is the
free abelian group F (E) on the elements of E. Thus Div(E) is the set of
all finite formal linear combinations

n1P1 + n2P2 + · · ·+ niPi

with ni ∈ Z and Pi ∈ E.

Because Div(E) is a free abelian group, there are no relations among the
points; thus, e.g., if P , Q, and R are in E then by definition we will never
have P +Q = R in Div(E).

Example 10.2.3. If E is defined by y2 = x(x− 1)(x+ 1), then

2(0, 0)− 3(1, 0) + (−1, 0) + (2,
√
6)

is an element of Div(E).

There seems to be no “natural” way in which the elements of Div(E) are
in bijection with E, so we consider the quotient of Div(E) by the subgroup
of principal divisors in Div(E). This is analogous to considering the quotient
of the nonzero ideals of a quadratic field by the equivalence relation ∼ of
Section 9.5.3.

10.2.3 Rational Functions

Definition 10.2.4 (Rational Functions on P2). A rational function on
P2 is an element of the field C(x, y) of all quotients p(x, y)/q(x, y) where
p(x, y) and q(x, y) are arbitrary polynomials in two variables with q 6= 0.

A monomial is a polynomial in n-variables x1, . . . , xn of the form P =
xa1
1 x

a2
2 · · ·xan

n . The degree of the monomial P is a1 + · · ·+ an.

Definition 10.2.5 (Homogeneous Polynomial). A homogeneous poly-
nomial in n-variables and of degree d is a polynomial P (x1, . . . , xn) such
that each monomial occurring in P is of degree d.

For example, x2 + y2 is homogeneous polynomial, but y2 + x3 is not.
Also, if P is homogeneous polynomial of degree d, then for every λ,

P (λx1, . . . , λxn) = λdP (x1, . . . , xn).

A rational function f = p(x, y)/q(x, y) ∈ C(x, y) determines an alge-
braic map P2 → P1 as follows. Let P (X,Y, Z) = Zrp(X/Z, Y/Z) and
Q(X,Y, Z) = Zsq(X/Z, Y/Z), where r and s are the degrees of p and q,
respectively. If s < r, replace Q by Zr−sQ or if r < s replace P by Zs−rP ,
so that P and Q have the same degree. Then

(a : b : c) 7→ (P (a, b, c) : Q(a, b, c))

is a well-defined algebraic map from P2 → P1.
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Warning: It is not true that every algebraic map P2 → P1 is induced
by a rational function. For example, the constant function that sends each
element of P2 to (1 : 0) does not come from a rational function, since a
rational function that induced it would have a denominator of 0.

Let E be the elliptic curve defined by y2 = x3 + ax+ b.

Definition 10.2.6 (Rational Function on E). A rational function on E
is an element of the field

K(E) = C(x)[y]/(y2 − (x3 + ax+ b)) = C(x)(
√

x3 + ax+ b).

Thus K(E) is the field generated by x and y where x is an indeterminate
and y satisfies y2 = x3 + ax+ b, so K(E) is a quadratic field extension of
C(x).

Proposition 10.2.7. K(E) is a field.

Proof. Let F be an arbitrary field and suppose α ∈ F is not the square
of any element of F . We claim that K = F [t]/(t2 − α) is a field. Suppose
a+ bt is a nonzero element of K. Then

1

a+ bt
=

1

a+ bt
· a− bt

a− bt
=

a

a2 − b2α
+

−b
a2 − b2α

t ∈ K.

The element α = x3 + ax+ b ∈ C(x) is not a square because the squares
in C(x) have even degree.

Just as is the case for rational functions on P2, a rational function on E
determines an algebraic map E → P1, (but not conversely).

The analogue of the ring of integers of K(E) is called the “affine coordi-
nate ring” of E.

Definition 10.2.8 (Affine Coordinate Ring of E). The affine coordi-
nate ring of E is the subgroup

A(E) = C[x, y]/(y2 − (x3 + ax+ b)) = C[x][
√

x3 + ax+ b].

It is a fact that A(E) is integrally closed in K(E); see Exercise 10.5 for
some examples and [43, Cor. VII.2.7] for a proof. We will not use this fact
in this book, except to make a connection between ideal theory of quadratic
imaginary fields and the group law on an elliptic curve.

Proposition 10.2.9. There is a natural bijection between the maximal
ideals of the ring A(E) and the elements of E \ {O}. Under this bijection
the maximal ideal m = (x−α, y− β) corresponds to the point (α, β) on E.

Proof. If (α, β) ∈ C2 is a point on E let m = (x− α, y − β) be the ideal in
A(E) generated by x−α and y−β. Since m is the kernel of the homomor-
phism A(E) → C sending x to α and y to β, we see that m is a maximal
ideal.

Conversely, suppose that m is a maximal ideal of A(E). The inverse
image of any prime ideal under any homomorphism is a prime ideal (see
Exercise 10.6). Thus the inverse image of m in C[x] under the inclusion
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C[x] ↪→ A(E) is a nonzero prime ideal of C[x], so it is of the form (x− α)
for some α ∈ C. Thus A(E)/m is a quotient of

R = C[y]/(y2 − α3 − aα− b).

Since C is algebraically closed, the maximal ideals of R correspond to the
points on E with x-coordinate α. Thus m corresponds to a point (α, β)
on E.

10.2.4 Principal Divisors

Let K(E)× denote the group of nonzero elements of K(E), and suppose
f = p(x, y)/q(x, y) ∈ K(E)×, where p, q ∈ A(E) with p, q 6= 0. Let P =
(α : β : 1) ∈ E \ {O} and let m = (x − α, y − β) be the corresponding
maximal ideal of A(E) as in Proposition 10.2.9. The order of vanishing of
p(x, y) at P is

ordP (p(x, y)) = max{n : p ∈ mn} ∈ Z,

and likewise the order of vanishing of q(x, y) at P is

ordP (q(x, y)) = max{n : q ∈ mn} ∈ Z.

The points P where ordP (p(x, y)) > 0, are the points where the graph of
p(x, y) = 0 intersects E. Since p 6= 0 ∈ A(E), there are only finitely many
points of intersection of the graph of p = 0 and E, so there are only finitely
many points P where ordP (p(x, y)) > 0.

The order of the rational function f at P is

ordP (f) = ordP (p(x, y))− ordP (q(x, y)) ∈ Z.

Let O = (0 : 1 : 0) be the point at infinity on E. We define, in a seemingly
totally ad hoc manner,

ordO(f) = −
∑

ordP (f) ∈ Z,

where the sum is over all P = (α : β : 1) ∈ E \ {O}. This is the same
value we would obtain if we were to define A(E), etc., as above, but with
U3 replaced by U2, but we will not prove this fact in this book.

Definition 10.2.10 (Divisor of a Function). Let f ∈ K(E)×. The
principal divisor associated to f is

(f) =
∑

all P∈E
ordP (f) · P ∈ Div(E).

The map K(E)× → Div(E) is a group homomorphism; that is to say,
the order of vanishing at a point P of the product of two functions on E is
the sum of their orders of vanishing at P , a fact we will not prove here.



10.2 The Group Structure on an Elliptic Curve 139

10.2.5 The Picard Group and the Group Law

Let Prin(E) be the subgroup of Div(E) of principal divisors.

Definition 10.2.11 (The Picard Group). The Picard group of E is

Pic(E) = Div(E)/Prin(E).

Alternatively, Pic(E) is the set of equivalence classes of elements of Div(E)
with respect to the equivalence relation ∼ in which D1 ∼ D2 if and only
if there is a rational function f ∈ K(E)× such that D1 −D2 = (f) (this is
called linear equivalence).

The Picard group is much “smaller” than Div(E) and has a more inter-
esting structure. It is still slightly too big.

Definition 10.2.12 (Degree). The degree of a divisor
∑

niPi ∈ Div(E)
is
∑

ni ∈ Z. Suppose f is a nonzero rational function on E with divisor
(f) =

∑

niPi. Then the degree of f is the sum of the ni such that ni is
positive.

Notice that the degree map Div(E)→ Z is a group homomorphism. Let
Div0(E) denote the subgroup of divisors of degree 0. Because of how we
defined ordO(f) for O = (0 : 1 : 0), it is trivially true that Prin(E) ⊂
Div0(E). Let

Pic0(E) = Div0(E)/Prin(E).

Lemma 10.2.13. There are no rational functions of degree 1 on an elliptic
curve.

Proof. A rational function of degree 1 would define a homeomorphism be-
tween E and P1, which is impossible because E is a torus and P1 is a
sphere. (That the torus and sphere are not homeomorphic can be seen us-
ing algebraic topology The key fact is that there are closed loops on the
torus that cannot be deformed to a point, but any closed loop on a sphere
can be deformed to a point.)

Theorem 10.2.14. The map Φ : E → Pic0(E) that associates to a point
P ∈ E(C) the class of the degree 0 divisor P − O is a bijection. Since
Pic0(E) is a group, this bijection induces a group structure on E. In this
group, if P , Q, and R are collinear points on E, then P +Q+R = 0.

Proof. First we show that Φ is injective. If Φ(P ) = Φ(Q) with P 6= Q, then
P − O ∼ Q − O. Thus P ∼ Q, so there is a rational function f on E of
degree 1, which contradicts Lemma 10.2.13. Thus Φ is injective.

To show that Φ is surjective, we must show that every element of Div0(E)
is equivalent to an element of the form P − O for some P ∈ E. Suppose
∑

niPi is an element of Div0(E). Then
∑

niPi =
∑

ni(Pi − O) since
∑

ni = 0. By induction it thus suffices to show that (P − O) ± (Q −
O) ∼ R − O for some R. We do this using rational functions of the form
f = cx+dy+ e. Because E is defined by a cubic equation y2 = x3+ax+ b,
the divisor of f is

(f) = P +Q+R− 3O,



140 10. Introduction to Elliptic Curves

where P , Q, and R are the three points of intersection of the line f = 0
with E, counted with multiplicity. Thus

(P −O) + (Q−O) + (R−O) ∼ 0.

If R = (x, y), let R̃ = (x,−y). Then using a vertical line we see that
R+ R̃ ∼ 2O, so

(R−O) + (R̃−O) ∼ 0.

Thus (P − O) + (Q − O) ∼ (R̃ − O). Likewise, (P − O) − (Q − O) ∼
(P −O) + (Q̃−O), so (P −O)− (Q−O) is equivalent to a divisor of the
desired form. This completes the proof.

Remark 10.2.15. If E is replaced by a plane curve X of higher degree
(without singularities), then everything that we stated about divisors is true
except Theorem 10.2.14, which is false. Instead we have only an injective
map X ↪→ Pic0(X). The group Pic0(X) is called the Jacobian of X and
has additional geometric structure (e.g., its elements are in natural bijection
with the points on an algebraic variety of dimension (d−1)(d−2)/2, where d
is the degree of X and an algebraic variety is a subset of Pn defined by
polynomial equations). Thus, though X(C) does not have a natural group
structure, it embeds in an algebraic-geometric object which does.

10.2.6 The Group Operation Corresponds to Multiplication of

Ideal Classes

Just as was the case for composition of positive definite binary quadratic
forms, the group structure on an elliptic curve is induced by multiplication
of ideal classes.

Let I denote the set of nonzero ideals of the affine coordinate ring A(E)
of E. One can prove that every element of I is a product of maximal ideals
of A(E). By Proposition 10.2.9, these maximal ideals are in bijection with
the points E. Define an equivalence relation ∼ on I by I ∼ J if there
are nonzero f, g ∈ A(E) such that (f)I = (g)J , and let Cl(A(E)) denote
the group of equivalence classes of nonzero ideals under multiplication.
Then the map Cl(A(E)) → Pic0(E) which sends the class of the maximal
ideal m corresponding to a point P to the class of the divisor P −O is an
isomorphism.

10.2.7 Analytic Description of the Group Law

An alternative approach to the group law is via the Weierstrass ℘ function
from complex analysis (see, e.g., [57, Ch. 6]). Let a and b be complex
number with 4a3 + 27b2 6= 0. The Weierstrass ℘ function associated to a
and b is a function ℘ : C→ C ∪ {∞} whose set of poles (points that map
to∞) are of the form Zω1+Zω2, where ω1, ω2 ∈ C have the property that
Rω1 +Rω2 = C. Moreover, ℘ is periodic with periods ω1 and ω2, in the
sense that ℘(z + n1ω1 + n2ω2) = ℘(z) for all z ∈ C.

The connection with elliptic curves via ℘ is illustrated in Figure 10.6.
If x = 4℘ and y = 4℘′, then y2 = x3 + ax + b, and z 7→ (4℘(z), 4℘′(z))
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FIGURE 10.6. The Weierstrass ℘ Function and Elliptic Curves

extends to a complex analytic bijection

f : C/(Zω1 + Zω2)→ E.

Since C/(Zω1 + Zω2) is an abelian group, f induces a group structure
on E, and one can show that this group structure is the same as the one
obtained above using divisors. Also note that the quotient C/(Zω1+Zω2)
is topologically homeomorphic to a torus.

10.2.8 An Example

Let E be the elliptic curve defined by y2 = x3 − 5x + 4 (see Figure 10.5).
Then P = (0, 2), Q = (1, 0), R = (3, 4) and R′ = (3,−4) are elements of
E and, as illustrated in Figure 10.5, P + Q = R. We verify this from the
point of view of divisors and the Weierstrass ℘ function.

From the point of view of divisors, P +Q = R is the assertion that

P −O +Q−O ∼ R−O.

To verify this, we exhibit a rational function f such that

(f) = P −O +Q−O − (R−O) = P +Q−R−O,

i.e., so that f has simple zeros at P and Q and simples poles at R and O.
Let f = 2x+y−2

x−3 . Then

(2x+ y − 2) = P +Q+R′ − 3O
(x− 3) = R+R′ − 2O,

so
(f) = P +Q+R′ − 3O − (R+R′ − 2O) = P +Q−R−O

as required.
Let ℘ be the Weierstrass function associated to y2 = x3 − 5x + 4. The

poles of ℘ are the elements of Λ = Zω1 + Zω2 where

ω1 = 2.3970980311644782804 . . . , ω2 = i1.6043106621845101475 . . . .
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Under the map z 7→ (4℘(z), 4℘′(z)) we have

zP = 0.58916472693707629 . . . + i0.8021553310922550 . . . 7→ P

zQ = 1.19854901558223914 . . . + i0.8021553310922588 . . . 7→ Q

zR = 1.78771374251931543 . . . 7→ R

We have zP + zQ = zR + ω2, so zP + zQ = zR (mod Λ), as expected.

10.2.9 Formulas for the Group Law

In this section we give a description of the group law in terms of formulas.
Suppose that P = (x1, y1) and Q = (x2, y2) are nonzero points on y2 =
x3+ax+ b. If P 6= ±Q, let λ = (y1−y2)/(x1−x2) and ν = y1−λx1. Then
P +Q = (x3, y3) where

x3 = λ2 − x1 − x2 and y3 = −λx3 − ν.

If P = −Q (i.e., x1 = x2 and y1 = −y2), then P + Q = 0. If P = Q (but
P 6= −Q) then

x3 =
(x21 − a)2 − 8bx1

4y21
,

y3 =
(3x21 + a)(x1 − x3)− 2y21

2y1
.

Note that in case P 6= Q, the group law equations do not involve a
and b! However, in this case P and Q completely determine a and b (see
Exercise 10.12).

10.3 Rational Points

Choose a, b ∈ C and consider the abelian group E associated to y2 =
x3+ax+b. As described in Section 10.2.7, E is isomorphic toC/(Zω1+Zω2)
for complex numbers ω1 and ω2. ViewingC as a two-dimensional real vector
space with basis ω1 and ω2, we see that

E ∼= C/(Zω1 + Zω2) ∼= (R/Z)⊕ (R/Z).

Thus, as an abstract abelian group, E does not depend on the elliptic
curve E!

A number field is a field K that contains Q and is finite dimensional
when viewed as a Q-vector space. Think of K as being obtained from Q by
“adjoining” toQ a root of a polynomial with coefficients inQ. For example,
K = Q is a number field, and we studied number fields like K = Q(

√
−3)

in Chapter 9.
When a, b ∈ K we say that the elliptic curve E associated to y2 =

x3 + ax+ b is defined over K.



10.3 Rational Points 143

FIGURE 10.7. Louis J. Mordell

Proposition 10.3.1. The subset

E(K) = {(x, y) ∈ K ×K : y2 = x3 + ax+ b} ∪ {O} ⊂ E(C)

is a group under the group operation on E.

Proof. This follows immediately from the addition and duplication formu-
las in Section 10.2.9.

We call E(K) the group of points on E rational over K. We will also
write E(C) for the set of all complex points on E.

The groups E(K) are much more interesting than E(C). For example,
if E is the elliptic curve defined by y2 = x3 − 5x + 4 from Section 10.2.8,
then

E(Q) ∼= Z× (Z/2),

where a generator for the Z-factor is the point (0,−2) and the generator
for the Z/2 factor is (1, 0).

Let E be an elliptic curve defined over a number field K.

Theorem 10.3.2 (Mordell-Weil). The group E(K) is finitely generated.
That is, there are points P1, . . . , Ps ∈ E(K) such that every element of
E(K) is of the form n1P1 + · · ·+ nsPs for integers n1, . . . ns ∈ Z.

Because of this theorem, the group E(K) is often called the Mordell-Weil
group of E over K.

The Mordell-Weil theorem implies that it makes sense to ask whether or
not we can compute E(K), where by compute we mean find a finite set
P1, . . . , Ps of points on E that generate E(K) as an abelian group. There is
a systematic theory that addresses the question of how to compute E(K)
(see [21, 20, 57]). In practice this theory often produces the answer, but
nobody has yet proved that it always will, though it is conjectured that it
always does.

Conjecture 10.3.3. There is an algorithm that given an elliptic curve E
over a number field K outputs a finite list of generates for E(K).
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TABLE 10.1. Exhibiting Every Possible Torsion Subgroup Over Q

Curve E(Q)tor
y2 = x3 − 2 {0}
y2 = x3 + 8 Z/2
y2 = x3 + 4 Z/3
y2 = x3 + 4x Z/4
y2 − y = x3 − x2 Z/5
y2 = x3 + 1 Z/6
y2 = x3 − 43x+ 166 Z/7
y2 + 7xy = x3 + 16x Z/8
y2 + xy + y = x3 − x2 − 14x+ 29 Z/9
y2 + xy = x3 − 45x+ 81 Z/10
y2 + 43xy − 210y = x3 − 210x2 Z/12
y2 = x3 − 4x Z/2× Z/2
y2 = x3 + 2x2 − 3x Z/4× Z/2
y2 + 5xy − 6y = x3 − 3x2 Z/6× Z/2
y2 + 17xy − 120y = x3 − 60x2 Z/8× Z/2

Note that this is not a conjecture about computational complexity. The
conjecture is that there is an algorithm to compute E(K), not that E(K)
can be computed quickly. As far as we know, there is no algorithm, not
even a painfully slow one, that computes E(K).

10.3.1 The Torsion Subgroup and the Rank

The set of elements of E(K) of finite order is a subgroup of E(K) which
we denote by E(K)tor. For example, if E is defined by y2 = x3 − 5x + 4,
then

E(Q)tor = {O, (1, 0)} ∼= Z/2.
In the 1970s Barry Mazur completely classified the possibilities for E(Q)tor.

Theorem 10.3.4 (Mazur, 1976). Let E be an elliptic curve over Q.
Then E(Q)tor is isomorphic to one of the following 15 groups:

Z/n for n ≤ 10 or n = 12,

Z/2× Z/2n for n ≤ 4.

Table 10.1 lists elliptic curves with each of the possible torsion subgroup.

Twenty years later Löıc Merel generalized Mazur’s theorem to number
fields other than Q:

Theorem 10.3.5 (Merel, 1996). Let K be a number field. There is a
positive integer B such that for every elliptic curve E over K we have
#E(K)tor ≤ B. (Mazur’s theorem implies that for K = Q we may take
B = 16.)

The quotient E(K)/E(K)tor is a finitely generated free abelian group,
so it is isomorphism to Zr for some integer r, called the rank of E(K).
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Conjecture 10.3.6. There are elliptic curves over Q of arbitrarily large
rank.

The “world record” is a curve of rank ≥ 24. It was discovered in January
2000 by Roland Martin and William McMillen of the National Security
Agency. They were not allowed to tell how they found the curve, and
for several months they could only announce that they found a curve of
rank ≥ 24, but they could not release the curve to the public. Here it is
(see [44]).

Proposition 10.3.7. The elliptic curve

y2+xy + y = x3 − 120039822036992245303534619191166796374x

+ 504224992484910670010801799168082726759443756222911415116

over Q has rank at least 24. The following points P1, ..., P24 are independent
points on the curve (see next page):



146 10. Introduction to Elliptic Curves

P1 = (2005024558054813068,−16480371588343085108234888252)

P2 = (−4690836759490453344,−31049883525785801514744524804)

P3 = (4700156326649806635,−6622116250158424945781859743)

P4 = (6785546256295273860,−1456180928830978521107520473)

P5 = (6823803569166584943,−1685950735477175947351774817)

P6 = (7788809602110240789,−6462981622972389783453855713)

P7 = (27385442304350994620556, 4531892554281655472841805111276996)

P8 = (54284682060285253719/4,−296608788157989016192182090427/8)

P9 = (−94200235260395075139/25,−3756324603619419619213452459781/125)

P10 = (−3463661055331841724647/576,

− 439033541391867690041114047287793/13824)

P11 = (−6684065934033506970637/676,

− 473072253066190669804172657192457/17576)

P12 = (−956077386192640344198/2209,

− 2448326762443096987265907469107661/103823)

P13 = (−27067471797013364392578/2809,

− 4120976168445115434193886851218259/148877)

P14 = (−25538866857137199063309/3721,

− 7194962289937471269967128729589169/226981)

P15 = (−1026325011760259051894331/108241,

− 1000895294067489857736110963003267773/35611289)

P16 = (9351361230729481250627334/1366561,

− 2869749605748635777475372339306204832/1597509809)

P17 = (10100878635879432897339615/1423249,

− 5304965776276966451066900941489387801/1697936057)

P18 = (11499655868211022625340735/17522596,

− 1513435763341541188265230241426826478043/73349586856)

P19 = (110352253665081002517811734/21353641,

− 461706833308406671405570254542647784288/98675175061)

P20 = (414280096426033094143668538257/285204544,

266642138924791310663963499787603019833872421/4816534339072)

P21 = (36101712290699828042930087436/4098432361,

− 2995258855766764520463389153587111670142292/262377541318859)

P22 = (45442463408503524215460183165/5424617104,

− 3716041581470144108721590695554670156388869/399533898943808)

P23 = (983886013344700707678587482584/141566320009,

− 126615818387717930449161625960397605741940953/53264752602346277)

P24 = (1124614335716851053281176544216033/152487126016,

− 37714203831317877163580088877209977295481388540127/59545612760743936)
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Exercises

10.1 Let f : X → Y be a continuous map of topological spaces and sup-
pose X is connected. Prove that f(X) is connected.

10.2 (From [58, Ex.I.1.1].) We call a line in C2 rational if it is the set of
zeros of an equation ax+ by + c = 0 with a, b, c ∈ Q.

(a) Suppose P and Q are distinct elements of Q2. Prove that the
unique line in C2 that contains P and Q is rational.

(b) Suppose that L1 and L2 are distinct rational lines in C2 that
intersect. Prove that their intersection is a rational point.

10.3 Let Y ⊂ C2 be the set of complex solutions (x, y) to the equation
y2 = x5 + 1. Find (with proof!) the closure of Y in P2.

10.4 Let E be the elliptic curve defined by y2 = x3 + 1. Find the divisor
associated to the rational function (x+ 1)/(y − 1).

10.5 Let x and y be indeterminates.

(a) Prove thatC[x, y]/(y2−(x3+1)) is integrally closed inC(x)[y]/(y2−
(x3+1)). That is, if f(x), g(x) ∈ C(x) are rational functions in x
and f(x) + yg(x) satisfies a monic polynomial with coefficients
in C(x), then f(x) and g(x) are polynomials.

(b) Prove thatC[x, y]/(y2−x3) is not integrally closed inC(x)[y]/(y2−
x3). (Hint: Consider t = y/x.)

10.6 Let ϕ : R→ S be a homomorphism of rings and suppose that ℘ ⊂ S
is a prime ideal. Prove that ϕ−1(℘) = {x ∈ R : ϕ(x) ∈ ℘} is a prime
ideal of R. Give an example in which ℘ is maximal but ϕ−1(℘) is not.

10.7 Let E be the elliptic curve defined by y2 = x3 + x+ 1. Consider the
points P = (72: − 611: 1), Q = (1/4: − 9/8: 1), and R = (1:

√
3: 1)

on E.

(a) Compute the sum of P and Q on E.

(b) Find nonzero integers n and m such that nP = mQ.

(c) Compute R+R.

(d) Is there any integer n such that nR = P? (Hint: Keep in mind
the automorphism

√
3 7→ −

√
3 of Q(

√
3).)

10.8 Draw a graph of the set E(R) of real points on each of the following
elliptic curves:

(a) y2 = x3 − 1296x+ 11664,

(b) y2 + y = x3 − x,

(c) y2 + y = x3 − x2 − 10x− 20.

10.9 A rational solution to the equation y2 − x3 = −2 is (3, 5). Find a
rational solution with x 6= 3 by drawing the tangent line to (3, 5) and
computing the third point of intersection.
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10.10 Suppose y2 = x3+a1x+ b1 and y
2 = x3+a2x+ b2 define two elliptic

curves E1 and E2 over C. Suppose that there are points P,Q ∈
E1(C) ∩ E2(C) such that P 6= ±Q. Prove that a1 = a2 and b1 = b2.
(Hint: Characterize the set of common solutions to the two equations
y2 = x3 + a1x+ b1 and y2 = x3 + a2x+ b2.)

10.11 Consider the elliptic curve y2 + xy + y = x3 over Q. Find a linear
change of variables that transforms this curve into a curve of the form
Y 2 = X3 + aX + b for rational numbers a and b.

10.12 Let X be a nonempty set. Show that there exists a binary operation
X ×X → X that endows X with the structure of group, as follows:

(a) If X is finite, there is a bijection between X and a cyclic group.

(b) If X is any infinite set then a nontrivial theorem in set theory,
which is proved using Zorn’s lemma, is that there is a bijection
between X and X × X (for a proof, see [30, §24]). Another
theorem is that if there is an injection X ↪→ Y and an injection
Y ↪→ X, then there is a bijection X → Y . Assuming these two
facts, prove that the there is a bijection betweenX and the set of
finite sequences of elements of X. (Hint: Consider the countable
disjoint union

W = X ∪ (X ×X) ∪ (X ×X ×X) ∪ · · · .

Prove that there is a bijection between W and X, by showing
that there is a bijection between W and X × Z, and that there
is a bijection between X × Z and X.)

(c) If X is infinite, let A be the free abelian group on the elements
of X (just like Div(E) is the free abelian group on the points
of E). Using the ideas from part (ii), prove that there is a bi-
jection between X and A, so that X can be endowed with an
abelian group structure.

10.13 Let E be the elliptic curve over the finite field K = Z/5Z defined by
the equation

y2 = x3 + x+ 1.

(a) List all 9 elements of E(K).

(b) What is the structure of the group E(K), as a product of cyclic
groups?

10.14 Let E be an elliptic curve over R. Define a binary operation ¢
on E(R) as follows:

P ¢Q = −(P +Q).

Thus the ¢ of P and Q is the third point of intersection of the line
through P and Q with E.

(a) Lists the axiom(s) of a group that fail for E(R) equipped with
this binary operation. (The group axioms are “identity”, “in-
verses”, and “associativity”.)
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(b) Under what conditions on E(Q) does this binary operation de-
fine a group structure on E(Q)? (E.g., when E(Q) = {O} this
binary operation does define a group.)

10.15 Let g(t) be a quartic polynomial with distinct (complex) roots, and
let α be a root of g(t). Let β 6= 0 be any number.

(a) Prove that the equations

x =
β

t− α
, y = x2u =

β2u

(t− α)2

give an “algebraic transformation” between the curve u2 = g(t)
and the curve y2 = f(x), where f(x) is the cubic polynomial

f(x) = g′(α)βx3 +
1

2
g′′(α)β2x2 +

1

6
g′′′(α)β3x+

1

24
g′′′′(α)β4.

(b) Prove that if g has distinct (complex) roots, then f also has
distinct roots, and so u2 = g(t) is an elliptic curve.

10.16 In this problem you will finally find out exactly why elliptic curves
are called “elliptic curves”! Let 0 < β ≤ α, and let C be the ellipse

x2

α2
+
y2

β2
= 1.

(a) Prove that the arc length of C is given by the integral

4α

∫ π/2

0

√

1− k2 sin2 θdθ

for an appropriate choice of constant k depending on α and β.

(b) Check your value for k in (i) by verifying that when α = β, the
integral yields the correct value for the arc length of a circle.

(c) Prove that the integral in (i) is also equal to

4α

∫ 1

0

√

1− k2t2

1− t2
dt = 4α

∫ 1

0

1− k2t2
√

(1− t2)(1− k2t2)
dt.

(d) Prove that if the ellipse E is not a circle, then the equation

u2 = (1− t2)(1− k2t2)

defines an elliptic curve (cf. the previous exercise). Hence the
problem of determining the arc length of an ellipse comes down
to evaluating the integral

∫ 1

0

1− k2t2

u
dt

on the “elliptic” curve u2 = (1− t2)(1− k2t2).
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10.17 Suppose that P = (x, y) is a point on the cubic curve

y2 = x3 + ax+ b.

(a) Verify that the x coordinate of the point 2P is given by the
duplication formula

x(2P ) =
x4 − 2ax2 − 8bx+ a2

4y2
.

(b) Derive a similar formula for the y coordinate of 2P in terms of x
and y.

(c) Find a polynomial in x whose roots are the x-coordinates of
the points P = (x, y) satisfying 3P = O. (Hint: The relation
3P = O can also be written 2P = −P .)

(d) For the particular curve y2 = x3 + 1, solve the equation in (iii)
to find all of the points satisfying 3P = O. Note that you will
have to use complex numbers.

10.18 Let Φ be the set of the 15 possible groups of the form E(Q)tor for E
an elliptic curve over Q (see Lecture 27). For each group G ∈ Φ, if
possible, find a finite field k = Z/pZ and an elliptic curve E over k
such that E(k) ≈ G. (Hint: It is a fact that |p + 1 −#E(Z/pZ))| ≤
2
√
p, so you only have to try finitely many p to show that a group G

does not occur as the group of points on an elliptic curve over a finite
field.)

10.19 Let E be the elliptic curve defined by the equation y2 = x3 + 1.

(a) For each prime p with 5 ≤ p < 30, describe the group of points
on this curve having coordinates in the finite field Z/pZ. (You
can just give the order of each group.)

(b) For each prime in (i), let Np be the number of points in the
group. (Don’t forget the point infinity.) For the set of primes
satisfying p ≡ 2 (mod 3), can you see a pattern for the values of
Np? Make a general conjecture for the value of Np when p ≡ 2
(mod 3).

(c) Prove your conjecture.

10.20 Let E be an elliptic curve over the real numbers R. Prove that E(R)
is not a finitely generated abelian group.
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11
Algorithmic Applications of Elliptic
Curves

This chapter is about elliptic curves over finite fields and some ways we
use them in factoring integers and building cryptosystems. In Section 11.1,
we recall that finite fields of any prime power order exist, then discuss
projective planes over finite fields, which is where elliptic curves over finite
fields live. In Section 11.1.3 we define elliptic curves over finite fields, then
discuss in Section 11.1.4 two constraints on the group structure of an elliptic
curve over a finite field.

With these foundations laid, we turn in Section 11.2 to Lenstra’s elliptic
curve factorization method. First we describe the Pollard (p− 1) factoriza-
tion method, then discuss in Section 11.2.3 how the elliptic curve method
generalizes the p − 1 method and give examples in Section 11.2.4. Sec-
tion 11.2.5 goes into more detail about the connection between Pollard and
Lenstra’s factorization methods.

Section 11.3 gives an introduction to the use of elliptic curves in cryp-
tography. We begin in Section 11.3.1 with elliptic curve analogues of the
cryptosystems from Chapter 4. We then describe how a famous software
company’s digital rights management system uses elliptic curves.

11.1 Elliptic Curves Over Finite Fields

11.1.1 Finite Fields

The applications of elliptic curves in this chapter involve elliptic curves
over finite fields and finite rings.

Let q be a prime power. There is a field Fq of cardinality q, which is
unique up to isomorphism. For example, when q = p is a prime, the field
Fp is can be viewed as the ring Z/p of integers modulo p. When q = pn,
we can construct Fq by finding an irreducible polynomial f ∈ Fp[x] then
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observing that the quotient ring Fp[x]/(f) is a field because it is a finite
integral domain For a proof that such an f exists, see [4, §13.6]. For instance
x3 + x + 1 is an irreducible polynomial over F2 because it has no root in
F2, so F2[x]/(x

3 + x+ 1) is a finite field of order 8.

11.1.2 Projective Planes Over Finite Fields

Let Fq be a finite field. In Section 10.1.2 we learned about the projective
plane P2

C
over the complex numbers, and about the subset

P2(K) = {(a : b : c) : a, b, c ∈ K, not all 0 }

ofK-rational points in the projective plane, for any number fieldK. (Recall
that (a : b : c) = (λa : λb : λc) for any nonzero λ ∈ K.) There is an analogue
of the projective plane over the finite field Fq, which we denote by P2

Fq
,

and which satisfies

P2(Fq) = {(a : b : c) : a, b, c ∈ Fq, not all 0 }.

Here (a : b : c) = (λa : λb : λc) for all nonzero λ ∈ Fq.
Proposition 11.1.1. The Fq points P2(Fq) of the projective plane has
cardinality q2 + q + 1.

Proof. There are q3− 1 triples (a, b, c) ∈ Fq with a, b, c not all 0, and there
are q− 1 nonzero elements of Fq. If (λa, λb, λc) = (a, b, c), then λ = 1 since
one of a, b, c is nonzero. Thus each equivalence class of triples in Fq under
the action of F∗q has q − 1 elements in it, so there are (q3 − 1)/(q − 1) =
q2 + q + 1 equivalence classes (a : b : c).

There is another generalization of the projective plane, which we will
use when describing Lenstra’s elliptic curve factorization method in Sec-
tion 11.2. Suppose N is a positive integer and consider the ring R = Z/N
of integers modulo N . Let

P2(Z/N) = {(a : b : c) : a, b, c ∈ Z/N and gcd(a, b, c,N) = 1},

where (a : b : c) = (λa : λb : λc) for any λ ∈ (Z/N)∗.

Proposition 11.1.2. There is a natural isomorphism of sets

P2(Z/N)
∼−→
∏

q

P2(Z/q)

where q ranges over the prime powers that exactly divide N . In particular,
if N =

∏

q, then #P2(Z/N) =
∏

(q2 + q + 1).

11.1.3 Elliptic Curves

Definition 11.1.3 (Elliptic Curve). An elliptic curve over Fq is the
projective closure in P2

Fq
of a nonsingular cubic curve of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.
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FIGURE 11.1. y2 + y = x3
− x over F7

There is an analogue of P2
Fp

of the projective plane from Section 10.1.2

over the field Fp. The set of points P2(Fp) of P
2
Fp

rational over Fp is the

set of triples (a : b : c) with a, b, c ∈ Fp not all zero modulo the equivalence
relation in which (λa : λb : λc) = (a : b : c) for any nonzero λ ∈ Fp.

It is more natural to define an elliptic curve to be a nonsingular plane
cubic curve in P2

Fp
equipped with a distinguished Fp-rational point. As

discussed in [58, §I.3], every such curve can be given by an equation of the
form (11.1.3). Moreover, if p ≥ 5, (11.1.3) can be transformed by completing
the square, etc., into a curve of the form y2 = x3 + ax+ b. When p = 2, 3,
this is not the case; e.g., y2 + y = x3 over F2 is an elliptic curve, but each
of the four equations of the form y2 = x3+ax+ b over F2 is singular. Note
that y2 = x3+ax+ b is nonsingular if and only if −16(4a3+27b2) 6= 0. For
the computational applications in this chapter, we may assume that p ≥ 5.

The set of points on an elliptic curve over Fp is

E(Fp) = {(x, y) : y2 = x3 + ax+ b} ∪ {(0 : 1 : 0)},

where, as usual, we write (a, b) for (a : b : 1) ∈ P2(Fp). Just as was the
case for E(C), the set E(Fp) is equipped with a natural group structure.

11.1.4 The Possibilities for E(Fp)

In sharp contrast to the situation for E(Q) (see Section 10.3), the possi-
bilities for the group E(Fp) are well understood.

Theorem 11.1.4. The finite abelian group E(Fp) is either cyclic or a
product of two cyclic groups.

Proof. We only sketch the proof. Since E(Fp) is finite, there is an integerm
such that

E(Fp) ⊂ E(Fp)[m] = {x ∈ E(Fp) : mx = 0}.
It is a nontrivial fact (which follows from [57, Cor. III.6.4]) that for any
elliptic curve over any field K, the m-torsion subgroup E(K)[m] is a sub-
group of Z/m×Z/m. For example, when K ⊂ C this follows from the fact
that

E(K)[m] ⊂ E(C)[m] = (R/Z⊕R/Z)[m]

=

(

1

m
Z

)

/Z⊕
(

1

m
Z

)

/Z = Z/m× Z/m.
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To finish the proof, use elementary group theory to see that any subgroup
of Z/m× Z/m can be generated by two elements (See Exercise 2.11).

Theorem 11.1.5 (Hasse). The cardinality of E(Fp) is bounded as fol-
lows:

|#E(Fp)− (p+ 1)| < 2
√
p,

and every possibility for #E(Fp) occurs.

For a proof, see [57, §V.1].
Elliptic curves over finite fields are useful for much more than just com-

putational applications. As we will see in Chapter 12, a key step in the
proof of Fermat’s Last Theorem involves considering an elliptic curve y2 =
x3 + ax+ b over Q, and showing that a certain generating function whose
coefficients encode #E(Fp) (and other related information), for all but
finitely many p, has good transformation properties.

11.2 Factorization

In 1987, Hendrik Lenstra published the landmark paper [41] that describes
and analyzes the Elliptic Curve Method (ECM), which is a powerful algo-
rithm for factoring integers using elliptic curves. Lenstra’s method is also
described in [58, §IV.4], [22, §VIII.5], and [15, §10.3].

Lenstra’s algorithm is well-suited for finding
“medium sized” factors of an integer N , which today
means 10 to 20 decimal digits. The ECM method is
not directly useful for factoring RSA challenge num-
bers (see Section 3.1.3), but surprisingly it is used
in intermediate steps of some the algorithms that
are used for hunting for such factorizations. Imple-
mentation of ECM typically requires little memory.
Lenstra’s discovery of ECM was inspired by Pol-
lard’s (p− 1)-method, which we will describe in Sec-
tion 11.2.1 below. Lenstra

11.2.1 Pollard’s (p− 1)-Method

Definition 11.2.1 (Power smooth). Let B be a positive integer. A
positive integer n is B-power smooth if all prime powers dividing n are less
than or equal to B.

Thus 30 is 7-power smooth and 5-power smooth, but 4 is not 2-power
smooth.

Let N be a positive integer that we wish to factor. We use the Pollard
(p − 1)-method to look for a nontrivial factor of N as follows. First we
choose a positive integer B, usually ≤ 106 in practice. Suppose that there
is a prime divisor p of N such that p − 1 is B-power smooth. We try to
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find p computationally using the following strategy. If a > 1 is an integer
not divisible by p then by Theorem 3.3.14,

ap−1 ≡ 1 (mod p).

Letting m = lcm(1, 2, 3, . . . , B), our assumption that p − 1 is B-power
smooth implies that p− 1 | m, so

am ≡ 1 (mod p).

Thus
p | gcd(am − 1, N) > 1.

If gcd(am−1, N) < N also then gcd(am−1, N) is a nontrivial factor of N . If
gcd(am − 1, N) = N , then am ≡ 1 (mod qr) for every prime power divisor
qr of N . In this case, repeat the above steps but with a smaller choice of B
or possibly a different choice of a. Also, check from the start whether or
not N is not a perfect power M r, and if so replace N by M .

For fixed B, this algorithm usually splits N when N is divisible by a
prime p such that p − 1 is B-power smooth. Only approximately 15% of
primes p in the interval from 1015 and 1015 + 10000 are such that p − 1
is 106 power-smooth, so the Pollard method with B = 106 already fails
nearly 85% of the time at finding 15-digit primes in this range. We will not
analyze Pollard’s method further, since it was mentioned here only to set
the stage for the ECM.

The following examples illustrate the Pollard (p− 1)-method.

Example 11.2.2. In this example, Pollard works perfectly. Let N = 5917.
We try to use the Pollard p − 1 method with B = 5 to split N . We have
m = lcm(1, 2, 3, 4, 5) = 60; taking a = 2 we have

260 − 1 ≡ 3416 (mod 5917)

and
gcd(260 − 1, 5917) = gcd(3416, 5917) = 61,

so 61 is a factor of 5917.

Example 11.2.3. In this example, we replace B by larger integer. Let N =
779167. With B = 5 and a = 2 we have

260 − 1 ≡ 710980 (mod 779167),

and gcd(260−1, 779167) = 1.WithB = 15, we havem = lcm(1, 2, . . . , 15) =
360360,

2360360 − 1 ≡ 584876 (mod 779167),

and
gcd(2360360 − 1, N) = 2003,

so 2003 is a nontrivial factor of 779167.

Example 11.2.4. In this example, we replace B by a smaller integer. Let
N = 4331. Suppose B = 7, so m = lcm(1, 2, . . . , 7) = 420,

2420 − 1 ≡ 0 (mod 4331),



156 11. Algorithmic Applications of Elliptic Curves

and gcd(2420 − 1, 4331) = 4331, so we do not obtain a factor of 4331. If we
replace B by 5, Pollard’s method works:

260 − 1 ≡ 1464 (mod 4331),

and gcd(260 − 1, 4331) = 61, so we split 4331.

Example 11.2.5. In this example, a = 2 does not work, but a = 3 does. Let
N = 187. Suppose B = 15, so m = lcm(1, 2, . . . , 15) = 360360,

2360360 − 1 ≡ 0 (mod 187),

and gcd(2360360 − 1, 187) = 187, so we do not obtain a factor of 187. If we
replace a = 2 by a = 3, then Pollard’s method works:

3360360 − 1 ≡ 66 (mod 187),

and gcd(3360360 − 1, 187) = 11. Thus 187 = 11 · 17.

11.2.2 Motivation for the Elliptic Curve Method

Fix a positive integer B. If N = pq with p and q prime and p− 1 and q− 1
are not B-power smooth, then the Pollard (p − 1)-method is unlikely to
work. For example, let B = 20 and suppose that N = 59 ·101 = 5959. Note
that neither 59− 1 = 2 · 29 nor 107− 1 = 2 · 53 is B-power smooth. With
m = lcm(1, 2, 3, . . . , 20) = 232792560, we have

2m − 1 ≡ 5944 (mod N),

and gcd(2m − 1, N) = 1, so we do not find a factor of N .
As remarked above, the problem is that p−1 is not 20-power smooth for

either p = 59 or p = 101. However, notice that p − 2 = 3 · 19 is 20-power
smooth. Lenstra’s ECM replaces F×p , which has order p− 1, by the group
of points on an elliptic curve E over Fp. By Theorem 11.1.5,

#E(Fp) = p+ 1± s

for some nonnegative integer s < 2
√
p and any s can occur. For example,

if E is the elliptic curve

y2 = x3 + x+ 54

over F59 then by enumerating points one sees that E(F59) is cyclic of
order 57 (every abelian group of order 57 is cyclic). The set of numbers
59+1±s for s ≤ 15 contains 14 numbers that are B-power smooth for B ≤
20. For example, 60 = 59 + 1 + 0 is 5-power smooth and 70 = 59 + 1 + 10
is 7-power smooth.

11.2.3 The Elliptic Curve Method

The following description of the ECM algorithm is taken from [41] (with
slight changes to notation and wording).
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The new method is obtained from Pollard’s (p − 1)-
method by replacing the multiplicative group F×p by the
group of points on a random elliptic curve. To find a non-
trivial divisor of an integer N > 1, one begins by select-
ing an elliptic curve E over Z/N , a point P on E with co-
ordinates in Z/N , and an integer m = lcm(2, 3, . . . , B).
Using the addition law of the curve, one next calculates
the multiple m · P of P . One now hopes that there is
a prime divisor p of N for which m · P and the neutral
element O of the curve become the same modulo p; if E
is given by a Weierstrass equation y2 = x3+ax+b, with
O = (0 : 1 : 0), then this is equivalent to the third coor-
dinate of m ·P being divisible by p. Hence one hopes to
find a non-trivial factor of N by calculating the greatest
common divisor of this third coordinate with m.

If the above algorithm fails with a specific elliptic curve E, there is an
option that is unavailable with Pollard’s (p − 1)-method. We may repeat
the above algorithm with a different choice of E. The number of points
on E over Z/p is of the form p+ 1− t for some t with |t| < 2

√
p, and the

algorithm is likely to succeed if p+ 1− t is B-power-smooth.
Suppose that P = (x1, y1) and Q = (x2, y2) are nonzero points on an

elliptic curve y2 = x3 + ax+ b and that P 6= ±Q. Let λ = (y1 − y2)/(x1 −
x2) and ν = y1 − λx1. Recall from Section 10.2.9 the explicit formula for
computing P + P and also that P +Q = (x3, y3) where

x3 = λ2 − x1 − x2 and y3 = −λx3 − ν.

We try to compute mP using the powering algorithm from Section 3.5.2.
If at some step we can not compute 2iP+2jP because we can not compute
the inverse modulo N of x1 − x2, or we can not compute 2iP because we
can not compute the inverse of y1 modulo N , then we compute the gcd
of N and x1 − x2 or y1. With luck, this gcd is a nontrivial divisor of N .

11.2.4 Examples

For simplicity, we use an elliptic curve of the form

y2 = x3 + ax+ 1,

which has the point P = (0, 1) already on it.
We factor N = 5959 using ECM, then we factor a much larger integer.

Let

m = lcm(1, 2, . . . , 20) = 232792560 = 11011110000000100001111100002,

where x2 means x is written in binary. First we choose a = 1201 at random
and consider y2 = x3+1201x+1 over Z/5959. Using the formula for P +P
from Section 10.2.9 (implemented on a computer) we compute 2i ·P = 2i ·
(0, 1) for i ∈ B = {4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27}. Then ∑i∈B 2iP =
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mP . It turns out that during no step of this computation does a number
not coprime to 5959 appear in any denominator, so we do not split N
using a = 1201. Next we try a = 389 and at some stage in the computation
we have to add P = (2051, 5273) and Q = (637, 1292). When computing
the group law explicitly we try to compute λ = (y1 − y2)/(x1 − x2) in
(Z/5959)×, but fail since x1 − x2 = 1414 and gcd(1414, 5959) = 101. We
thus find a nontrivial factor 101 of 5959.

11.2.5 A Conceptual Connection

Let N be a positive integer and for simplicity of exposition assume that
N = p1 · · · pr with the pi distinct primes. Recall from Section 3.4.1 that
there is an isomorphism

f : (Z/N)× −→ (Z/p1)
× × · · · × (Z/pr)

×.

When using Pollard’s method, we choose an a ∈ (Z/N)×, compute am,
then compute gcd(am − 1, N). This gcd is divisible exactly by the primes
pi such that am ≡ 1 (mod pi). To reinterpret Pollard’s method using the
above isomorphism, let (a1, . . . , ar) = f(a). Then (am1 , . . . , a

m
r ) = f(am),

and the pi that divide gcd(am− 1, N) are exactly the pi such that ami = 1.
These are, in turn, the primes pi such that pi−1 is B-power smooth, where
m = lcm(1, . . . ,m).

From this point of view, the only significant difference between Pollard’s
method and ECM is that the isomorphism f is replaced by an isomorphism

ga : Ea(Z/N)× → Ea(Z/p1)× · · · × Ea(Z/pr)

where Ea is defined by y2 = x3 + ax + 1, and the a of Pollard’s method
is replaced by the point P = (0 : 1 : 1). Here Ea(Z/N)× is the group of
elements in

P2(Z/N) =
{(x : y : z) : x, y, z ∈ Z/N and gcd(x, y, z) = 1}

(scalar multiplication by (Z/N)×)

that satisfy y2z = x3 + axz2 + z3. The map ga is defined by reducing
(x : y : z) modulo pi for each i. When carrying out the ECM we compute
mP and if some of the component of ga(mP ) are zero, but others are
nonzero, we find a nontrivial factor of N by taking the gcd of N and the
third component ofmP . The advantage of ECM is that for a fixedm we can
carry out this process for many different choices of a, each time increasing
the chances that we will split off “medium sized” factors of N .

11.3 Cryptography

In this section we discuss analogues of Diffie-Hellman and RSA for elliptic
curves. We then discuss the elliptic curve cryptosystem used in a famous
software company’s Digital Rights Management system.
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11.3.1 Elliptic Curve Analogues of RSA and Diffie-Hellman

The Diffie-Hellman key exchange from Section 4.1 works well on an elliptic
curve with no serious modification. Michael and Nikita agree on a secret
key as follows:

1. Michael and Nikita agree on a prime p, an elliptic curve E over Z/p,
and a point P ∈ E(Z/p).

2. Michael secretly chooses a random m and sends mP .

3. Nikita secretly chooses a random n and sends nP .

4. The secrete key is nmP , which both Michael and Nikita can compute.

Presumably, an adversary can not compute nmP without solving the dis-
crete logarithm problem (see Problem 4.1.2 and Section 11.3.3 below) in
E(Z/p). For well-chosen E, P , and p experience suggests that the discrete
logarithm problem in E(Z/p) is much more difficult than the discrete loga-
rithm problem in (Z/p)× (see Section 11.3.3 for more on the elliptic curve
discrete log problem).

There is an analogue for elliptic curves of the RSA cryptosystem of Sec-
tion 4.2, but the author has never heard of anyone actually using it since it
is probably no more secure than RSA. Nikita sets up an RSA-elliptic curve
public key, as follows:

1. Nikita secretly chooses primes p and q, and lets N = pq.

2. Nikita chooses an elliptic curve E over Z/N and considers the group
E(Z/N) (see Section 11.2.5 for the meaning of E(Z/N)).

3. Since Nikita knows p and q, she can use a sophisticated polynomial
time algorithm of Schoof, Elkies, and Atkin (see, e.g., [7, Ch. V]) to
compute

m = #E(Z/N) = #E(Z/p) ·#E(Z/q).

4. Nikita chooses a random integer e between 1 andm−1 that is coprime
to m. She lets d be the inverse of e modulo m.

5. To encrypt a message to Nikita, Michael encodes the message as a
point P ∈ E(Z/N), then sends eP . To decrypt, Nikita computes
d(eP ) = (de)P = P .

This is at best no more secure than RSA, since factoring N breaks the
cryptosystem, which probably explains why it is unpopular.

11.3.2 The ElGamal Cryptosystem and Digital Rights

Management

This section is about the ElGamal cryptosystem, which works well on an
elliptic curves. It is used in a famous software company’s Digital Rights
Management (DRM) system. This section draws on a paper by a computer
hacker, let’s call him Birkoff, who cracked the DRM system and anony-
mously published how he did it on the Internet.
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The elliptic curve used in DRM is an elliptic curve over the finite field
k = Fp, where

p = 785963102379428822376694789446897396207498568951.

As Birkoff remarks, this modulus has high nerd appeal because in hexadec-
imal it is

89ABCDEF012345672718281831415926141424F7,

which includes counting in hexadecimal, and digits of e, π, and
√
2. The

elliptic curve E is

y2 = x3 + 317689081251325503476317476413827693272746955927x
(11.1)

+ 79052896607878758718120572025718535432100651934.
(11.2)

We have

#E(k) = 785963102379428822376693024881714957612686157429,

and the group E(k) is cyclic with generator

B = (771507216262649826170648268565579889907769254176,

390157510246556628525279459266514995562533196655).

Our heroes Nikita and Michael share digital music when
they are not out thwarting terrorists. When Nikita installed the DRM soft-
ware on her laptop, it generated a private key

n = 670805031139910513517527207693060456300217054473,

which it hides in bits and pieces of files. In order for Nikita to play Juno
Reactor’s latest hit juno, her web browser contacts a DRM partner. After
Nikita sends her credit card number, the partner sends her computer a
license file that allows her audio player to unlock and play juno.

As we will see below, the license file was created using the ElGamal
public-key cryptosystem in the group E(k). Nikita can now use her license
file to unlock juno. However, when she shares both juno and the license
file with Michael, he is frustrated because even with the license his laptop
still does not play juno. This is because Michael’s laptop does not know
Nikita’s laptop’s private key (the integer n above), so Michael’s laptop can
not decrypt the license file.



11.3 Cryptography 161

juno

11.3.3 The Elliptic Curve Discrete Logarithm Problem

Definition 11.3.1. If E is an elliptic curve over Fp and B is a point on E,
then the discrete log problem on E to the base B is the following problem:
given a point P ∈ E such that P = mB for some m, find an integer n such
that P = nB.

For example, let E be the elliptic curve given by y2 = x3 + x + 1 over
the field F7. We have

E(F7) = {O, (2, 2), (0, 1), (0, 6), (2, 5)}.

If B = (2, 2) and P = (0, 6), then 3B = P , so n = 3 is a solution to the
discrete logarithm problem.

When p is large, the discrete logarithm problem on an elliptic curve E
over Fp is conjectured to be “very difficult”, except in a few special cases.
Suppose Np = #E(Z/p). If Np = p, then it is possible to solve discrete log
in E(Z/p) in polynomial time using the algorithm of [62]. IfNp = p+1, then
using [46] the “Weil pairing” can be used to give a sub-exponential algo-
rithm for solving the discrete log problem in E(Z/p). Also if #E(Z/p) = rs
with gcd(r, s) = 1, then E(Z/p) ∼= G × H where G, H have order r, s,
respectively, and discrete log in E(Z/p) is reduced to finding this decom-
position and doing discrete log in G and H; thus it is best of #E(Z/p) is
prime or divisible by a prime not much smaller than #E(Z/p).

The curve E of equation (11.1) has neither of these deficiencies, so we
expect that the discrete logarithm on that curve is difficult. Birkoff does
not solve the discrete logarithm on E; this is not how he circumvents DRM.

11.3.4 ElGamal

The ElGamal public-key cryptosystem lends itself well to implementation
in the group E(Fp). To illustrate ElGamal, we describe how Nikita would
set up an ElGamal cryptosystem that anyone could use to encrypt messages
for her. Nikita chooses a prime p, an elliptic curve E over Fp, and a point
B ∈ E(Fp), and publishes p, E, and B. She also chooses a random integer n,
which she keeps secret, and publishes nB. Her public key is the four-tuple
(p,E,B, nB).

Suppose Michael wishes to encrypt a message for Nikita. If the message
is encoded as an element P ∈ E(Fp), Michael computes a random integer r
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and the points rB and P + r(nB) on E(Fp). Then P is encrypted as the
pair (rB, P + r(nB)). To decrypt the encrypted message, Nikita multiplies
rB by her secret key n to find n(rB) = r(nB), then subtracts this from
P + r(nB) to obtain

P = P + r(nB)− r(nB).

Example 11.3.2. Nikita’s license files contains the pair of points (rB, P +
r(nB)), where

rB = (179671003218315746385026655733086044982194424660,

697834385359686368249301282675141830935176314718)

and

P + r(nB) = (137851038548264467372645158093004000343639118915,

110848589228676224057229230223580815024224875699).

Nikita’s laptop loads the secret key

n = 670805031139910513517527207693060456300217054473

into memory and computes

n(rB) = r(nB) = (328901393518732637577115650601768681044040715701,

586947838087815993601350565488788846203887988162).

It then subtracts this from P + r(nB) to obtain

P = (14489646124220757767,

669337780373284096274895136618194604469696830074).

The x coordinate 14489646124220757767 is the content key that unlocks
juno.

If Nikita knew the private key n that her laptop generated, she could
compute P herself and unlock juno and share her music with Michael.
Birkoff found a weakness in the implementation of DRM that let him find n:

“These secret keys are stored in linked lists ... interspersed with
the code in the library. The idea is that they can be read by that
library, used internally by that library, and never communicated
outside the library. Since the IndivBox.key file is shuffled in
a random way for each client, these keys would be extremely
difficult to extract from the file itself. Fortunately, we don’t have
to: these keys are part of the object state that is maintained
by this library, and since the offset within this object of these
secret keys is known, we can let the library itself extract the
secret keys! The code for this simply loads up the ‘black box’
library, has it initialize an instance of the object, and then reads
the keys right out of that object. This is clearly a weakness in
the code which can be corrected by the DRM software fairly
easily, but for now it is the basis of our exploit.”
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11.3.5 Why Use Elliptic Curves?

There are several advantages to using elliptic curves in cryptography.
Elliptic curve based cryptosystems with relatively small key sizes are

seem to be as secure as cryptosystems such as RSA with much larger key
sizes. Size does matter. According to Dan Boneh of Stanford University,
Microsoft will soon use an elliptic curve based cryptosystem during the
installation of some of their products. This is because it is unreasonable to
ask a user to type in a very long license key; using an elliptic curve system,
Microsoft can ask the user to type in a much smaller key instead.
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Exercises

11.1 Let N = pq be a product of distinct odd primes and let a, b ∈ Z/N
be such that 4a3 + 27b2 6= 0. Let E be the elliptic curve defined by
y2 = x3+ax+b. Prove that reduction modulo p and modulo q induces
an isomorphism

E(Z/N)→ E(Z/p)× E(Z/q).

(See Section 11.2.5 for a discussion of the meaning of E(Z/N).)

11.2 Let m be a positive integer. Prove that any subgroup of Z/m×Z/m
can be generated by two elements. (Hint: Count `-torsion for each
prime `.)
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12
Modular Forms and Elliptic Curves

Let E be an elliptic curve over Q, so E is defined by an equation y2 =
x3 + ax+ b with a, b ∈ Q. Much recent work of Andrew Wiles and others
(Breuil, Conrad, Diamond, and Taylor) shows that all such elliptic curves
are “modular”, a result which provides a huge number of tools for studying
elliptic curves over Q. Two important consequences are that Fermat’s Last
Theorem is true, and that the conjecture of Birch and Swinnerton-Dyer
about the rank of E(Q) (see Chapter 13) involves objects that are defined.

In Section 12.1 we define modular forms, and in Section 12.2 we give a
definition of what it means for an elliptic curve to be modular. Section 12.3
contains a brief discussion of how modularity of elliptic curves implies the
truth of Fermat’s Last Theorem.

In addition to reading this chapter, the reader is strongly encouraged to
read [55, Ch. 7] for a beautifully written introduction to modular forms of
level 1 (and arbitrary weight), and to look at the modern survey paper [23]
for an overview of most of the important facts about modular forms and
modular curves ([23] contains an extensive bibliography). For an extremely
non-technical and friendly introduction to modular forms, see [59, pp. 175–
182].

12.1 Modular Forms

The complex upper half plane is the set

h = {z ∈ C : Im(z) > 0}.
A holomorphic function f : h→ C is a function such that for all z ∈ h the
derivative

f ′(z) = lim
h→0

f(z + h)− f(z)

h
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exists (more generally, one considers holomorphic functions on any open
subset of C). Let H denote the complex vector space of holomorphic func-
tions on h.

Holomorphicity is a very strong condition because h ∈ C can approach 0
in many ways. For example, if f(z) is holomorphic, then all derivatives
f (n)(z) automatically exist, and f(z) converges to its Taylor expansion in
a neighborhood of any point.

Example 12.1.1. Polynomials are holomorphic and the exponential function
ez is holomorphic (see [3, Ch. 2]). The absolute-value function f(z) = |z|
is not holomorphic at the origin.

Recall that SL2(Z) denotes the group of 2 × 2 integer matrices with
determinant 1. The linear fractional transformation induced by γ =

(

a b
c d

)

∈
SL2(Z) is

γ(z) =
az + b

cz + d
.

The group SL2(Z) acts on the right on H by pre-composition:

f(z) 7→ f(γ(z)).

The space of holomorphic differentials on h is the complex vector space
of expressions

Ω = {f(z)dz : f is a holomorphic function on h}.
There is a bijection between the holomorphic functions on h and the holo-
morphic differentials on h given by f(z) 7→ f(z)dz (the inverse is ω 7→
ω/dz). The group SL2(Z) acts on Ω in a different and more interesting way
than it acts on H. For γ ∈ SL2(Z) and f(z)dz ∈ Ω, let

(f(z)dz)|γ = f(γ(z))d(γ(z)).

Remark 12.1.2. The quotient rule from calculus and that det(γ) = 1 imply
that d(γ(z)) = (cz + d)−2dz. Thus under the bijection between Ω and H,
the action of SL2(Z) on Ω corresponds to the action of SL2(Z) on H given
by

f(z)|γ = f(γ(z))(cz + d)−2.

For any positive integer N , consider the subgroup

Γ0(N) =

{(

a b
c d

)

∈ SL2(Z) : N | c
}

⊂ SL2(Z).

Let Ω(Γ0(N)) be the subspace of Ω of functions f such that f(z)dz is fixed
by every element of Γ0(N). If f(z)dz ∈ Ω(Γ0(N)), then since ( 1 h0 1 ) ∈ Γ0(N)
for some integer h > 0 (in fact, h = 1), we have f(z + h)dz = f(z)dz, so
f(z + h) = f(z).

Proposition 12.1.3. The holomorphic function qh(z) = e2πiz/h maps the
vertical strip

V = {z ∈ h : 0 ≤ Re(z) < h}
bijectively onto the punctured open unit disk D = {z ∈ C : 0 < |z| < 1}.
If f : h → C is a function that satisfies f(z + h) = f(z), then there is a
unique function F : D → C such that f(z) = F (qh(z)).
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Proof. If z = x+ iy ∈ V , then

e2πiz/h = e2πi(x+iy)/h = e−2πy/he2πix/h

is inD since y > 0. Every element ofD is uniquely of the form e−2πy/he2πix/h

for y/h > 0 and 0 ≤ x/h < 1, so qh is a bijection.
For w ∈ D let F (w) = f(q−1h (w)), where q−1h : D → V is the inverse of qh.

Then for z ∈ V , we have F (qh(z)) = f(q−1h (qh(z))) = f(z) as required.
Since f(z) = f(z + 1), we have F (qh(z)) = f(z) for all z ∈ h.

Suppose f ∈ H satisfies f(z+h) = f(z) for some positive integer h. Then
f(z) is holomorphic at infinity if the function F (qh) of Proposition 12.1.3
on D ⊂ C extends to a holomorphic function at 0. If this extension (which
is necessarily unique) is 0 at 0, we say that f vanishes at infinity. If f is
holomorphic at infinity, then F (qh) has a Taylor expansion

∑∞
n=0 anq

n
h , for

complex numbers an. By complex analysis (see [3, §5.1.2, pg. 179]) there is
a nonempty open disk U around infinity such that such that for qh ∈ U we
have

f(qh) =

∞
∑

n=0

anq
n
h .

This expansion is called the q-expansion or Fourier expansion of f at in-
finity.

Definition 12.1.4 (Modular Forms). The vector space ofmodular forms
(of weight 2) for Γ0(N) is the subspace M2(Γ0(N)) of H of holomorphic
function f : h → C such that

1. f(z)dz ∈ Ω(Γ0(N))

2. For every α ∈ SL2(Z), the function (f(z)dz)|α/dz is holomorphic at
infinity.

It takes some work to see that the second condition in the definition
makes sense.

Lemma 12.1.5. If α ∈ SL2(Z) and ω ∈ Ω(Γ0(N)) then ω|α is fixed by
α−1γα for any γ ∈ Γ0(N).

Proof. We have
(ω|α)|α−1γα = ω|γα = ω|α.

If α =
(

a b
c d

)

then there exists h such that if th = ( 1 h0 1 ), then

γ = αthα
−1 =

(

−ach+1 ha2

−hc2 hac+1

)

∈ Γ0(N).

Thus th = α−1γα with γ ∈ Γ0(N), so by Lemma 12.1.5, (ω|α)|th = ω|α so
g(z) = ω|α/dz satisfies g(z + h) = g(z). Thus g has a Fourier expansion
at ∞ and condition 2 makes sense.

Remark 12.1.6. Note that modular “forms” are actually functions instead
of differential forms! This is a standard convention, so we will use it here.
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Definition 12.1.7. The subspace S2(Γ0(N)) of cusp forms is the subspace
of elements f ∈M2(Γ0(N)) such that the function (f(z)dz)|α/dz vanishes
at infinity for all α ∈ SL2(Z).

The cusp forms correspond to the differentials that are holomorphic even
at the points at infinity, in the following sense. Letting q = e2πiz, we have
dq
q = dz, so if f(q) =

∑∞
n=0 anq

n, then the differential

f(z)dz = f(q)
dq

q
=

(

a0
q

+ a1 + a2q + a3q
2 + · · ·

)

dq

is “holomorphic at infinity” if and only if a0 = 0.

Remark 12.1.8. The condition that (f(z)dz)|α/dz have a nice property at
infinity for all α ∈ SL2(Z) probably seems ad hoc. It is motivated by the
following geometric observation. The quotient of h by the action of Γ0(N)
is a non-compact Riemann surface Y0(N) (it is missing a finite set set of
points). Elements of Ω(Γ0(N)) correspond to differentials on Y0(N). Dif-
ferentials on non-compact Riemann surfaces are not as well behaved; for
example, the space of holomorphic differentials will not be finite dimen-
sional. The differentials on Y0(N) that extend to holomorphic differentials
on the compactification X0(N) are exactly the elements of S2(Γ0(N)). This
is a finite dimensional space with dimension equal to the genus (number of
holes) of the Riemann surface X0(N).

12.1.1 Examples

The theorem below can be proved using sophisticated techniques from al-
gebraic geometry. See [23, §12.1] for a discussion of the general approach
for obtaining such dimension formulas.

Theorem 12.1.9. The complex vector space S2(Γ0(N)) has finite dimen-
sion:

dimS2(Γ0(N)) = 1 +
µ

12
− ν2

4
− ν3

3
− ν∞

2
,

where

µ = N
∏

p|N
(1 + 1/p)

ν2 =

{

0 if 4 | N
∏

p|N

(

1 +
(

−4
p

))

otherwise

ν3 =

{

0 if 2 | N or 9 | N
∏

p|N

(

1 +
(

−3
p

))

otherwise

ν∞ =
∑

d|N
ϕ(gcd(d,N/d)).

(Note that
(

a
p

)

is the quadratic residue symbol from Chapter 6.)

For example,

dimC S2(Γ0(2)) = 1 +
3

12
− 1

4
− 0

3
− 2

2
= 0,
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and

dimC S2(Γ0(11)) = 1 +
12

12
− 0

4
− 0

3
− 2

2
= 1.

For the rest of this section, let q(z) = e2πiz. The following basis were
computed using “modular symbols” algorithms implemented by the author
as part of [8].

Example 12.1.10. The vector space M2(Γ0(11)) has basis

f1 = 5 + 12q + 36q2 + 48q3 + 84q4 + 72q5 + 144q6 + 96q7 + · · ·
f2 = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 + · · · .

and the subspace S2(Γ0(11)) of cusp forms has basis f2.
The smallest N such that S2(Γ0(N)) has dimension bigger than 1 is

N = 22. A basis for this space is

f1 = q − q3 − 2q4 + q5 − 2q7 + · · · ,
f2 = q2 − 2q4 − q6 + · · · ,

Example 12.1.11. The space S2(Γ0(43)) has dimension 3 and basis

f1 = q + 2q5 − 2q6 − 2q7 + · · · ,
f2 = q2 + q3 − q4 + 3q5 − 3q6 − q7 + · · · ,
f3 = 2q3 − q4 + 4q5 − 3q6 − 2q7 + · · ·

12.2 Modular Elliptic Curves

Let E be an elliptic curve defined by a Weierstrass equation y2 = x3+ax+b
with a, b ∈ Z. (If a, b ∈ Q, then the equation can be transformed into one
with a, b ∈ Z; see Exercise 2.) For each prime p - ∆ = −16(4a3 +27b2), set

ap = p+ 1−#E(Z/pZ).

Definition 12.2.1 (Modular). Let N = |∆| be the absolute value of the
discriminant of y2 = x3 + ax+ b (with a, b ∈ Z). Then the elliptic curve E
defined by y2 = x3 + ax + b is modular if there exists a cuspidal modular
form

f(z) =

∞
∑

n=1

bnq
n ∈ S2(Γ0(N))

such that bp = ap for all p - ∆.

At first glance, modularity appears to be a bizarre and unlikely property
for an elliptic curve to have. Yutaka Taniyama and Goro Shimura first
suggested in 1955 that every elliptic curve is modular, but mathematicians
were initially dubious. Andre Weil later gave significant theoretical evidence
for the conjecture. Motivated by a deep connection between this conjecture
and Fermat’s last theorem, Andrew Wiles proved enough of the conjecture
to deduce Fermat’s last theorem. A full proof of the conjecture was finally
completed in 1999, and it is one of the crowning achievements of number
theory.
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Theorem 12.2.2 (Breuil, Conrad, Diamond, Taylor, Wiles).
Every elliptic curve over Q is modular.

Wiles

12.3 Fermat’s Last Theorem

A huge amount of number theory has been motivated by attempts by num-
ber theorists to prove Fermat’s Last Theorem. This is an assertion Fermat
made in the 1600s, which was only finally proved well over 300 years later.

Theorem 12.3.1 (Wiles [67]). Let n > 2 be an integer. If a, b, c ∈ Z and

an + bn = cn,

then abc = 0.

The proof generated an immense amount of excitement, which is illus-
trated by the famous email exchange reproduced below, in which Ken Ribet
summarizes Wiles’s approach.

From K.C.Rubin@newton.cam.ac.uk Wed Jun 23 02:53:28 1993

Date: Wed, 23 Jun 93 10:50 BST

From: K.C.Rubin@newton.cam.ac.uk

Subject: big news

Andrew Wiles just announced, at the end of his 3rd lecture here,

that he has proved Fermat’s Last Theorem. He did this by proving

that every semistable elliptic curve over Q (i.e. square-free

conductor) is modular. The curves that Frey writes down, arising

from counterexamples to Fermat, are semistable and by work of

Ribet they cannot be modular, so this does it.

It’s an amazing piece of work.

Karl

From K.A.Ribet@newton.cam.ac.uk Wed Jun 23 05:40:01 1993

Date: Wed, 23 Jun 93 13:36 BST

From: K.A.Ribet@newton.cam.ac.uk

To: nts_local@math.berkeley.edu

Subject: announcement of Taniyama conjecture
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I imagine that many of you have heard rumors about Wiles’s

announcement a few hours ago that he can prove Taniyama’s conjecture

for semistable elliptic curves over Q. This case of the Taniyama

conjecture implies Fermat’s Last Theorem, in view of the result

that I proved a few years ago. (I proved that the "Frey elliptic

curve" constructed from a possible solution to Fermat’s equation

cannot be modular, i.e., satisfy Taniyama’s Conjecture. On the

other hand, it is easy to see that it is semistable.)

Here is a brief summary of what Wiles said in his three lectures.

The method of Wiles borrows results and techniques from lots and lots

of people. To mention a few: Mazur, Hida, Flach, Kolyvagin, yours

truly, Wiles himself (older papers by Wiles), Rubin... The way he does

it is roughly as follows. Start with a mod p representation of the

Galois group of Q which is known to be modular. You want to prove that

all its lifts with a certain property are modular. This means that the

canonical map from Mazur’s universal deformation ring to its "maximal

Hecke algebra" quotient is an isomorphism. To prove a map like this is

an isomorphism, you can give some sufficient conditions based on

commutative algebra. Most notably, you have to bound the order of a

cohomology group which looks like a Selmer group for Sym^2 of the

representation attached to a modular form. The techniques for doing

this come from Flach; you also have to use Euler systems a la

Kolyvagin, except in some new geometric guise.

If you take an elliptic curve over Q, you can look at the

representation of Gal on the 3-division points of the curve. If you’re

lucky, this will be known to be modular, because of results of Jerry

Tunnell (on base change). Thus, if you’re lucky, the problem I

described above can be solved (there are most definitely some

hypotheses to check), and then the curve is modular. Basically, being

lucky means that the image of the representation of Galois on

3-division points is GL(2,Z/3Z).

Suppose that you are unlucky, i.e., that your curve E has a rational

subgroup of order 3. Basically by inspection, you can prove that if it

has a rational subgroup of order 5 as well, then it can’t be

semistable. (You look at the four non-cuspidal rational points of

X_0(15).) So you can assume that E[5] is "nice." Then the idea is to

find an E’ with the same 5-division structure, for which E’[3] is

modular. (Then E’ is modular, so E’[5] = E[5] is modular.) You

consider the modular curve X which parametrizes elliptic curves whose

5-division points look like E[5]. This is a "twist" of X(5). It’s

therefore of genus 0, and it has a rational point (namely, E), so it’s

a projective line. Over that you look at the irreducible covering

which corresponds to some desired 3-division structure. You use

Hilbert irreducibility and the Cebotarev density theorem (in some way

that hasn’t yet sunk in) to produce a non-cuspidal rational point of X

over which the covering remains irreducible. You take E’ to be the

curve corresponding to this chosen rational point of X.
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-ken ribet

Wiles’s original proof, as outlined in Ribet’s email, contained a substan-
tial gap (the part involving Flach’s Euler system bound couldn’t be made
to work). Fortunately, Wiles and Richard Taylor worked very hard and
bridged the gap. Their heroic struggle is portrayed in the superb Nova doc-
umentary The Proof (see [60] for a transcript) and the book [59] (see also
[65]).

Ribet went on to write a superb and more technical article [51] which
provides background and explains some of the main ideas of Wiles’s proof.
The reader who wants to dive more deeply into modularity and Galois
representations is strongly encouraged to read Ribet’s paper.

We now sketch a link between Fermat’s Last Theorem and modularity
of elliptic curves. It is easy to reduce to the case when n = ` is a prime
greater than 3 (see Exercise 5 to reduce the the case n prime). Suppose
that

a` + b` = c`

with a, b, c ∈ Z and abc 6= 0. By dividing out by any common factor, we
may assume that gcd(a, b, c) = 1. Then permuting (a, b, c), we may suppose
that b is even and that a ≡ 3 (mod 4). Also note that abc is even, since b
is even.

Following Gerhard Frey and Yves Hellegouarch, consider the elliptic
curve E over Q defined by

y2 = x(x− a`)(x+ b`).

This equation is not of the the usual form y2 = x3 + αx + β, but by
replacing x by x−(−a`+b`) it is transformed into the form y2 = x3+αx+β.

Lemma 12.3.2. The discriminant of E is 24(abc)2`.

Proof. Elementary algebra shows that the discriminant ∆ of E is

(a2`b2`24) · (a` + b`)2.

(As a check, note that this expression is 0 if and only if x(x − a`)(x + b`)
has a multiple root.) Thus

∆ = (a2`b2`24) · c2` = 24 · (abc)2`.

as claimed.

Remark 12.3.3. If we take random a` and b` such that a`+ b` is not an `th
power, then the discriminant of the corresponding curve is far from being
of the special form 24(abc)2`. For example, suppose a` = 35 and b` = 75.
Then a`+ b` = 2 ·52 ·11 ·31, and the discriminant of y2 = x(x−35)(x+75)
is

26 · 310 · 54 · 710 · 112 · 312.
Suppose again that E is defined by y2 = x(x − a`)(x + b`) with (a, b, c)

a counterexample to Fermat’s conjecture, as above. As in Section 12.2, for
each prime p - abc, let

ap = p+ 1−#E(Fp).
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By a deep special case of Theorem 12.2.2 that was proved by Wiles and
Taylor (see [67, 64]), there is a cusp form

g =

∞
∑

n=1

bnq
n ∈ S2(Γ0(N)),

where N = |24(abc)2`|, such that ap = bp for all primes p - 2abc.
Ken Ribet [50] used that the discriminant of E is a perfect `th power

(away from 2) to deduce that g mod ` comes from a level much lower
than N , in the following precise sense: there is a nonzero cusp form

h =
∞
∑

n=1

cnq
n ∈ S2(Γ0(2))

such that
bp ≡ cp (mod `) for all p - abc.

Theorem 12.1.9 implies that dimS2(Γ0(2)) = 0, which is a contradiction
since g is nonzero. Thus the elliptic curve y2 = x(x − a`)(x + b`) can not
exist, and our assumption that a, b, c are a solution to a` + b` = c` is false.
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Exercises

12.1 Let S2(Γ0(N)) denote the set of cuspidal modular forms of level N .
Prove that S2(Γ0(N)) forms a C-vector space under addition.

12.2 Suppose y2 = x3+ax+b with a, b ∈ Q defines an elliptic curve. Show
that there is another equation Y 2 = X3 + AX + B with A,B ∈ Z
whose solutions are in bijection with the solutions to y2 = x3+ax+b.
(Hint: Multiply both sides of y2 = x3+ax+b by a power of a common
denominator, and “absorb” powers into x and y.)

12.3 (a) Use Theorems 12.1.9 and 12.2.2 to deduce that there is no elliptic
curve y2 = x3+ax+b (with a, b ∈ Z) that has discriminant ±16.

(b) The point (12, 36) lies on the elliptic curve y2 = x3 − 432. Use
this fact and elementary algebra to find a rational solution (a, b)
to 4a3 + 27b2 = −1, and hence exhibit an elliptic curve over Q
with discriminant 16.

12.4 One can prove that the function

f = q

∞
∏

n=1

(1− qn)2(1− q11n)2 =

∞
∑

n=1

anq
n

spans S2(Γ0(11)), and that the following three matrices generate the
subgroup Γ0(11) of SL2(Z):

S =

(

1 1
0 1

)

T =

(

3 −2
11 −7

)

U =

(

4 −3
11 −8

)

.

Using the above product expression for f , compute f to some large
precision then give numerical evidence that f(z) satisfies the defining
equation for an element of S2(Γ0(11)).

12.5 Show that if Fermat’s last theorem is true for prime exponents, then
it is true for all exponents.

12.6 Let R be a ring. Say that Fermat’s last theorem is false in R if there
exists x, y, z ∈ R and n ∈ Z with n ≥ 3 such that xn + yn = zn and
xyz 6= 0. For which prime numbers p is Fermat’s last theorem false
in the ring Z/p?
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13
The Birch and Swinnerton-Dyer
Conjecture

This chapter is about a conjecture that Birch and Swinnerton-Dyer made
in the 1960s on the ranks of elliptic curves.

First we discuss the congruent number problem, which is an ancient
problem that goes back over one thousand years, and see how it is connected
with the Birch and Swinnerton-Dyer conjecture.

13.1 The Congruent Number Problem

Definition 13.1.1 (Congruent Number). A nonzero rational number n
is called a congruent number if ±n is the area of a right triangle with
rational side lengths. Equivalently, n is a congruent number if the system
of two equations

n =
ab

2
and a2 + b2 = c2

has a solution with a, b, c ∈ Q.
For example, 6 is the area of the right triangle with side lengths 3, 4,

and 5, so 6 is a congruent number. Less obvious is that 5 is also a congruent
number; it is the area of the right triangle with side lengths 3/2, 20/3, and
41/6. It is nontrivial to prove that 1, 2, 3, and 4 are not congruent numbers.
Here is a list of the congruent numbers up to 50:

5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, 47, . . .

Every congruence class modulo 8 except 3 is represented in this list,
which suggests that if n ≡ 3 (mod 8) then n is not a congruent number.
This is true for n ≤ 218, but n = 219 is a congruent number congruent to 3
mod 8.
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Deciding whether an integer n is a congruent number can be subtle since
the simplest triangle with area n can be very complicated. For example, as
Zagier pointed out, the number 157 is a congruent number, and a “simple”
rational right triangle with area 157 has side lengths

a =
6803298487826435051217540

411340519227716149383203
and b =

411340519227716149383203

21666555693714761309610
.

This solution would be difficult to find by a brute force search.
Congruent numbers might be called “congruent” for the following reason:

if n is a congruent number, then there exists a rational number A such
that n−A, A, and n+A are all rational numbers. Thus n is the common
“congruence” between these three rational numbers.

Proposition 13.1.2. Suppose n is the area of a right triangle with rational
side lengths a, b, c, with a ≤ b < c. Let A = (c/2)2. Then

A− n, A, and A+ n

are all perfect squares of rational numbers.

Proof. We have

a2 + b2 = c2

1

2
ab = n

Add or subtract 4 times the second equation to the first to get

a2 ± 2ab+ b2 = c2 ± 4n

(a± b)2 = c2 ± 4n
(

a± b

2

)2

=
( c

2

)2

± n

= A± n

The following open problem has motivated much of the work in the
theory of congruent numbers.

Open Problem 13.1.3. Give an algorithm which, given n, outputs whether
or not n is a congruent number.

As we will see, this problem is closely related to a problem about elliptic
curves.

13.1.1 Congruent Numbers and Elliptic Curves

The following proposition establishes a link between elliptic curves and the
congruent number problem.
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Proposition 13.1.4. Let n be a rational number. There is a bijection
between

A =

{

(a, b, c) ∈ Q3 :
ab

2
= n, a2 + b2 = c2

}

and
B =

{

(x, y) ∈ Q2 : y2 = x3 − n2x, with y 6= 0
}

given explicitly by the maps

f(a, b, c) =

(

− nb

a+ c
, 2n2a+ c

)

and

g(x, y) =

(

n2 − x2

y
, −2xn

y
,
n2 + x2

y

)

.

For n 6= 0, let En be the elliptic curve y2 = x3 − n2x.

Corollary 13.1.5. The rational number n is a congruent number if and
only if the elliptic curve En has a solution with y 6= 0.

Proof. The number n is a congruent number if and only if the set A from
Proposition 13.1.4 is nonempty. By the proposition A is nonempty if and
only if B is nonempty, which proves the corollary.

Example 13.1.6. Let n = 5. Then En is defined by y2 = x3 − 25x, and we
find by a brute force search the solution (−4,−6). Then

g(−4,−6) =
(

25− 16

−6 ,−−40−6 ,
25 + 16

−6

)

=

(

−3

2
,−20

3
,−41

6

)

.

Multiplying through by−1 yields the side lengths of a rational right triangle
with area 5.

Example 13.1.7. Let n = 1, so E1 is defined by y2 = x3 − x. Since 1 is not
a congruent number, the elliptic curve E1 has no point with y 6= 0.

Recall that if A is an abelian group, then the torsion subgroup Ator of A
is the subgroup of elements of A with finite order.

Proposition 13.1.8. The torsion subgroup of En(Q) has order 4.

This proposition can be proved by considering natural reduction maps
from En(Q) to the group of points on the elliptic curve over Fp defined by
y2 = x3 − n2x for many p. For details see, e.g., [36, §9].

Recall that the rank of an elliptic curve E over Q is the positive inte-
ger r such that E(Q)/E(Q)tor ≈ Zr. Combining the above corollary and
proposition proves the following theorem.

Theorem 13.1.9. A nonzero rational number n is a congruent number if
and only if En(Q) has rank ≥ 1.

The following surprising corollary is not at obvious from the definition
of a congruent number, but it follows immediately from Theorem 13.1.9.

Corollary 13.1.10. If n is a congruent number, then there are infinitely
many right triangles with area ±n.
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In the next section we will associate to any elliptic curve E overQ a holo-
morphic function L(E, s) on C. The Birch and Swinnerton-Dyer conjecture
predicts that E has positive rank if and only if L(E, 1) = 0. Using “half in-
tegral weight modular forms” and a deep theorem of Waldspurger, Tunnell
gave a simple criterion for whether or not L(En, 1) = 0. Thus a proof of the
Birch and Swinnerton-Dyer conjecture would also solve Problem 13.1.3.

Theorem 13.1.11 (Tunnell). Let a, b, c denote integers. If n is an even
square-free integer then L(En, 1) = 0 if and only if

#
{

(a, b, c) ∈ Z3 : 4a2 + b2 + 8c2 =
n

2
: c is even

}

= #
{

(a, b, c) : 4a2 + b2 + 8c2 =
n

2
: c is odd

}

.

If n is odd and square free then L(En, 1) = 0 if and only if

#
{

(a, b, c) : 2a2 + b2 + 8c2 = n : c is even
}

= #
{

(a, b, c) : 2a2 + b2 + 8c2 = n : c is odd
}

.

Example 13.1.12. For example, when n = 6 we have #∅ = #∅, when n = 2
we have #{(0, 1, 0)} 6= #{(0, 1, 0)}, when n = 1 we have #{(0, 1, 0)} 6= #∅,
and when n = 41 both sets have cardinality 16.

The Birch and Swinnerton-Dyer conjecture, which is the subject of the
next section, implies that En(Q) is infinite if and only if L(En, 1) = 0. The
following partial results toward this assertion are known. The implication
“En(Q) is infinite implies that L(En, 1) = 0” was proved by Coates and
Wiles [14]. The other implication “L(En, 1) = 0 implies that En(Q) is
infinite” is an open problem, though it was proved under the additional
hypothesis that L′(En, 1) 6= 0 by Gross and Zagier [28]. There are n (e.g.,
n = 34, 41, . . .) such that L(En, 1) = L′(En, 1) = 0 and for these no current
general theorem implies that En(Q) is infinite.

Assume n > 0 is a square-free integer. Using techniques we will not dis-
cuss in this book, one can show that if n ≡ 5, 6, 7 (mod 8), then L(En, 1) =
0. Thus the Birch and Swinnerton-Dyer conjecture would assert that such n
are always congruent numbers. Indeed, Elkies has verified that if n ≡ 5, 6, 7
(mod 8) and n < 106 then n is a congruent number (see [25]).

13.2 The Birch and Swinnerton-Dyer Conjecture

Let E be the elliptic curve over Q defined by

y2 = x3 + ax+ b

with a, b ∈ Z and ∆ = −16(4a3 + 27b2) 6= 0. For p - ∆, let

ap = p+ 1−#E(Z/pZ).

Set

L∗(E, s) =
∏

p-∆

1

1− app−s + p1−2s
.
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Theorem 13.2.1 (Breuil, Conrad, Diamond, Taylor, Wiles).
L∗(E, s) extends to a holomorphic function on all of C.

Recall again that the rank of E is the unique nonnegative integer r such
that E(Q)/E(Q)tor ≈ Zr. We will call this rank the algebraic rank below
to emphasize that it is defined in a purely algebraic manner.

Definition 13.2.2 (Analytic Rank). The Taylor expansion of L(E, s)
at s = 1 has the form

L∗(E, s) = c(s− 1)r + higher order terms

with c 6= 0. This number r is called the analytic rank of E.

Conjecture 13.2.3 (Birch and Swinnerton-Dyer). The analytic and
algebraic ranks of E are the same. That is, the order of vanishing of
L∗(E, s) at s = 1 is the same as the minimal number of generators of
E(Q)/E(Q)tor.

Note that a special case of the conjecture is the assertion that L∗(E, 1) =
0 if and only if E(Q) is infinite. This special case would be enough to give
a complete solution to the congruent number problem.

13.2.1 Some Theorems

Theorem 13.2.4 (Gross, Kolyvagin, Zagier, Kato, Coates, Wiles,
et al.). Let E be an elliptic curve. If the analytic rank of E is 0 or 1, then
Conjecture 13.2.3 is true.

It is a folklore conjecture that “most” elliptic curves satisfy the hypoth-
esis of the above theorem; i.e., that most have analytic rank 0 or 1. For
example, just over 95% of the “first 78198” elliptic curves have analytic
rank 0 or 1 (we deduce this from [19]). Many mathematicians suspect that
the curves with rank bigger than 1 have “density 0”, in some sense, among
all elliptic curves. However, in practice it is often the curves of rank bigger
than 1 that are most useful, interesting, and exciting.

13.3 Computing L(E, s) with a Computer

Note that there is a way to define a local factor Lp(E, s) for p | ∆ which
we will not describe here (see, e.g., [57, Ap. C, §16]). The L-function of E
is then

L(E, s) = L∗(E, s) ·
∏

p|∆
Lp(E, s)

where the factors Lp(E, s) are either 1/(1−app−s+p1−2s) or 1/(1−app−s).
In this section we sketch the main ideas involved in explicitly computing
L(E, s), for positive s ∈ R.

Let

Γ(z) =

∫ ∞

0

tz−1e−tdt
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be the Γ-function (e.g., Γ(n) = (n− 1)!), and

Γ(z, α) =

∫ ∞

α

tz−1e−tdt

be the incomplete Γ-function. The following proposition is proved using
that E is modular.

Proposition 13.3.1. There is an explicitly computable integer N (called
the conductor of E) and computable ε ∈ {1,−1} such that

L(E, s) = N−s/2 · (2π)s · Γ(s)−1 ·
∞
∑

n=1

an · (Fn(s− 1)− εFn(1− s))

where

Fn(t) = Γ

(

t+ 1,
2πn√
N

)

·
(√

N

2πn

)t+1

.

Note that the an for composite n are determined by the ap. For r ≥ 2
and p a prime that does not divide N , we have

apr = apr−1ap − papr−2 .

If p | N , then apr = (ap)
r, and if n and m are coprime integers then

anm = anam. p At s = 1, the formula of Proposition 13.3.1 simplifies to

L(E, 1) = (1 + ε) ·
∞
∑

n=1

an
n
e−2πn/

√
N .

This sum converges rapidly, because e−2πn/
√
N approaches 0 quickly as

n→∞.

13.4 A Rationality Theorem

It is difficult to say anything precise about L(E, s), even with the above
formulas. For example, it follows from a deep theorem of Gross and Zagier
that the elliptic curve E defined by y2 = x3 − 9072x+291600 has analytic
rank 3, i.e., that

L(E, s) = c(s− 1)3 + higher terms,

and no simple proof of this fact is known.

Open Problem 13.4.1. Prove that there is an elliptic curve E with an-
alytic rank at least 4, that is, for which

L(E, s) = c(s− 1)4 + higher terms.

Fortunately, it is possible to decide whether or not L(E, 1) = 0.
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Theorem 13.4.2. Let y2 = x3 + ax+ b be an elliptic curve, and let

ΩE = 2δ
∫ ∞

γ

dx√
x3 + ax+ b

,

where γ is the largest real root of x3+ax+ b, and δ = 0 if ∆(E) < 0, δ = 1
if ∆(E) > 0. Then

L(E, 1)

ΩE
∈ Q,

with denominator that can be a priori bounded.

A computer can quickly compute ΩE using the Gauss arithmetic-geometric
mean.

For an example of Theorem 13.4.2, see Section 15.3.2.

13.5 A Way to Approximate the Analytic Rank

Fix an elliptic curve E over Q. In this section we describe a method that
uses Proposition 13.3.1, the definition of the derivative, and some calculus
to approximate the analytic rank of E. This is not the most efficient method
for approximating analytic ranks, but it is simple. (For a more sophisticated
method, see [21, §2.13].)
Proposition 13.5.1. Suppose that

L(E, s) = c(s− 1)r + higher terms.

Then

lim
s→1

(s− 1) · L
′(E, s)

L(E, s)
= r.

Proof. Write

L(s) = L(E, s) = cr(s− 1)r + cr+1(s− 1)r+1 + · · · .

Then

lim
s→1

(s− 1) · L
′(s)

L(s)
= lim

s→1
(s− 1) · rcr(s− 1)r−1 + (r + 1)cr+1(s− 1)r + · · ·

cr(s− 1)r + cr+1(s− 1)r+1 + · · ·

= r · lim
s→1

cr(s− 1)r + (r+1)
r cr+1(s− 1)r+1 + · · ·

cr(s− 1)r + cr+1(s− 1)r+1 + · · ·
= r.

Thus the rank r is the limit as s→ 1 of a certain smooth function. This
limit is extremely subtle; for example, if E is the elliptic curve defined by

y2 + xy = x3 − x2 − 79x+ 289



182 13. The Birch and Swinnerton-Dyer Conjecture

then nobody has yet succeeded in proving that this limit is 4 even though
we can prove that E has algebraic rank 4. Also one can prove that the limit
is either 2 or 4.

Using the definition of derivative, we heuristically approximate (s −
1)L

′(s)
L(s) as follows. For |s− 1| small, we have

(s− 1)
L′(s)

L(s)
=
s− 1

L(s)
· lim
h→0

L(s+ h)− L(s)

h

≈ s− 1

L(s)
· L(s+ (s− 1)2)− L(s)

(s− 1)2

=
L(s2 − s+ 1)− L(s)

(s− 1)L(s)

Question 13.5.2. Does

lim
s→1

(s− 1) · L
′(s)

L(s)
= lim

s→1
L(s2 − s+ 1)− L(s)

(s− 1)L(s)
?

Consider the elliptic curve y2 = x3 − 102627x+ 12560670 of rank 4 (we
use the different better model y2+xy = x3−x2−79x+289 for the curve).
Let

r(s) =
L(E, s2 − s+ 1)− L(E, s)

(s− 1)L(E, s)
.

Using a computer we find that

r(1.001) ∼ 4.0022223 . . .

and
r(1.0001) ∼ 4.0000161 . . . .

The data suggests that lims→1 r(s) = 4. We know that lims→1 r(s) ∈ Z,
and if only there were a good way to bound the error we could conclude
that the limit is 4. Computing this limit has stumped mathematicians for
years, and it is an open problem to show that this limit is 4. The first
examples in which it was shown that the analytic rank (this limit) can be
3 were obtained by interpreting L′(E, 1) as the “size” of a certain point
on E (see [28]), but no similar interpretation of L′′(E, 1) has been found.
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14
Introduction

The object of numerical computation is theoretical advance.

– Bryan Birch describing Oliver Atkin (see [6, pg. 14])

Much progress in number theory has been driven by attempts to prove
conjectures. It’s reasonably easy to play around with integers, see a pat-
tern, and make a conjecture. Frequently proving the conjecture is extremely
difficult. In this direction, computers help us to find more conjectures, dis-
prove conjectures, and increase our confidence in conjectures. They also
sometimes help to solve a specific problem, which would be hopelessly te-
dious by hand. For example,

Find all integers n < 50 (say) that are the area of a right triangle
with integer side lengths.

This problem can be solved by a combination of theorems, computer com-
putations, and luck. (See Section 13.1 for a theoretical discussion of this
problem.)

14.1 Some Assertions About Primes

A computer can quickly convince you that many assertions about prime
numbers are very likely true. Here are three famous ones, each of which we
demonstrate using the computer programs Magma, Maple, Mathematica,
and Pari.
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Assertion 1. The polynomial x2+1 takes on infinitely many prime values.
Let

f(n) = {x : x < n : x and x2 + 1 is prime }.
With a computer, we quickly find that

f(102) = 19, f(103) = 112, f(104) = 841,

which suggests that f(n) is unbounded as n→∞. Here is how to compute
the above values of f(n) using the four computer programs discussed in
this book.

Magma Session:

> function f(n)

return #[x : x in [1..n] | IsPrime(x^2+1)];

end function;

> time print f(10^2), f(10^3), f(10^4);

19 112 841

Time: 0.050

Maple Session:

> f := proc(n)

local s, x; s := 0;

for x from 1 to n do

if isprime(x^2+1) then

s := s + 1;

end if;

end do;

s

end proc;

> print (f(10^2), f(10^3), f(10^4));

...

bytes used=20003104, alloc=4193536, time=1.11

19, 112, 841

Mathematica Session:

In[1]:= f := Function[n, t:=0;

For[x=1, x <= n, x++, If[PrimeQ[x^2+1],t++]]; t];

In[2]:= {f[10^2], f[10^3], f[10^4]}

Out[2]= {19, 112, 841}

In[3]:= TimeUsed[]

Out[3]= 0.2

Pari Session:

? f(n) = s=0; for(x=1,n,if(isprime(x^2+1),s++)); s

? print([f(10^2),f(10^3),f(10^4)]);

[19, 112, 841]

? gettime

? %13 = 80 /* this means 0.08 seconds */

Remark 14.1.1. For computing f(105), Pari takes 6.7 seconds, Magma

takes 0.9 seconds, Maple takes 15.2 seconds, and Mathematica takes 6.1
seconds. Note that specialized systems like Pari and Magma, which are
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optimized for more number-theoretic computation, are sometimes much
faster than Maple or Mathematica. When a computation in one package is
significantly slower than in the other packages, we will mention this in the
chapters below.

Assertion 2. Every even integer n > 2 is a sum of two primes.
In practice, it seems very easy to write an even number as a sum of two
primes. The following four programs and examples demonstrate this for the
four randomly chosen even integers 6, 570, 2002, and 127215032.

Magma Session:

> function gb(n)

for p in [3..n] do

if IsPrime(p) and IsPrime(n-p) then

return [p,n-p];

end if;

end for;

end function;

> [gb(6),gb(570),gb(2002),gb(127215032)];

[ [ 3, 3 ], [ 7, 563 ], [ 3, 1999 ], [ 193, 127214839 ] ]

Maple Session:

> gb := proc(n)

local p;

for p from 3 by 2 to n do

if isprime(p) and isprime(n-p) then

return [p,n-p];

end if;

end do;

end proc;

> print (gb(6),gb(570),gb(2002),gb(127215032));

[3, 3], [7, 563], [3, 1999], [193, 127214839]

Mathematica Session:

In[1]:= gb := Function[n,

For[p=3, Not[PrimeQ[p] && PrimeQ[n-p]], p=p+2]; {p,n-p}]

In[2]:= {gb[6], gb[570], gb[2002], gb[127215032]}

Out[2]= {{3, 3}, {7, 563}, {3, 1999}, {193, 127214839}}

Pari Session:

? gb(n) = for(p=2,n,if(isprime(p) && isprime(n-p),return([p,n-p])));

? [gb(6),gb(570),gb(2002),gb(127215032)]

%1 = [[3, 3], [7, 563], [3, 1999], [193, 127214839]]

Assertion 3. There are infinitely many primes p such that p + 2 is also
prime.
Let t(n) = #{p : p ≤ n and p+2 is prime}. Using a computer we find that

t(102) = 8, t(103) = 35, t(104) = 205, t(105) = 1024.

Magma Session:
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> function t(n)

return #[p : p in [3..n] | IsPrime(p) and IsPrime(p+2)];

end function;

> [t(10^2), t(10^3), t(10^4), t(10^5)];

[ 8, 35, 205, 1224 ]

Maple Session:

> t := proc(n)

local s, p; s := 0;

for p from 3 by 2 to n do

if isprime(p) and isprime(p+2) then

s := s + 1;

end if;

end do;

s

end proc;

> print (t(10^2), t(10^3), t(10^4), t(10^5));

8, 35, 205, 1224

Mathematica Session:

In[1]:= t := Function[n, s:=0;

For[x=3, x <= n, x++, If[PrimeQ[x] && PrimeQ[x+2],s++]]; s];

In[2]:= {t[10^2], t[10^3], t[10^4], t[10^5]}

Out[2]= {8, 35, 205, 1224}

Pari Session:

? t(n) = s=0; forprime(p=2,n,if(isprime(p+2),s++)); s

? [t(10^2), t(10^3), t(10^4), t(10^5)]

%1 = [8, 35, 205, 1224]

As it turns out, these three assertions are all famous and extremely dif-
ficult unsolved problems. Anyone who proves one of them will be very
famous.

Assertion 1 is a famous open problem (the first problem in [29]). Assertion
2 is called the Goldbach Conjecture, which dates back to 1742, and is
featured in the novel [24]. (The publisher of [24] offered a million dollar prize
for a solution to the Goldbach conjecture, but required that the solution
be submitted to a journal by March 15, 2002; nobody solved the problem
and the prize has expired.) The Goldbach conjecture has been verified for
all even integers n < 4 · 1014 (see [52]). Assertion 3 is the “Twin Primes
Conjecture”. As of this writing, the largest pair of twin primes found so far
is 33218925 · 2169690 ± 1, which was discovered Papp in 2002 (see [11]).

Even if you never aspire to solve one of these “grand challenge” prob-
lems, it can still be exciting to use a computer to verify more cases than
anybody has verified before. Also searching for efficient algorithms can be
mathematically rewarding; as an extreme example, Wiles’s proof of Fer-
mat’s Last Theorem [67] could be viewed as a proof of correctness of a
certain simple algorithm for listing all solutions to xn + yn = zn.
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14.2 Some Tools for Computing

The rest of this chapter is about how to use several computer algebra sys-
tems to do number theoretic computations of the sort discussed in this
book. Chapter 15 is about using the non-profit non-free Australian com-
puter algebra system Magma. Chapter 16 is about the popular commer-
cial Canadian symbolic algebra program Maple and the APECS package
for working with elliptic curves. Then Chapter 17 is about the American
commercial symbolic algebra program Mathematica. Chapter 18 discusses
Pari, which is a mostly-European, completely open source free number
theory calculator. Finally, in Chapter 19 we discuss some other systems
that can do important number theoretic calculations, including the TI-89
calculator, mwrank, and MATLAB.

We assume the reader has some very basic familiarity when we write
about each of the computer algebra systems mentioned in the following
chapters, as can be gleaned from, e.g., reading some of the documentation
that comes with each system. In each case we describe how to do standard
number theoretic computations such as computing large powers modulo
primes, compute gcd’s, determine whether a number is a quadratic residue,
and find continued fraction expansions. We also discuss how to compute
with elliptic curves using each program. These chapters and the examples
they contain are a helpful discussion of just what we need to do some
interesting number theoretic computations with each package.

WARNING: All of the large packages discussed in the following chapters
are case sensitive, so e.g., isprime(91) is not the same as IsPrime(91).
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15
MAGMA

15.1 Elementary Number Theory

> ContinuedFraction(Exp(RealField(500)!1));

...

[This section is not finished.]

15.2 Documentation

Thousands of pages have been written about Magma:

http://magma.maths.usyd.edu.au/magma/htmlhelp/doc.htm

Invest an hour and read the 12-page First Steps in MAGMA, then skim
through the 884-page Introduction.

Instead of using the help system that is built into the Magma shell, I
use the HTML reference manual. To look up a command, go to the index
for the first letter of the command, then use your browser’s find function to
find the command, then click on the link. This will lead you to the help for
the command, and you can easily navigate up in order to get information
about how that command fits in with other commands.

You can also get documentation about the ways to call a command by
typing its name, for example:

> PolynomialRing;

Intrinsic ’PolynomialRing’

Signatures:

(<RngInvar> R) -> RngMPol

The generic polynomial ring in which the elements of R lie

(<Rng> R) -> RngUPol
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[

Global: BoolElt

]

Create the univariate polynomial ring over R

[... etc. for a page]

Notice that the behavior of PolynomialRing depends on the type of
argument you give it.

15.3 Elliptic Curves

15.3.1 The Elliptic Curve Factorization Method

The following is MAGMA program that implements the Elliptic curve fac-
torization method from Section 11.2.

// Returns either 2*P or GCD(N,x1-x2) =/= 1

function double(P,a,N)

x,y,z := Explode(P);

if z eq 0 then // point at infinity

return P;

end if;

g,_,y2inv := XGCD(N,Integers()!(2*y));

if g ne 1 then

return g;

end if;

xx := ((x^2-a)^2 - 8*x)*y2inv^2;

yy := ((3*x^2 + a)*(x - xx) - 2*y^2)*y2inv;

return [xx,yy,1];

end function;

// Returns P + Q or GCD(N,x1-x2) =/= 1

function add(P,Q,a,N)

if P eq Q then

return double(P,a,N);

end if;

x1,y1,z1 := Explode(P);

x2,y2,z2 := Explode(Q);

if z1 eq 0 then

return Q;

elif z2 eq 0 then

return P;

end if;

if x1 eq x2 and y1 eq -y2 then

return [0,1,0];

end if;

g,_,inv := XGCD(N,Integers()!(x1-x2));

if g ne 1 then

return g;

end if;

lambda := (y1-y2)*inv;

nu := y1 - lambda*x1;

x3 := lambda^2 -x1-x2;
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y3 := -lambda*x3-nu;

return [x3,y3,1];

end function;

// Try to compute R=m*[0,1,1] on y^2=x^3+ax+1; returns

// either R or GCD(N,some denominator) =/= 1 if not possible.

function multiply(m,a,N)

// Points are represented as triples [x,y,z] with z either 0 or 1.

P := [IntegerRing(N)|0,1,1];

R := [IntegerRing(N)|0,1,0];

while m ne 0 do // computes binary expansion of m.

if IsOdd(m) then // if binary digit of m is 1.

R := add(R,P,a,N);

if Type(R) eq RngIntElt then

return R;

end if;

end if;

m := Floor(m/2);

P := double(P,a,N);

if Type(P) eq RngIntElt then

return P;

end if;

end while;

return R;

end function;

intrinsic ECM1(N::RngIntElt, m::RngIntElt,

a::RngIntElt) -> RngIntElt

{Try to find a B-power smooth factor of N using Lenstra’s ECM

with given a and m=lcm(1,...,B). Returns N on failure.}

printf "Trying a = %o: \t", a;

if GCD(4*a^3 + 27, N) ne 1 then

print "Split using discriminant.";

return GCD(4*a^3 + 27, N);

end if;

R := multiply(m,a,N);

if Type(R) eq RngIntElt then

printf "Failed to compute mP. ";

if R lt N then

print "Split using denominator.";

return R;

end if;

print "Denominator gives no factor.";

end if;

print "Computed mP (no factor found).";

return N;

end intrinsic;

intrinsic ECM(N::RngIntElt, B::RngIntElt,

maxtries::RngIntElt) -> RngIntElt

{Try to find a B-power smooth factor of N using Lenstra’s ECM.

Returns N on failure. Stop after maxtries tries.}
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m := LCM([1..B]);

for i in [1..maxtries] do

a := Random(N);

M := ECM1(N,m,a);

if M ne N then

return M;

end if;

end for;

print "Max tries exceeded. Trying changing B.";

return N;

end intrinsic;

15.3.2 The Birch and Swinnerton-Dyer Conjecture

We illustrate the rationality theorem of Section 13.4. Let E be the elliptic
curve y2 = x3 − 43x + 166. We compute L(E, 1) using the above formula
and observe that L(E, 1)/ΩE appears to be a rational number, as predicted
by the theorem. One can show that ε = +1 and N = 26.

> E := EllipticCurve([-43,166]);

> N := Conductor(E); N;

26

> f := qEigenform(E,101);

> pi := Pi(ComplexField());

> L1 := (1+1) * &+[Coefficient(f,n)/n * Exp(-2*pi*n/Sqrt(N)) :

n in [1..100]];

> L1;

0.6209653495490554663758626727

> R := RealPeriod(E);

4.34675744684338826463103870890649439097611576340854513133

> L1/R;

0.1428571428571428571428571428

> 1/7.0;

0.1428571428571428571428571428

15.4 Programming Magma

Magma is an excellent tool for computations of an algebraic nature, e.g.,
finite group theory, combinatorics, computations with basic number the-
oretic objects, and working with elliptic curves. However, even the TI-89
hand calculator is better at symbolically computing integrals than Magma.

Magma has good support for developing large programs and combining
code from many projects together. Magma’s rigorous approach to com-
puter algebra avoids much of the ambiguity that affects some other sys-
tems, and forces the user to produce more meaningful code that is easier
to read and quicker. Magma also has highly optimized support for linear
algebra over the rational numbers and Z/p.

This chapter focuses on what Magma is and how to use it as a tool to
accomplish more than a few quick computations in the shell. We do not
dwell on specific Magma packages or functions.
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15.5 Getting Comfortable

Once installed, if you run Magma you get a shell in which you can type
commands. Without some customization, you will probably soon become
impatient with the shell. You should do the following:

1. Create a directory, magma say, in which you will store Magma files.

2. Create a startup file, e.g., startup.m, which will be executed when
you start Magma. (See Section 15.5.1.)

3. Create a spec file, which lists the filenames of code that you want to
attach attach to Magma. (See Section 15.5.2.)

4. Learn to log your sessions to a file, and save and restore them. (See
Section 15.5.3.)

5. If you want to use the Magma shell under another editor like the
emacs shell window, type the command SetLineEditor(false);

into Magma.

15.5.1 Startup File

Magma assumes nothing. Some new Magma users are frightened when
they do the following:

[joesixpack@couch]# magma

Magma V2.9-11 [...]

> f := x^2 + 1;

>> f := x^2 + 1;

^

User error: Identifier ’x’ has not been declared or assigned

Like in many strongly typed languages, it is necessary to define x first.

> R<x> := PolynomialRing(RationalField());

> R;

Univariate Polynomial Ring in x over Rational Field

> f := x^2 + 1;

Next, you might be put off by having to type huge words like

PolynomialRing and RationalField,

but this source of frustration can also be easily circumvented:

> poly := PolynomialRing;

> Q := RationalField();

> R<x> := poly(Q);

> R;

Univariate Polynomial Ring in x over Rational Field

After typing those first two lines, for the rest of the session you can type
poly wherever you would type PolynomialRing and Q where you would
have typed RationalField(). To keep all of these customization from ses-
sion to session, create a startup file. For example, make a file startup.m
that contains the following lines:
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poly := PolynomialRing;

Q := RationalField();

Z := IntegerRing();

R := RealField();

R<x> := poly(Q);

charpoly := CharacteristicPolynomial;

Then set the environment variable MAGMA STARTUP FILE to startup.m

(with proper path). Henceforth whenever you start Magma, Q will be the
rationals, and charpoly will be the same as CharacteristicPolynomial.
(Note: When you use the Magma shell, if you press tab, Magma will do
auto-completion.)

15.5.2 Spec File

As we will see in Section 15.5.4, the Magma programs you write are stored
in files that you attach to Magma.

It is tedious attaching a file to Magma each time you start Magma, so if
you set the environment variable MAGMA USER SPEC to $HOME/magma/spec

and list the filenames to attach in spec, they will automatically be attached
when you start Magma.

15.5.3 Logging, Saving, and Restoring

It’s frustrating to do something using Magma, only to lose the steps of
the computation because they’ve scrolled off the screen. Use the com-
mand SetLogFile("logfile"), which takes one argument, the name of
a file, and appends a log of the current magma session to that file. Type
UnsetLogFile() to turn off logging.

If you are in the middle of a Magma session, and would like to leave and
come back to it later, type save "session" then quit Magma. After you
restart Magma, type restore "session". (Warning: If you install a new
version of Magma, the session files you used under the previous version of
Magma might not load anymore.)

15.5.4 Writing Programs

The Magma programming language resembles many standard procedural
languages. Code is divided into files, and the code in files are divided into
“functions”, “procedures”, and “intrinsics”. Functions have arguments and
return a single value, like in many other languages. A procedure is exactly
the same as a function, but it doesn’t return a value. Whereas functions
and procedures have file scope, intrinsics are exported to the Magma shell,
and are indistiguishable to the user from any of the other built in Magma

commands. When you write an intrinsic you extend the Magma shell.
Let’s extend Magma by adding a command called MySqrt that computes

a square root of any square in Z/p. (This is for fun, since the built in
command IsSquare already does this.) First create a file called mysqrt.m
that contains the following lines.

function alg3(a)



15.5 Getting Comfortable 197

assert Type(a) eq RngIntResElt;

p := Modulus(Parent(a));

assert p mod 4 eq 3;

return a^((p+1) div 4);

end function;

function alg1(a)

assert Type(a) eq RngIntResElt;

p := Modulus(Parent(a));

assert p mod 4 eq 1;

F := Parent(a);

R<x> := PolynomialRing(F);

Q<x> := quo<R|x^2-a>;

while true do

z := Random(F);

w := (1+z*x)^((p-1) div 2);

if Coefficient(w,0) eq 0 then

return 1/Coefficient(w,1);

end if;

end while;

end function;

intrinsic MySqrt(a::RngIntResElt) -> RngIntResElt

{The square root of a. We assume that a has a square root

and that a is an element of Z/p with p prime.}

p := Modulus(Parent(a));

if p eq 2 then

return a;

end if;

if a eq 0 then

return a;

end if;

require IsPrime(p) :

"The modulus of argument 1 must be prime.";

require KroneckerSymbol(Integers()!a,p) eq 1 :

"Argument 1 must have a square root.";

if p mod 4 eq 3 then

return alg3(a);

else

return alg1(a);

end if;

end intrinsic;

There are assert statements in the functions because Magma does no
type checking for arguments to functions, so we have to fake it. Incidentally,
we discover that elements of Z/p are of type RngIntResElt by creating an
element in the shell and asking for its type:

> Type(ResidueClassRing(5)!1);

RngIntResElt

We don’t pass the modulus p to alg3 and alg1, because a is an element
of Z/p so the function only needs to know a, since a knows Z/p, in the
sense that the Parent of a is Z/p. To discover the Modulus command, I
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looked up ResidueClassRing in the Magma HTML documentation, then
looked at nearby commands until I saw one called Modulus.

The assert p mod 4 eq 3 line illustrates a healthy level of paranoia.
The return line does the square root computation then returns it.

The function alg1 computes the square root in the case p ≡ 1 (mod 4).
After the usual type checking assertion, we create the quotient ring

R = (Z/p)[x]/(x2 − a).

We then raise random elements of the form 1 + zx to the power (p− 1)/2
until finding one of the form vx. The answer is then 1/v.

Everything is tied together and exported to Magma in the intrinsic,
which is the last part of the file. The declaration of the intrinsic gives
the type of the arguments (multiple arguments are allowed), the return
type (multiple return values are allowed), and a mandatory comment which
must be given in braces. Note that non-intrinsic comments in Magma use
the usual C++ syntax (/* and */ and //.) After the comment we use if

statements to treat two special cases. The require statement makes certain
assertions about the input; if they fail the corresponding error message is
printed and execution stops.

To make use of our new function, add the line mysqrt.m to your spec

file. When you start Magma the command MySqrt will automatically be
available. Alternatively, instead of adding mysqrt.m to your spec file, you
can type Attach("mysqrt.m") in Magma, but this only survives until you
exit Magma.

If while running Magma you edit the file mysqrt.m, the changes auto-
matically take affect. There is no need to restart Magma.

Here’s an example session:

> Attach("mysqrt.m");

> R := ResidueClassRing(37);

>> MySqrt(R!13);

^

Runtime error in ’MySqrt’: Argument 1 must have a square root.

> MySqrt(R!11);

14

> R!14^2;

11

> MySqrt(R!11);

23

> R!23^2;

11

> R := ResidueClassRing(31);

> MySqrt(R!7);

10

> R!10^2;

7

> MySqrt(R!11);

>> MySqrt(R!11);

^

Runtime error in ’MySqrt’: Argument 1 must have a square root.

> MySqrt(R!19);
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9

> R!9^2;

19

We can also try large primes to see if the algorithm is at all efficient.

> p := NextPrime(04959594879294849494949282920494948913);

> p mod 4;

1

> R := ResidueClassRing(p);

> time MySqrt(R!5); // time times the command

450651465375491648563188746635440563

Time: 0.150

> $1^2; // $1 means the last output.

5



200 15. MAGMA



This is page 201
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16
Maple

This chapter is about how to use Maple to compute with some of the math-
ematical objects described in this book. The author used Maple Version 8
when writing this chapter, but most of the information below should not
be very version specific.

If you are new to Maple, you should read the New User’s Tour, which is
included with Maple.

16.1 Elementary Number Theory

Numbers in Maple can have hundreds of thousands of digits, unlike numbers
on a standard hand calculator. For example, we can quickly compute the
digits of one of the Mersenne primes:

> 2^1279 - 1;

1040793219466439908192524032736408553861526224726670480531911235\

0403608059673360298012239441732324184842421613954281007791\

3835662483234649081399066056773207629241295093892203457731\

8334966158355047295942054768981121169367714754847886696250\

1384438260291732348885311160828538416585028255604666224831\

8909188018470682222031405210266984354887329580288780508697\

36186900714720710555703168729087

Real numbers can also be computed to very high precision:

> evalf[300](Pi);

3.14159265358979323846264338327950288419716939937510582097494459\

2307816406286208998628034825342117067982148086513282306647\

0938446095505822317253594081284811174502841027019385211055\

5964462294895493038196442881097566593344612847564823378678\

3165271201909145648566923460348610454326648213393607260249\

14127
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The square root of −1 is represented as I in Maple.
To generate a (pseudo-)random integer between a and b use the command

rand(a..b)(). The extra parenthesis are because rand(a..b) is itself a
function that returns random numbers between a and b. Note that Maple’s
random number generator will generate the same sequence of values every
time it starts up, unless you issue the randomize() command once before
using rand. For example

> rand(1..10^10)();

7419669082

> randomize();

1053386177

> rand(1..10^10)();

2792311019

The command igcd(a,b,c,...) computes gcd(a, b, c, . . .), where a, b, c, . . .
are integers. Also, ilcm(a,b,c,...) computes the least common multiple
of the integers a, b, c, . . ..

> igcd(2*5*7^2, 2*7);

14

> ilcm(2*5*7^2, 2*7);

490

Use phi(n) to compute the Euler phi function ϕ(n) as in Definition 3.3.13.
The following is a simple example of a for loop, an if statement, and

definition of a function (note how a local variable y is defined):

> for n from 1 to 3 do

> print(n);

> end do;

1

2

3

> if isprime(2^1279 - 1) then print("Mersenne"); end if;

"Mersenne"

> square := proc(x)

> local y;

> y := x^2;

> y

> end proc;

square := proc(x) local y; y := x^2; y end proc

> square(25);

625

Use the command ifactor(n) to factor an integer n.

> ifactor(2^101-1);

(341117531003194129) (7432339208719)

Warning: The Magma and Pari integer factorization routines are typ-
ically far quicker than those in Maple or Mathematica. Also, the perfor-
mance of ifactor will vary, even on the same number, because the algo-
rithms it uses are randomized.
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The command isprime implements a probabilistic primality test. If
isprime(n) returns false then n is definitely composite. On the other hand,
if isprime(n) returns true, then n is only prime with high probability. Ac-
cording to the Maple documentation “No counter example [i.e., composite
n for which isprime(n) is true] is known and it has been conjectured that
such a counter example must be hundreds of digits long.” The commands
ithprime, nextprime, and prevprime are also useful.

> nextprime(3);

5

> prevprime(3);

2

> ithprime(3);

5

Maple can also compute the Riemann zeta function, which is the analytic
continuation to C (minus 1) of the function ζ(s) =

∑

1
ns . For example,

ζ(2) =
∑

1/n2 = π2/6 and ζ(3) is mysterious:

> Zeta(2);

2

Pi

---

6

> Zeta(3);

Zeta(3)

The expression e mod n evaluates to the expression e reduced modulo
the integer n. To compute a large power am of an integer a ∈ Z/n, it
is tempting to type a^m mod n. You should not do this, since Maple will
compute am as a huge integer, then reduce that integer modulo n. Instead,
use the inert operator: a&^m mod n. For example,

> (301^100000) mod 6; # SLOW

1

> (301&^100000) mod 6; # FAST!

1

To compute the inverse of a modulo n type 1/a mod n.
The command chrem([a1,a2,...,an],[m1,...,mn]) computes an in-

teger n such that n ≡ ai (mod mi) for each i (see Section 3.4). For example,
Maple can answer Question 3.4.1 easily:

> chrem([2,3,2],[3,5,7]);

23

To compute a primitive root modulo n (see Definition 5.0.5), use the
command primroot. Note that it is necessary to first include the number
theory package using the command with(numtheory). The same is true
of the functions primroot, cfrac, nthconver, nthdenom, nthnumer, phi,
divisors, pi, quadres which we will mention below. The following exam-
ple, which is similar to Example 5.2.7, illustrates the primroot command.

> with(numtheory);

> primroot(17);

3

> primroot(9);
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2

> primroot(8);

FAIL

The command quadres(a,b) is +1 if a is a square modulo p and −1
otherwise; thus quadres can be used to compute the symbol

(

a
p

)

from

Chapter 6. The following example illustrates the quadratic reciprocity law
for odd primes p and q.

> test_qr := proc(p, q)

> quadres(p,q)*quadres(q,p)*(-1)^((p-1)/2*(q-1)/2);

> end proc;

> # Quadratic reciprocity asserts that test_qr returns 1

> # for any pair p, q of odd distinct primes.

> test_qr(5,7);

1

> test_qr(17,59);

1

> test_qr(5,9); # the hypothesis that p and q be prime is necessary

-1

The command cfrac(x,n) computes and displays the first n convergents
of the continued fraction of the real number x, fully expanded out.

> cfrac(Pi,4);

1

3 + ----------------------

1

7 + ------------------

1

15 + -------------

1

1 + ---------

292 + ...

The optional argument ’quotients’ causes cfrac to compute a list of
the partial convergents ai instead of the expanded fraction.

> cfrac(exp(1),100,’quotients’);

[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1,

20, 1, 1, 22, 1, 1, 24, 1, 1, 26, 1, 1, 28, 1, 1, 30, 1, 1, 32, 1, 1, 34, 1, 1, 36, 1,

1, 38, 1, 1, 40, 1, 1, 42, 1, 1, 44, 1, 1, 46, 1, 1, 48, 1, 1, 50, 1, 1, 52, 1, 1, 54,

1, 1, 56, 1, 1, 58, 1, 1, 60, 1, 1, 62, 1, 1, 64, 1, 1, 66, 1, 1, ...]

The command pi(x) computes the number of primes up to and includ-
ing x, divisors(n) computes all positive divisors of n, and phi(n) com-
putes the Euler Phi function (see Definition 3.3.13).

> pi(100);

25

> pi(1000);

168

> divisors(100);

{1, 2, 4, 5, 10, 20, 25, 50, 100}

> phi(15);

8
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Typing with(padic) loads Maple’s package for computing with p-adic
numbers. After loading this package, if you type evalp(e, p) where e is
a Maple expression and p is a prime, then Maple attempts to evaluate the
expression e in the p-adics (it returns FAIL when this is not possible). For
example, we obtain the first few terms of the 5-adic expansion of a (not
the) square root of −1 as follows:

> with(padic)

> evalp(sqrt(-1),5);

2 3 4 5 6 7 9

2 + 5 + 2 5 + 5 + 3 5 + 4 5 + 2 5 + 3 5 + O(5 )

> evalp(sqrt(2),5);

FAIL

An optional third argument to evalp specifies the number of terms in
the p-adic expansion.

> evalp(sqrt(-1),5,15);

2 3 4 5 6 7 9 10 11 13 14

2 + 5 + 2 5 + 5 + 3 5 + 4 5 + 2 5 + 3 5 + 3 5 + 2 5 + 2 5 + 4 5 + O(5 )

The following example illustrates creation of and simple arithmetic with
p-adic numbers:

> x := evalp(2+5+5^2+3*5^3,5);

2 3

x := 2 + 5 + 5 + 3 5

> y := evalp(3 + 2*5 + 3*5^2,5);

2

y := 3 + 2 5 + 3 5

> x^100; # not what we want..

2 3 100

(2 + 5 + 5 + 3 5 )

> evalp(x^100,5,12); # this is what we want:

4 5 6 7 8 9 10 12

1 + 3 5 + 4 5 + 3 5 + 3 5 + 5 + 3 5 + 3 5 + O(5 )

> x + y; # doesn’t automatically simplify:

2 3 2

(2 + 5 + 5 + 3 5 ) + (3 + 2 5 + 3 5 )

> evalp(x+y,5);

2 3

4 5 + 4 5 + 3 5

> ordp(x+y);

Unfortunately, Maple doesn’t seem to contain any commands for factor-
ing polynomials or finding their roots over the p-adics.
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16.2 Elliptic Curves

Ian Connell wrote a Maple package for computing with elliptic curves called
APECS. It is not included with Maple, but can be downloaded from

http://www.math.mcgill.ca/connell/public/apecs/

As of May 2003, the version of APECS at the above web site (Version
6.1) does not correctly load into Maple Version 8. Fortunately, two small
changes to the file f fix this:

Change in the file f

if not verify({P},{PP},’subset’) then

to

if not ({P} subset {PP}) then

and

if verify(t,{op(RR)},’subset’) then

to

if type(op(RR),whattype(t)) and (‘subset‘(t, op(RR))) then

To use APECS, start Maple in the directory that contains APECS code,
then type read apecs.

Type menu() for a list of all APECS commands, and Menu(command) for
more help on a specific command. The following table lists APECS com-
mands of particular interest to readers of this book. For more information
about each command from within APECS type Menu(command name);

In Tables 16.1–16.6 below, E denotes the currently selected elliptic curve
(to switch between already-defined curves use the command Go). In APECS,
points on elliptic curves are represented as pairs [x,y].

Some of these commands have more options than are described below,
and there are many commands in APECS not listed below. Please see
the APECS documentation, using the commands menu and Menu, for more
details. Optional arguments are shown in square brackets.

Remark 16.2.1. Many of the command names chosen by the author of
APECS seem bizarre to the author of this book. Fortunately, it is easy to
use your own name for a command:

> InitEllipticCurve := Ein;

InitEllipticCurve := Ein

> ComputeRank := Rk;

ComputeRank := Rk

> InitEllipticCurve([ 0, 1, 1, -2, 0 ]); ...

> ComputeRank();

... Now RR of A389 = [[0, 0], [-1, 1]] ...
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TABLE 16.1. APECS: Elliptic Curve Creation Functions

Function Arguments Description

Ein a1, a2, a3,

a4, a6

Initialize an elliptic curve: find minimal Weier-
strass form of the elliptic curve E defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

Kodaira types, torsion, etc., then list all twists
of E that are in the catalog and assign name
if curve is not in catalog.

Ell a1, a2, a3,

a4, a6

Initialize an elliptic curve with coefficients ai
arbitrary Maple expressions, such as indeter-
minates or floating point numbers.

Genj j Initialize an elliptic curve with j-invariant j.

Isog Find all curves isogenous to E

Trans r,s,t,u Transform the defining equation by the trans-
formation defined by r, s, t, u

Tw a Initialize the quadratic twist of E by a.

TABLE 16.2. APECS: Points and the Mordell-Weil Group

Function Arguments Description

Allp p List elements of E(Fp) and group structure.

Bas [bound] Try to find a basis for E(Q) and the regulator
of E.

Crem ... Compute rank of E(Q) (or just an upper
bound) using standard 2-descent algorithms,
as in [21].

Emod p Compute #E(Fp).

Emods p1,p2 For each prime p between p1 and p2, compute
#E(Fp), ap, and information about reduction
of E mod p.

Raf Compute x-coordinates of elements of E(R)
of order 2.

Rk [d] Try to compute the rank using standard the-
orems and conjectures (d is a search bound)

RkNC [d] Same as Rk, no use of conjectures allowed.
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TABLE 16.3. APECS: Basic Arithmetic

Function Arguments Description

Eadd z1, z2 Add z1 and z2 in E(Q)

Eadp z1, z2 Add z1 and z2 in E(Fp). This function as-
sumes that you have set the global variable p,
e.g., by typing p:=5 or calling Allp.

Ford x,y,t List the multiples of z = (x, y) up to
min(t, ord(z))

Ht x,y Néron-Tate canonical height of (x, y) ∈ E(Q)

Mulp n,z Find nz in E(Fp), for any n ∈ Z (as for Eadp,
p is assumed preset).

Mult n,z Find nz on E, for any n ∈ Z (as for Eadp, p is
assumed preset).

Neg z Calculate −z on E.

Negp z Calculate negative of point z in E(Fp)

Sub z1,z2 Calculate z1 − z2 on E.

TABLE 16.4. APECS: Invariants

Function Arguments Description

Dat [a1,a2,a3,

a4,a6]

Data about E or curved defined by the ai

Om Complex lattice periods ω1, ω2

On x,y True if and only if (x, y) lies on E.

Onp x,y True if and only if (x, y) lies in E modulo p,
where p is a global variable that is assumed
set.

Sha Order of Shafarevich-Tate group X(E/Q),
assuming the conjecture of Birch and
Swinnerton-Dyer.
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TABLE 16.5. APECS: The L-Function

Function Arguments Description

FnL r, [d], [h] Calculate L(r)(E, 1), where r is assumed to
have the same parity as the sign of the func-
tional equation for L(E, s). If the optional
parameter d is set, calculate the L-series to
within ±10−d. If optional parameter h is set,
use at most h terms of the power series that
defines L(E, s).

Roha The sign ε in the functional equation for
L(E, s), computed using an algebraic algo-
rithm; note that ε = 1 if and only if
ords=1 L(E, s) is even.

Sfe The sign ε in the functional equation for
L(E, s) computed using an analytical algo-
rithm that involves summing an infinite series
to sufficient precision.

TABLE 16.6. APECS: Catalog

Function Arguments Description

Go List the elliptic curves defined in this APECS
session.

Go n or psn Go to elliptic curve number n in the stack or to
the previous elliptic curve. (To go to previous
curve, type Go(psn).)

Ypecs Same as Zpecs below, but don’t quit Maple;
instead return to the APECS prompt.

Zpecs Store updated and enlarged catalog of elliptic
curves and data to disk, then quit APECS.
To leave apecs without saving this session’s
curves and data use Maple’s quit command.
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The following Maple session illustrates many of the commands listed in
the above tables for the elliptic curve y2 + y = x3 − x. Note that to save
space some of the output is abbreviated from how it would really appear
in Maple.
First we load the APECS package.

> read apecs;

... Welcome to apecs ..

Then we load the curve, using that a1 = 0, a2 = 0, a3 = 1, a4 = −1, and
a6 = 0. Next initialize the curve.

> Ein(0,0,1,-1,0);

b’s = 0, -2, 1, -1

c’s = 48, -216

DD = 37, = , (37)

110592

jay = , ------, denom(jay) = , (37)

37

The torsion group is trivial.

present curve is A37 = [0, 0, 1, -1, 0]

The first line of the output gives

b2 = a21 + 4a2 = 0,

b4 = a1a3 + 2a4 = −2,
b6 = a23 + 4a6 = 1,

b8 = a21a6 − a1a3a4 + 4a2a6 + a2a
2
3 − a24 = −1,

and the second gives

c4 = b22 − 24b4 = 48,

c6 = −b32 + 36b2b4 − 216b6 = −216.

The third line contains the discriminant

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6 = 37,

and the fourth the j-invariant

j = c34/∆ =
110592

37
.

The second to last line of the above output asserts that E(Q)tor = 0, and
the last line gives the APECS label for the curve, “A37”, and the ai that
define the curve.
Now we create the twist of A37 by −5, which becomes the current curve,
view the catalog of known curves, then reload A37.

> Tw(-5);

twist of A37 by -5

‘Initial Weierstrass form of -5*A37 is ‘
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V^2 = U^3-32400*U-1458000

b’s = 0, -800, -8000, -160000

c’s = 19200, 1728000

12 6

DD = 2368000000, = , (2) (5) (37)

110592

jay = , ------, denom(jay) = , (37)

37

Tor has not been called --- torsion subgroup unknown.

‘By Laska’s algorithm, minimal Weierstrass coefficients are‘

[0, 0, 0, -400, -2000]

‘The coordinates U,V of the original equation are related to the‘

‘coordinates X,Y of the Weierstrass equation by‘

U = 9 X, V = 27 Y

V

X = U/9, Y = ----

27

‘To transfer points between the original curve and the Weierstrass form‘

‘use the commands Trcw(u,v) and Trwc(x,y).‘

‘These commands remain available during this apecs session.‘

‘Conductor Nc = 14800 = [2, 5, 37]^[4, 2, 1]‘

‘The Kodaira types at the bad primes are‘

II*, I*0, I 1(split)

‘Product of the local Tamagawa numbers cP = 2‘

‘This new curve has now been entered into the apecs catalog.‘

present curve is A14800 = [0, 0, 0, -400, -2000]

> Go();

‘1 A37‘

‘2 A14800 present curve‘

> Go(1);

present curve is A37 = [0, 0, 1, -1, 0]

Next we compute E(F5):

> Allp(5);

group of points on A37 mod 5 = O, [2, 2, 2], [1, 4, 4], [1, 0, 4],

[4, 4, 8], [0, 0, 8], [4, 0, 8], [0, 4, 8]

‘group order = ‘, 8, ‘, type: cyclic‘

Thus

E(F5) = {O, (2, 2), (1, 4), (1, 0), (4, 4), (0, 0), (4, 0), (0, 4)}
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is a cylic group of order 8. Notice that the third coordinates in the out-
put of Allp are the order of the point, and should not be confused with
homogenous coordinates for points on a projective model for the curve.
Use the Bas command to find the basis (0, 0) for E(Q) and that the regu-
lator of E is approximately 0.051111408239968840236.

> Bas();

isog already done

a basis has already been found:-

(assuming the rank = 1 --- we used standard conj.’s to get this value)

[0, 0]

The regulator =

.51111408239968840236e-1

The Emods command creates a table of information about the reduction of
E modulo p for p in some range (I’ve re-formated the output slightly for
readability).

> Emods(2,43);

‘ p N ap theta DD j‘

‘ 2 5 -2 45.00 1 0 -supersingular‘

‘ 3 7 -3 30.00 1 0 -supersingular‘

‘ 5 8 -2 63.43 2 1‘

‘ 7 9 -1 79.11 2 3‘

‘11 17 -5 41.08 4 5‘

‘13 16 -2 73.90 11 6‘

‘17 18 0 90.00 3 8 -supersingular‘

‘19 20 0 90.00 18 7 -supersingular‘

‘23 22 2 102.0 14 17‘

‘29 24 6 123.9 8 20‘

‘31 36 -4 68.95 6 18‘

‘37 39 -1 85.28 0 -singular-nonsplit multiplicative‘

‘41 51 -9 45.35 37 27‘

Next we do some arithmetic with multiples of (0, 0):

> z := [0,0];

> Eadd(z, z);

‘[0, 0]+[0, 0] = [1, 0]‘

> Ford(0,0,7);

‘1*z = [0, 0, 0]‘

‘2*z = [1, 0, 0]‘

‘3*z = [-1, -1, 0]‘

‘4*z = [2, -3, 0]‘

‘5*z = [1/4, -5/8, 0]‘

‘6*z = [6, 14, 0]‘

‘7*z = [-5/9, 8/27, 0]‘

‘8*z = etc‘

> Ht(0,0);

... 0.025555704119984420117946

> Ht(1,0);

... 0.10222281647993768047176

> Mult(7, [0,0]);

|| [7] || [0, 0] = [-5/9, 8/27]
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> Neg([-5/9,8/27]);

‘-[-5/9, 8/27] = [-5/9, -35/27]‘

> Eadd([-5/9, 8/27], [-5/9, -35/27]);

‘[-5/9, 8/27]+[-5/9, -35/27] = O‘

Now we use the catalogue to load the twist by −5 and see that the rank of
that twist is 1. We also compute the conjectural order 1 of the Shafarevich-
Tate group. (If Go(2) does not work for you, type Ein(0,0,0,-400,-2000).)

> Go();

‘1 A37 present curve‘

‘2 A14800‘

> Go(2);

present curve is A14800 = [0, 0, 0, -400, -2000]

> Rk();

... Now RR of A14800 = [[-15, 25]]

‘We now assume the T and B-SD conjectures and the R.H. for L‘

‘and calculate Mestre’s upper bound for the rank‘

... Mestre’s u.b. for rank is 1.886208195

Rank r4 = 1 with quality index rc = 2

> Sha();

Must find a Mordell-Weil basis first --- use the apecs command Bas

> Bas();

... RR = [[-15, 25]]

> Sha();

Calculating the first derivative of the L series at s=1 to within +/-10^-4

‘50 terms give 3.1069‘

‘100 terms give 3.0958‘

‘150 terms give 3.0962‘

‘200 terms give 3.0962‘

‘250 terms give 3.0962‘

‘292 terms give 3.0962‘

‘ assuming B-SwD, the order of the Shafarevich-Tate group is approximately‘

1.00000

‘ which is deemed to be 1‘

Next we ask for L′(E, 1) for E the twist by −5:
> FnL(1);

... ‘L^1(1)/1! is approx. 3.0962‘

Finally we save our curves, exit, then restart and see that they are still
available.

> Go();

‘1 A37‘

‘2 A14800 present curve‘

> Zpecs();

When we restart Maple and reload APECS, the stack is empty. However
all the information we computed about curves above is stored, and doesn’t
have to be recomputed.

> read apecs;

> Go();

stack is empty

> Ein(0,0,1,-1,0);
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...

> Tw(-5);

...

> Bas(); # this immediately gives basis without computing anything

16.2.1 Graphing Elliptic Curves

Unlike Magma and Pari, Maple has excellent built-in features for drawing
graphs of elliptic curves. [This section is not finished.]
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17
Mathematica

This chapter is about how to utilize Mathematica in doing computations
with some of the mathematical objects that appear in this book. The au-
thor used Mathematica Version 4.2 when writing this chapter, but the
information below should not be too version specific.

17.1 Elementary Number Theory

In[6]:= Zeta[2]

2

Pi

Out[6]= ---

6

In[7]:= Zeta[3]

Out[7]= Zeta[3]

17.2 Elliptic curves

Package by Silverman.
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18
PARI

18.1 Getting Started with PARI

18.1.1 Documentation

The documentation for PARI is available at

http://modular.fas.harvard.edu/docs/

Some PARI documentation:

1. Installation Guide: Help for setting up PARI on a UNIX computer.

2. Tutorial: 42-page tutorial that starts with 2 + 2.

3. User’s Guide: 226-page reference manual; describes every function

4. Reference Card: hard to print, so I printed it for you (handout)

18.1.2 A Short Tour

$ gp

Appele avec : /usr/local/bin/gp -s 10000000 -p 500000 -emacs

GP/PARI CALCULATOR Version 2.1.1 (released)

i686 running linux (ix86 kernel) 32-bit version

(readline v4.2 enabled, extended help available)

Copyright (C) 2000 The PARI Group

PARI/GP is free software, covered by the GNU General Public License, and

comes WITHOUT ANY WARRANTY WHATSOEVER.
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Type ? for help, \q to quit.

Type ?12 for how to get moral (and possibly technical) support.

realprecision = 28 significant digits

seriesprecision = 16 significant terms

format = g0.28

parisize = 10000000, primelimit = 500000

? \\ this is a comment

? x = 571438063;

? print(x)

571438063

? x^2+17

%2 = 326541459845191986

? factor(x)

%3 =

[7 1]

[81634009 1]

? gcd(x,56)

%5 = 7

? x^20

%6 = 13784255037665854930357784067541250773222915495828020913935

8450113971943932613097560462268162512901194466231159983662241797

60816483100648674388195744425584150472890085928660801

18.1.3 Help in PARI

? ?

Help topics:

0: list of user-defined identifiers (variable, alias, function)

1: Standard monadic or dyadic OPERATORS

2: CONVERSIONS and similar elementary functions

3: TRANSCENDENTAL functions

4: NUMBER THEORETICAL functions

5: Functions related to ELLIPTIC CURVES

6: Functions related to general NUMBER FIELDS

7: POLYNOMIALS and power series

8: Vectors, matrices, LINEAR ALGEBRA and sets

9: SUMS, products, integrals and similar functions

10: GRAPHIC functions

11: PROGRAMMING under GP

12: The PARI community

Further help (list of relevant functions): ?n (1<=n<=11).

Also:

? functionname (short on-line help)

?\ (keyboard shortcuts)
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?. (member functions)

Extended help looks available:

?? (opens the full user’s manual in a dvi previewer)

?? tutorial (same with the GP tutorial)

?? refcard (same with the GP reference card)

?? keyword (long help text about "keyword" from the user’s manual)

??? keyword (a propos: list of related functions).

? ?4

addprimes bestappr bezout bezoutres bigomega

binomial chinese content contfrac contfracpnqn

core coredisc dirdiv direuler dirmul

divisors eulerphi factor factorback factorcantor

factorff factorial factorint factormod ffinit

fibonacci gcd hilbert isfundamental isprime

ispseudoprime issquare issquarefree kronecker lcm

moebius nextprime numdiv omega precprime

prime primes qfbclassno qfbcompraw qfbhclassno

qfbnucomp qfbnupow qfbpowraw qfbprimeform qfbred

quadclassunit quaddisc quadgen quadhilbert quadpoly

quadray quadregulator quadunit removeprimes sigma

sqrtint znlog znorder znprimroot znstar

? ?gcd

gcd(x,y,{flag=0}): greatest common divisor of x and y. flag is optional, and

can be 0: default, 1: use the modular gcd algorithm (x and y must be

polynomials), 2 use the subresultant algorithm (x and y must be polynomials).

? ??gcd

\\ if set up correctly, brings up the typeset subsection from the manual on gcd

18.2 Pari Programming

18.2.1 Beyond One Liners

In today’s relaxing but decidely non-mathematical lecture, you will learn
a few new PARI programming commands. Feel free to try out variations
of the examples below (especially because there is no homework due this
coming Wednesday). Also, given that you know PARI fairly well by now,
ask me questions during today’s lecture!

18.2.2 Reading Files

The \r command allows you to read in a file.

Example 18.2.1. Create a file pm.gp that contains the following lines

{powermod(a, p, n) =

return (lift(Mod(a,p)^n));}
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Now use \r to load this little program into PARI:

> ?powermod

*** powermod: unknown identifier.

> \rpm \\ \rpm.gp would do the same thing

? ?powermod

powermod(a, p, n) = return(lift(Mod(a,p)^n));

? powermod(2,101,7)

%1 = 27

If we change pm.gp, just type \r to reload it (omitting the file name reloads
the last file loaded). For example, suppose we change return (lift(Mod(a,p)^n))

in pm.gp to return (lift(Mod(a,p)^n)-p). Then

? \r

? powermod(2,101,7)

%2 = -74

18.2.3 Arguments

PARI functions can have several arguments. For example,

{add(a, b, c)=

return (a + b + c);}

? add(1,2,3)

%3 = 6

If you leave off arguments, they are set equal to 0.

? add(1,2)

%4 = 3

If you want the left-off arguments to default to something else, include that
information in the declaration of the function:

{add(a, b=-1, c=2)=

return (a + b + c);}

? add(1,2)

%6 = 5

? add(1)

%7 = 2

? add(1,2,3)

%8 = 6

18.2.4 Local Variables Done Right

Amidst the haste of a previous lecture, I mentioned that an unused argu-
ment can be used as a poor man’s local variable. The following example
illustrates the right way to declare local variables in PARI.

Example 18.2.2. The function verybad below sums the integers 1, 2, . . . n
whilst wreaking havoc on the variable i.
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{verybad(n)=

i=0;

for(j=1,n, i=i+j);

return(i);}

? verybad(3)

%9 = 6

? i=4;

? verybad(3);

? i

%13 = 6 \\ ouch!! what have you done to my eye!

The function poormans is better, but it uses a cheap hack to simulate a
local variable.

{poormans(n, i=0)=

for(j=1,n, i=i+j);

return(i);}

? i=4;

? poormans(3)

%16 = 6

? i

%17 = 4 \\ good

The following function is the best, because i is local and it’s clearly declared
as such.

{best(n)=

local(i);

i=0; for(j=1,n, i=i+j);

return(i);}

? i=4;

? best(3)

%18 = 6

? i

%19 = 4

18.2.5 Making Your Program Listen

The input command reads a PARI expression from the keyboard. The
expression is evaluated and the result returned to your program. This be-
havior is at first disconcerting if, like me, you naively expect input to
return a string. Here are some examples to illustrate the input command:

? ?input

input(): read an expression from the input file or standard input.

? s = input();

1+1

? s \\ s is not the string "1+1", as you might expect

%24 = 2

? s=input()

hi there

%25 = hithere
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? type(s) \\ PARI views s as a polynomial in the variable hithere

%26 = "t_POL"

? s=input()

"hi there"

%27 = "hi there"

? type(s) \\ now it’s a string

%28 = "t_STR"

18.2.6 Writing to Files

Use the write command:

? ?write

write(filename,a): write the string expression a to filename.

? write("testfile", "Hello Kitty!")

The write command above appended the line “Hello Kitty!” to the last line
of testfile. This is useful if, e.g., you want to save key bits of work during
a session or in a function. There is also a logging facility in PARI, which
records most of what you type and PARI outputs to the file pari.log.

? \l

log = 1 (on)

? 2+2

%29 = 4

? \l

log = 0 (off)

[logfile was "pari.log"]

18.2.7 Coming Attractions

The rest of this course is about continued fractions, quadratic forms, and
elliptic curves. The following illustrates some relevant PARI commands
which will help us to explore these mathematical objects.

? ?contfrac

contfrac(x,{b},{lmax}): continued fraction expansion of x ...

? contfrac(7/9)

%30 = [0, 1, 3, 2]

? contfrac(sqrt(2))

%31 = [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...]

? ?qfbclassno

qfbclassno(x,{flag=0}): class number of discriminant x using Shanks’s

method by default. If (optional) flag is set to 1, use Euler products.

? qfbclassno(-15,1) \\ ALWAYS use flag=1, since ‘‘the authors were too

%32 = 2 \\ lazy to implement Shanks’ method completely...’’

? E=ellinit([0,1,1,-2,0]);

? P=[0,0];

? elladd(E,P,P)

%36 = [3, 5]

? elladd(E,P,[3,5])
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%37 = [-11/9, 28/27]

? a=-11/9;b=28/27; \\ this is an ‘‘amazing’’ point on the curve.

? b^2+b == a^3+a^2-2*a

%38 = 1

18.3 Computing with Elliptic Curves

18.3.1 Initializing Elliptic Curves

We are concerned primarily with elliptic curves E given by an equation of
the form

y2 = x3 + ax+ b

with a and b either rational numbers or elements of a finite field Z/pZ. If a
and b are in Q, we initialize E in PARI using the following command:

? E = ellinit([0,0,0,a,b]);

If you wish to view a and b as element of Z/pZ, initialize E as follows:

? E = ellinit([0,0,0,a,b]*Mod(1,p));

If ∆ = −16(4a3+27b2) = 0 then ellinit will complain; otherwise, ellinit
returns a 19-component vector of information about E. You can access some
of this information using the dot notation, as shown below.

? E = ellinit([0,0,0,1,1]);

? E.a4

%11 = 1

? E.a6

%12 = 1

? E.disc

%13 = -496

? E.j

%14 = 6912/31

? E5 = ellinit([0,0,0,1,1]*Mod(1,5));

? E5.disc

%15 = Mod(4, 5)

? E5.j

%16 = Mod(2, 5)

Here E.j is the j-invariant of E. It is equal to 2833a3

4a3+27b2 , and has some
remarkable properties that I probably won’t tell you about.
Most elliptic curves functions in PARI take as their first argument the
output of ellinit. For example, the function ellisoncurve(E,P) takes
the output of ellinit as its first argument and a point P=[x,y], and
returns 1 if P lies on E and 0 otherwise.

? P = [0,1]

? ellisoncurve(E, P)

%17 = 1

? P5 = [0,1]*Mod(1,5)
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? ellisoncurve(E5, P)

%18 = 1

18.3.2 Computing in The Group

The following functions implement some basic arithmetic in the group of
points on an elliptic curve: elladd, ellpow, and ellorder. The elladd

function simply adds together two points using the group law. Warning:
PARI does not check that the two points are on the curve.

? P = [0,1]

%2 = [0, 1]

? elladd(E,P,P)

%3 = [1/4, -9/8]

? elladd(E,P,[1,0]) \\ nonsense, since [1,0] isn’t even on E!!!

%4 = [0, -1]

? elladd(E5,P5,P5)

%12 = [Mod(4, 5), Mod(2, 5)]

? [1/4,-9/8]*Mod(1,5)

%13 = [Mod(4, 5), Mod(2, 5)]

The ellpow function computes nP = P + P + · · ·+ P (n summands).

? ellpow(E,P,2)

%5 = [1/4, -9/8]

? ellpow(E,P,3)

%6 = [72, 611]

? ellpow(E,P,15)

%7 = [26449452347718826171173662182327682047670541792/9466094804586385762312509661837302961354550401,

4660645813671121765025590267647300672252945873586541077711389394563791/920992883734992462745141522111225908861976098219465616585649245395649]

18.3.3 The Generating Function L(E, s)

Suppose E is an elliptic curve overQ defined by an equation y2 = x3+ax+b.
Then for every prime p that does not divide ∆ = −16(4a3 + 27b2), the
same equation defines an elliptic curve over the finite field Z/pZ. As you
will discover in problem 3 of homework 9, it can be exciting to consider
the package of numbers #E(Z/pZ) of points on E over all finite fields. The
function ellap computes

ap(E) = p+ 1−#E(Z/pZ).

? E = ellinit([0,0,0,1,1]);

? ellap(E,5)

%19 = -3 \\ this should be 5+1 - #points

? E5 = ellinit([0,0,0,1,1]*Mod(1,5));

? for(x=0,4, for(y=0,4, if(ellisoncurve(E5,[x,y]),print([x,y]))))

[0, 1]

[0, 4]

[2, 1]

[2, 4]
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[3, 1]

[3, 4]

[4, 2]

[4, 3]

? 5+1 - 9 \\ 8 points above, plus the point at infinity

%22 = -3

There is a natural way to extend the definition of ap to define integers an
for every integer n. For example, if ap and aq are defined as above and p
and q are distinct primes, then apq = apaq. Today I won’t tell you how to
define the ap when, e.g., p | ∆. However, you can compute the numbers
an quickly in PARI using the function ellan, which computes the first few
an.

? ellan(E,15)

%24 = [1, 0, 0, 0, -3, 0, 3, 0, -3, 0, -2, 0, -4, 0, 0]

This output means that a1 = 1, a2 = a3 = a4 = 0, a5 = −3, a6 = 0, and
so on.
When confronted by a mysterious list of numbers, it is a “reflex action” for
a mathematician to package them together in a generating function, and
see if anything neat happens. It turns out that for the above numbers, a
good way to do this is as follows. Define

L(E, s) =

∞
∑

n=1

ann
−s.

This might remind you of Riemann’s ζ-function, which is the function you
get if you make the simplest generating function

∑∞
n=1 n

−s of this form.
Using elllseries(E,s,1) I drew a graph of L(E, s) for y2 = x3 + x+ 1.
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That the value of L(E, s) makes sense at s = 1, where the series above
doesn’t obviously converge, follows from the nontrivial fact that the func-
tion

f(z) =

∞
∑

n=1

ane
2πinz

is a modular form. Also, keep your eyes on the dot; it plays a central roll in
the Birch and Swinnerton-Dyer conjecture, which asserts that L(E, 1) = 0
if and only if the group E(Q) is infinite.

18.3.4 A Curve of Rank Two

Let E be the simplest rank 2 curve:

y2 + y = x3 + x2 − 2x.

The discriminant is 389.
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18.3.5 A Curve of Rank Three

Let E be the simplest rank 3 curve:

y2 + y = x3 − 7x+ 6.

The discriminant is 5077.
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18.3.6 A Curve of Rank Four

Let E be the simplest known rank 4 curve:

y2 + xy = x3 − x2 − 79x+ 289

The conductor is 2 · 117223.
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18.3.7 Other Functions and Programs

You can see a complete list of elliptic-curves functions by typing ?5:
? ?5

elladd ellak ellan ellap

ellbil ellchangecurve ellchangepoint elleisnum

elleta ellglobalred ellheight ellheightmatrix

ellinit ellisoncurve ellj elllocalred

elllseries ellorder ellordinate ellpointtoz

ellpow ellrootno ellsigma ellsub

elltaniyama elltors ellwp ellzeta ellztopoint

I have only described a small subset of these. To understand many of them,
you must first learn how to view an elliptic curve as a “donut”, that is, as
quotient of the complex numbers by a lattice, and also as a quotient of the
upper half plane.
There is a Maple package called APECS for computing with elliptic curves,
which is more sophisticated than PARI in certain ways, especially in con-
nection with algorithms that involve lots of commutative algebra. MAGMA
also offers sophisticated features for computing with elliptic curves, which
are built in to the standard distribution. I will give a demonstrations of
MAGMA in the Basic Notions seminar at 3pm on Monday, December 3 in
SC 507. There is also a C++ library called LiDIA that has libraries with
some powerful elliptic curves features.
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19
Other Computational Tools

ti-89, mwrank, simath, kant, matlab

19.1 Hand Calculators

A TI-89 can deal with integers with 1000s of digits, factor, and do a sur-
prising about of basic number theory. I am not aware if anyone has pro-
grammed basic ”elliptic curve” computations into this calculator, but it
could be done.
[Do some examples here.]
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