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This appendix provides an overview of the abstract algebra that is as-
sumed throughout this book. We first lay out the basic structures and
definitions, such as groups and rings, then consider several fundamental ex-
amples in greater depth, and finally examine how algebra is used in each
section of the book.

1 Basic Structures

1.1 Groups

We can think of algebra as abstracting its concepts from basic arithmetic
and providing a generalization of the objects of elementary number theory.
Numbers are abstracted to general sets, and addition and multiplication to
binary operations in general. The simplest and most basic example of this
abstraction is the group, which consists of a set with a single operation1.
Examples of groups with which we are already familiar are Z under addition,
or the nonzero elements of Q under mulitplication. The precise definition of
a group adds certain axioms:

Definition 1.1 (Group). A group is a pair (G, ◦) where G is a non-empty
set and ◦ a binary operation on the set such that:
i) The operation is associative.
ii) The operation has an identity element.
iii) Every element of G has an inverse under ◦.

We see that Q under multiplication cannot be a group, because 0 has
no inverse. Other examples of groups which are encountered in this book
are Z

nZ under addition, and GL2(Z), the group of invertible 2× 2 matrices,
under mulitplication.

A group G is called abelian if its operation is commutative. That is, if
ab = ba for every a, b ∈ G.

A group G is a cyclic group if there is an element x ∈ G such that for
some m ∈ Z, we have xm = 1 and G = {1, x, . . . , xm−1}, with x, . . . , xm−1

distinct.
We say the order of a group G is the number of elements it contains.

The order of an element x of G is the smallest m such that xm = 1. It is
possible in infinite groups that the order of an element will be infinity.

One basic fact about groups is the following proposition:
1this is sometimes known as a rule of composition
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Proposition 1.2 (Cancellation Law). Let a, b, c, be elements of a group
G. If ab = ac, then b = c. If ba = ca, then b = c.

Proof. : Multiply both sides of ab = ac by a−1 on the left:
b = a−1ab = a−1ac = c.

One natural question is whether it is possible to extract any smaller
groups from a given group G. Indeed it is. For example, the even integers
under addition satisfy all of the group axioms and are a subset of (Z). Such
a subset is known as a subgroup:

Definition 1.3 (Subgroup). Let H be a subset of G. Then H is a subgroup
if:
i) For any a, b ∈ H, ab ∈ H.
ii) The identity of G is in H.
iii) For any a ∈ H, a−1 ∈ H.

Note that this is equivalent to the condition that if H ⊆ G, then H is a
subgroup of G if and only if for all h1, h2 ∈ H,h1h

−1
2 ∈ H.

To see the ubiquity of the group structure, note the following:

Fact 1.4. Every set can be endowed with a group structure.

The implication of this for number theory is that we have to be somewhat
judgemental about group structures on sets we encounter. We will always be
able to find something, but the goal, of course, is to find a natural structure
which will give us some insight into what we are interested in.

1.2 Rings

Rings are another of the basic structure studied in algebra. Conceptually,
they should be thought of as abstractions of the integers, in that they have
two operations, which are modeled on addition and multiplication. A related
structure is the field, which has the extra stipulation that all elements have
mulitplicative inverses. For example, Z is a ring but not a field, while Q is
both.

Definition 1.5. A ring is a triple (R,+,×) where R is a set, and + and ×
are binary operations on the set such that:
i) R under + is an abelian group. We denote the identity by 0.
ii) The operation × is associative and has an identity. We denote this by 1.
iii) ∀ a, b, c,∈ R, we have (a + b)c = ac + bc and c(a + b) = ca + cb.
For fields, add the axiom that ∀ r ∈ R ∃ r−1 ∈ R such that r−1r = 1 and
rr−1 = 1 (i.e. the existence of multiplicative inverses).
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Just as with groups, we can define subrings of R. A subring is a sub-
group with the added stipulations that it is closed under multiplication and
contains the element 1.

As a word of warning, when we use the word ring here, we are referring
to commutative rings, in which the multiplicative law is commutative. There
are non-commutative rings, but none are considered in the text, so we will
not concern ourselves with them here.

1.3 Ideals

An ideal I is a subset of a ring R which is of special importance in number
theory. There are many results in the text which are possible without ideals,
but which are made much easier and clearer with them. The different proofs
of quadratic reciprcity offer an example of this. Ideals arose in number
theory as part of Dedekind’s attempts to prove Fermat’s Last Theorem.
They were an attempt to idealize the numbers he was dealing with (quadratic
fields) to ensure unique factorization.

Definition 1.6. An ideal I of a ring R is a subset of R such that:
i) I is a subgroup of the additive group of R.
ii) If a ∈ I and r ∈ R, then ra ∈ I.

Ideals can also be defined as
The clearest way to think about ideals is as lattices. For example, imag-

ine the ring Z×Z as embedded in C2 (which gives it a multiplicative struc-
ture). The ideal generated by the elements (2,0) and (0,2) is all points of
the form (2m, 2n) where m,n ∈ Z.

1.4 Cosets and Quotients

Using a particular relation between a group G and a subgroup H, we can
construct another group G/H. The group Z/nZ is an example of such a
group, as we shall see.

Definition 1.7 (Cosets). Given a group G, a subgroup H of G, and an
element g ∈ G, we call the set gH = {gh : h ∈ H} a left coset of H in G.
We define Hg, the right cosets, similarly. Note that for G an abelian group,
the right and left cosets will be the same.

The cosets of H in G form a disjoint partition of G. Furthermore, each
coset has the same order. Letting each coset define an equivalence class, we
are able to construct another group structure from G and H, the quotient
group.
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Definition 1.8 (Quotient Group). Let G be an abelian group, and H a
subgroup of G. We define the quotient group of G by H as G = G/H =
{g1, . . . , gn}, where gi denotes giH. Put another way, G/H is the set of
cosets of H in G. The group operation is coset multiplication: (gigj = gigj.

Note that it is not always stipulated that G be abelian, but if it is not, we
must also require that H satisfy a particular property, namely that gH = Hg
for any g. If this property is satisfied, H is said to be a normal subgroup.

As an example, consider G = Z,H = 2Z. That is, G = {. . . ,−2,−1, 0, 1, 2, . . .},H =
{. . . ,−4,−2, 0, 2, 4, . . .}. The two cosets of H in G are 0 = 0H = H and
1 = 1H = {. . . ,−3,−1, 1, 3, 5, . . .} (recall that the group operation is addi-
tion). The group Z/2Z, then, is the group of order 2 {0,1}.

1.5 Group Actions

The examples of groups that we have seen so far have been very closely
related to number theory. They are the sort of groups that number theorists
use all the time, and form the grounding of the field. Here, we go on a brief
digression, so as to make the following concept more intuitive, and look at
groups of rotations.

Let rθ be a rotation of the plane by θ radians. Consider the set
{r0, r2π/n, r2(2π/n), . . . , r(n−1)2π/n}. Now, if we define an operation by com-
position of rotations: rθrφ = rθ+φ, we can form a group. Note that the
group is a cyclic group of order n. Denote this group by Rn. Now, consider
the set S of vertices of a regular n-gon with center at the origin. We can
apply each element of Rn to S, sending an element s ∈ S to another point
on the n-gon. This is known as the action of Rn on S. It can be generalized
so that given any set S and group G, we may define an action of G on S.

Definition 1.9 (Group Action). Given a group G and a set S, the action
of G on S is a map G× S −→ S, (g, s) 7→ gs. The map must be such that,
for all s ∈ S, and g1, g2 ∈ G:
i) For 1 the identity element of G, 1s = s.
ii) (g1g2)s = g1(g2s).

In the text, group actions play a central role in chapter 12 as the action
of SL2(Z) on the complex plane. The properties of this action are explored
below in section 2.1 and 3.NUM. A deeper study of actions in algebra leads
to actions of a group on itself, actions of a group on cosets, and many other
interesting topics. These are certainly of relevance in higher number theory,
but are beyond the scope of this text.
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1.6 Free Groups and the Structure Theorem

discussion of free groups
There is an important result which follows from the study of free groups

and modules, which are essentially vector spaces over a ring, rather than a
field. Recalling the definition of a direct sum from linear algebra, we have
the following statement of the theorem.

Theorem 1.10 (Structure Theorem for abelian groups). If G is a
finitely generated abelian group, then we have G ' Cd1 ⊕ · · ·Cdm ⊕L, where
Cn is the cyclic group of order n and L is a free abelian group.

The proof of this theorem is beyond the scope of this appendix. We will
offer the following equivalent statement, however, which puts the theorem
in more familiar terms:

Theorem 1.11. If G is a finitely generated abelian group, then G ' Z/d1×
· · · × Z/dm × Zt.

1.7 Polynomial Fields

2 Fundamental examples

In this section, we examine a few of the most important examples of groups,
rings, and fields which are encountered in the text, and explore a few of
their interesting properties. It is hoped that this will help to give the reader
a feel for the objects, which is one of the primary aims of both algebra and
number theory.

2.1 The Group SL2(Z)

The first of the groups we will look at is quite useful in algebra, and very
relevant to number theory. Now, although the following defintions apply to
any ring R, we will restrict our attention to Z and Z/n.

Let GL2(R) denote the set of 2×2 matrices of R so that the determinant
is invertible under multiplication in R. That this set forms a group under
matrix multiplication is left as an exercise. We denote be SL2(R) the set
of invertible matrices with determinant 1. In the text, we are concerned
mainly with SL2(Z).

To give the reader a flavor for these groups, we present a few introductory
results:
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Theorem 2.1. For any n, the map given by reduction of the matrix entries
of an element of SL2(Z) gives a surjective group homomorphism SL2(Z) −→
SL2(Z).

Proof. proof here

The following proposition characterizes the order of several linear groups.
The proof is left to the reader.

Proposition 2.2. i) The order of GL2(Z/p) is (p2 − 1)(p2 − n).
ii) The order of SL2(Z/p) is p(p2 − 1).
iii) The order of SL2(Z/n) is n3

∏
p|n(1− p−2).

The linear groups can be used to provide an action on C, the complex
plane.

2.2 Quadratic Fields

3 Algebra in This Book

3.1 Chapter 3

One of the most basic rings, Z/n, is introduced in this chapter. It is noted
that since Z/n is the quotient of the ring Z with an ideal nZ, there is
an induced ring structure on Z/n. The proof that this holds in general is
presented here:

Theorem 3.1. PROOF from Artin.

3.2 Chapter 4

3.3 Chapter 5

This aim of this chapter is to show that the group (Z/p)× is cyclic. Clearly,
one must understand the basic notion of a cyclic group, which was presented
in section 1 above. The proof relys on the following equivalent definition of
the order of an element: x ∈ G has order m if the subgroup generated by x
has order m. If H is a subgroup of G, and |H| = |G|, then H = G. Now,
since we know (Z/p)× has order p − 1, we need only show that it contains
an element of order p− 1. The chapter proceeds with this goal.
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3.4 Chapter 6

The last section of chapter 6 contains a proof of qudratic reciprocity which is
very rich in algebraic content. First, we introduce the complex field. Recall
that a field is a ring with multiplicative inverses.

3.4.1 nth Roots of Unity

One group that arises in this section is the group of complex roots of unity,
which are defined in Definition 6.4.1. We observe here that under complex
mulitiplication, the nth roots of unity form a group of order n, with identity
1 + 0i. If n is prime, then the group is cyclic, generated by e2πi/n.

3.4.2 Proposition 6.2.5 and Homomorphisms

This proposition relies on an aspect of algebra that we haven’t used to
this point - homomorphisms. Morphisms, of which homomorphisms are one
type, are maps between one algebraic structure and another. There are
morphisms from groups to groups, and rings to rings.

Definition 3.2. Let G and H be groups. A group homomorphism is a map
ϕ : G −→ H such that for any a, b ∈ G, ϕ(ab) = ϕ(a)ϕ(b).

The general fact stated, that

3.5 Chapter 7

The dominant algebraic structure in this chapter is the real quadratic field,
Q(
√

d).

3.6 Chapter 8

3.7 Chapter 9

There are a few definitions we need to lay the groundwork:

Definition 3.3. An ideal I is called principal when it has only one gener-
ator.

Definition 3.4 (Principal Ideal Domain). A ring R is called a principal
ideal domain when every ideal I of R is principal.

Definition 3.5. A nonzero ring R is called an integral domain when it has
no zero divisors. That is, if ab = 0, either a = 0 or b = 0.
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Definition 3.6. An integral domain R is a Euclidean domain when there
exists a function δ : R −→ {0, 1, 2, . . .} such that if a, b ∈ R, and a 6= 0, then
∃q, r ∈ R so that b = aq + r, and either r = 0 or δ(r) < δ(a). The function
δ can be thought of as a norm on R. The condition that must hold is the
division algorithm.

It is not the case that every ring encountered in this text is an integral
domain:

Proposition 3.7. The ring Z/n is an integral domain if and only if n is
prime.

Proof. need proof?

We have the following result relating the foregoing definitions:

Theorem 3.8. Every Euclidean domain is a principal ideal domain.

Proof. Let R be a Euclidean domain, and let I be an ideal in R. If I is the
zero ideal, then I = 0R, so consider I 6= {0}. Choose b ∈ I \ {0} with δ(b)
minimal. Now, since b ∈ I, it is clear that bR ⊆ I. Now take a ∈ I. Then
we have q, r ∈ R as in the definition of a Euclidean domain. So r = a − bq
so that r ∈ I. By the choice of b we cannot have r 6= 0 and δ(r) < δ(b). So,
r = 0 and a = bq ∈ bR.

3.8 Chapter 10

3.9 Chapter 11

3.10 Chapter 12

3.11 Chapter 13
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