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1 Introduction

At the age of 24, Gauss wrote in his famous work Disquisitiones Arithmeticae (1801),
“The problem of distinguishing prime numbers from composite numbers and of re-
solving the latter into their prime factors is known to be one of the most important
and useful in arithmetic” [3]. More succinctly, primality testing and factorization
are important in mathematics (we focus on the former in this paper). Now, 200
years later, these two beasts still remain important in arithmetic and have proved
instrumental in other fields. Many cryptographic schemes, for example RSA, ElGa-
mal encryption, the Diffie-Hellman key agreement, and Rabin public-key encryption,
assume the availability of an efficient mechanism for randomly generating large prime
numbers. This problem of prime generation immediately reduces to primality testing.
Prime number generation can be done by simple trial and error due to the density
of primes. If we let 7(z) be the number of primes less than or equal to z, then
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lim; o === = 1, which means that, asymptotically, m(z) ~ . Thus, if we wish
to gener;ﬁ% a prime number with hundreds of digits, then we need only test on the
order of hundreds of random numbers for primality before we expect to stumble upon
one. In this paper we discuss a probabilistic primality test, due to Rabin, heretofore
referred to as Rabin’s Test.! After introducing and explaining the algorithm, we focus
largely on the probability bounds that Rabin’s Test can guarantee; that is, given a
prime number, the algorithm always returns PRIME, but given a composite number,
there is a negligibly small probability that the algorithm incorrectly returns PRIME.
We discuss the theoretical bound (proved by Rabin in [6]) as well as the bound in
practice, before finally discussing a Java applet implementation and directing the
reader to try out Rabin’s Test on the web.

2 Notation

Most notation used in this paper is standard. We use E and O to represent the
even and odd integers, respectively. Also, we assume the reader is familiar with
order notation. Formally, we say a function f(n) is O(g(n)) if there exists positive
constants ¢ and ng such that f(n) < c¢-g(n)¥n > ng. We loosen the definition and say
an algorithm is O(g(n)) if the input is of size n for a reasonable representation of the
input and it requires less than ¢ - g(n) “steps” for some positive ¢ and the inequality
is true for all n greater than some starting point ny.

LG.L. Miller first considered a similar deterministic test in [4] which assumes the correctness of
the extended Riemann hypothesis, so the primality test we consider is often called the Miller-Rabin
Primality Test.



3 Rabin’s Test

3.1 Background

Fermat’s Little Theorem states that if p is prime and a is some number between 1
and p, then a?~' = 1 mod p (see [5] or any other introductory number theory text for
a proof). Unfortunately, the converse is not true, i.e. given a such that 1 < a < p, if
a?~! = 1 mod p then it is not necessarily the case that p is prime. Nonetheless, the
contrapositive suggests the following primality test of a number n:

STRAWMAN’S-PRIMALITY-TEST (n)
Let a be some number between 1 and n (perhaps 2)
If a®' 21 modn
Return COMPOSITE
Else
Return PRIME
Endif
End Procedure

The above test is very efficient, as modular exponentiation can be performed in
O(logn) multiplications. In addition, if the above test returns COMPOSITE, we
know by Fermat’s Little Theorem that the number is indeed composite, and we
call ¢ a witness to the compositeness? of n. For example, if n = 9 and a = 2,
29=! = 4 mod 9 = 9 is composite, as 2 is a valid witness. Unfortunately, there is an
infinite number of 2-pseudoprimes (composite numbers for which 2 is not a valid wit-
ness), meaning STRAWMAN’S-PRIMALITY-TEST will return PRIME given such
a composite number as input with ¢ = 2. For example, 341 = 11 - 31 is the smallest
2-pseudoprime (check that 234!~! = 1 mod 341). This leads to the idea that maybe if
we try a random a, or, better yet, if we run STRAWMAN’S-PRIMALITY-TEST &
times with randomly chosen bases, then our test will not incorrectly return PRIME
that often. For example, if a = 3, STRAWMAN’S-PRIMALITY-TEST will correctly
return that 341 is composite because 341 is not a 3-pseudoprime. A repeated ran-
domized test like this might perform well on random inputs, but unfortunately there
are infinitely many composite numbers n such that ¢"~! = 1 mod n for all @ coprime
to n. Such numbers are called Carmichael numbers.? 561 = 3- 11 - 17 is the smallest
Carmichael number. Observe the following MAGMA code which returns the number
of witnesses:

function test_carmichael(n)
witnesses := 0;
for a in [1..n] do
if (Ged(a, n) eq 1) and (not (a” (n - 1) mod n) eq 1) then

2We will extend the definition of witness to compositeness when we get to Rabin’t Test
3These numbers were explored by R.D. Carmichael in [1]



witnesses := witnesses + 1;
end if;
end for;
return witnesses;
end function;

And from the prompt, we see there are no witnesses to the compositeness of 561
that are coprime to 561:

> test_carmichael(561);

0
Clearly, if we want a robust primality test, we need to do better than the STRAWMAN’S-
PRIMALITY-TEST approach. We would like a primality test that performs well re-
gardless of the type of input. Carmichael numbers are infinite but very rare; nonethe-
less, a good test is one which assumes that the person feeding input numbers is trying
to crack the algorithm and make it incorrectly return PRIME on a composite num-
ber. Rabin offers the crucial step that gives us peace of mind and confidence in his
primality test, even if the input is a Carmichael number. What’s more, it’s efficient
enough to be used to generate prime numbers with hundreds of decimal digits.

3.2 The Algorithm

Given an odd number n > 2, we wish to determine if n is prime. If n = 2 returning
PRIME is trivial. Also, if n > 2 is even, then it is trivial, in fact an O(1) operation,
to return COMPOSITE by observing that the rightmost bit of n is 0 < n is even.
Thus we safely assume n > 2 is an odd number because in an actual implementation
the n € E case can be handled efficiently before applying Rabin’s Test. Rabin’s Test
works as follows. Given n € Q, let t and u be such that n—1 = 2%y where ¢t > 1 and u
is odd. Thus the binary representation of n — 1 is the binary representation of u left-
shifted ¢ spaces and padded with zeroes. Note that ¢ > 1 since n isodd = n—1 € E.
Now repeatedly do the following, i.e. perform the rest of the algorithm £ times where
k is an assurance parameter. Choose a random base a € {1,2,... ,n — 1} and com-
pute 2o = a* mod n, z; = (a*)2mod n = a® mod n, ..., ; = a®* mod n. If ever
z; = 1 modn and z;_; # +1 mod n, then we have found a non-trivial square of 1
modulo n, so we return that n is COMPOSITE. Only composite numbers n exhibit
the property that there are nontrivial square roots of 1 modulo n. As an example,
observe that 72 = 49 = 1mod 16, i.e. 7 is a square root of 1 modulo 16. For a
proof of why only composite numbers exhibit this property, see the Appendix. Here
is Rabin’s Test in pseudocode:

RABIN'S-TEST (n)
for iters < 1 to k£ do
Leta & {1,... ,n—1}
Let u and t be such that n — 1 = 2% for u odd



Let zg + a* mod n
for j«+ 1 totdo
Let z; < a:?,l mod n
if z; =1 and z; ; # £1 then
return COMPOSITE!
End if
End for
if x; # 1 then
return COMPOSITE? (Fermat’s Little Theorem)
End if
End for
return PRIME
End Procedure

The correctness of a return value of COMPOSITE is argued as follows. If COM-
POSITE is returned from I, then by Fermat’s Little Theorem, n is composite. If
COMPOSITE is returned from f{, then we have found that z;_; is a nontrivial square
root of z; = 1 modulo n, and we know that 1 has nontrivial square roots modulo
n only if n is composite (again, see the Appendix for a proof). Thus we have that
RABIN’S-TEST will never return COMPOSITE when given a prime number as in-
put. On the other hand, it is possible that the algorithm will return PRIME when
given a composite number. For example, let n = 17 - 33 = 561 and suppose our
assurance is only £ = 1 and a = 50 is selected as the base. Then you can check that
t =4 and u = 35. You can also check the following system of congruences with a big
number calculator:

50 = —1 mod 561
5023 = 1 mod 561
502% = 1 mod 561
5023 = 1 mod 561

5023 = 1 mod 561
(1)

Clearly, we’ve applied RABIN’S-TEST with a = 50 and Fermat’s congruence holds
and we haven’t found any nontrivial square roots of 1 modulo 561. Naturally, we
would like to bound above the probability that RABIN’S-TEST returns PRIME when

the input is composite. Rabin shows in [6] that this bound is an amazing ik.



4 Probability of Error

Rabin’s fundamental theorem in [6] is that the number of bases in {1,2,... ,n — 1}
v&zhicl)l are witnesses to the compositeness* of a number n is greater than or equal to
3(n—1

== Since no more than % of the bases are nonwitnesses to n’s compositeness, this
immediately leads us to the conclusion that if we try £ bases independently chosen at
random, if the number is prime we will definitely return PRIME, and if the number
is composite, we will return COMPOSITE with probability greater than 1 — ik. This
is an amagzing result, and randomizing the process guarantees our probability bound
regardless of the distribution of bases. We discuss the main theorem.

4.1 The Fundamental Theorem

In this paper we focus on a weaker but powerful result:

Theorem 1 For a composite number n, the number of witnesses to the compositeness
of n (the number of bases for which RABIN’S-TEST will return COMPOSITE) is at

least ”7_1.5

Proof: © The first piece of the proof is to show that for a composite number n,
all nonwitnesses to compositeness must be elements of Z}. To see this, consider
any nonwitness a. Without even considering our search for nontrivial square roots
of 1 modulo n, we know that a must satisfy a® ' = 1 mod n, which can be written
a-a” 2 =1mod n = 3 asolution to the congruence ax = 1 mod n < " ged(a,n)|1 =
ged(a,n) = 1, which, by definition, means a € Z}. We can actually characterize the
nonwitnesses more tightly than this. That is, we will show that the nonwitnesses are
actually all contained in a proper subgroup H of Z;. It’s then a simple corollary of
Lagrange that since H is proper, |H| < 1|Z:|. So we have that since |Z}| < n — 1,
|H| < 3(n—1). Thus the number of nonwitnesses is at most (n — 1) so the number
of witnesses must be at least %(n — 1), which gives us our result. Thus we need
to construct a proper subgroup H of Z; of which every nonwitness is an element.
There are 2 cases we explore depending on the pseudoprimality of n. In the first case,
suppose dz € Z; such that n is composite using = and Fermat’s Little Theorem. That
is, "' # 1 mod n for some x € Z*. Then let H = {a € Z} : a™ ! =1 mod n}. It’s
clear that H is a subgroup. Clearly 1 € H. Also, H is closed under multiplication
in Z;, and the existence of inverses is simple to show. Thus H is a subgroup. Now
since every nonwitness a satisfies "' = 1 mod n, all nonwitnesses are in H. Since
by assumption dz € Z7 such that 2" ' # 1 mod n, we have v € Z! — H = H is a
proper subgroup of Z}. The theorem follows. This is a pretty good result. Unless

4Here, a base is a witness if RABIN’S-TEST returns COMPOSITE with the base.

SWith more work, it can be shown that the lower bound is actually %(n —1). We direct the
reader to Rabin’s paper for the improved bound.

6This proof is adapted from [2].

"See [2] page 869



n is a Carmichael number (so A such an z), we have our theorem, but if we want
to guarantee the robustness of our primality test, we need to prove our theorem
even for Carmichael numbers despite the fact that they are rare. So assume n is
a Carmichael number. Then by the argument Carmichael sets forth in [1], n does
not have a repeated prime factor and n is not the product of two prime factors.
Now since we only apply RABIN’S-TEST to odd numbers (recall that returning
COMPOSITE given an even number # 2 is a constant time operation which we don’t
even consider), let n = ny - ny where n; and ny are odd numbers relatively prime
to each other. So in our algorithm we let ¢ and v be such that n — 1 = 2'u with u

odd and we looked at the sequence X = (a* a®,...,a*" = a™ ') and checked for
nontrivial square roots of 1 modulo n. Now call a pair of integers (v, j) acceptable
if v?’* = —1modn for v € Z and j € {0,1,...,t}. For example, (n — 1,0) is

acceptable since (n — 1) raised to an odd power modulo n is congruent to -1. Now let
j be the largest possible number such that there exists an acceptable pair (v, j), and
fix v. Now define H = {a: € Z* : z¥* = +1 mod n} It is a simple exercise to show
that H is a subgroup of Z;. It’s also easy to argue that all nonwitnesses are in H.
The sequence X produced by a nonwitness is either all 1’s or has a -1 no later than
the jth position since we defined j to be maximal. Now from v we can construct a
w € Z;,— H from which the theorem will follow. By definition of acceptable, we have
v¥* = —1 mod n = v¥* = —1 mod n,. Since n; and n. are coprime, then it follows
from the Chinese Remainder Theorem that Jw satisfying:

w = v mod ny

w = 1 mod ny
Raising both sides to the (2ju)th power, we have

i
w?* = —1 mod ny

i
w?* =1 mod ns

We have that w?* # 1 mod n; = w?* # 1 mod n, and, similarly, w?* # —1 mod
ny = w¥* # —1 mod n. Thus w?* # 41 mod n so we have that w ¢ H. All that
remains is justifying that w € Z;. Since v € Z, ged(v,n) = 1 = ged(v,nq) = 1. Now
w = v mod n; so we have ged(w, ny) = 1. Similarly, w = 1 mod ny = ged(w,ng) =1,

so we can combine these to get that gcd(w,n) = 1 which means w € Z. This
concludes the proof. Whether or not n is a Carmichael number, the number of
witnesses to the compositeness of n is at least (n — 1). |

4.2 A Note on the Bound

It appears that % is the best bound possible. Rabin cites experimental work done by
Oren where a computer search of the fraction of witnesses to the compositeness of
2000436751 = 487 - 1531 - 2683 was found to be 0.7507. Thus Rabin seems to have
found to tightet bound possible. It should be noted that in practice the bound is
usually much better than %, although this statement is difficult to quantify.

7



4.3 Complexity Discussion

RABIN’S-TEST has many appealing properties. First of all, it’s easy to implement.
Second, the probability of error approaches zero very quickly as we increase our
assurance parameter k. RABIN’S-TEST can test a number for primality in seconds
on a machine of reasonable power and the probability of error will be smaller than
the probability that a particle in the universe selected at random happens to be part
of your body. Let’s break down the complexity of algorithm. Finding ¢ and u can be
done in O(logn) time by observing the binary representation of n. The first modular
exponentiation requires O(logn) multiplications, and then from 1 to ¢ (so O(logn)
times) we repeatedly square in a single multiplication and do O(1) work to check for
a nontrivial square root of 1. It should be clear that, taking our assurance parameter
into consideration, O(k - logn) multiplications are required. Modular multiplication
is an O(log® n) operation. Thus each iteration of RABIN’S-TEST can be completed
in polylogarithmic time, and £ only has to be about 50 to guarantee correct output
with overwhelming probability.

5 Rabin’s Test on the Web

As a supplement to this paper, I developed a Java applet implementation of Rabin’s
Test that you can run from my webpage at
http://www.people.fas.harvard.edu/~troiano/math124. The assurance param-
eter is set at k = 50. The applet only works for 64-bit numbers, so it’s not useful for
the prime numbers needed in cryptographic applications, but feel free to download
my code and extend the applet to work with Biglntegers.



6 Appendix
There are a couple basic number theory results I've separated from the main text:
Theorem 1 If there is a nontrivial square root of 1 modulo n, then n is composite.

Proof: This theorem follows from the contrapositive of the next theorem. That is,
if 22 = 1 mod p has any solutions other than 41, then p is not an odd prime. Finally,
the p = 2 case is ruled out immediately by the fact that if 2?2 = 1 mod 2, then
z = 1 mod 2 so all square roots of 1 modulo 2 are trivial (we needn’t even consider
this case though since we rule out the p = 2 case in our algorithm immediately). W

Theorem 2 If p is an odd prime, then the equation x?> = 1 mod p has only two
solutions, namely r =1 and xr = —1.

Proof: One can find Euler’s criterion in any elementary number theory textbook
(see, for example, [5]). We simply state it here. If p is an odd prime and ged(a, p) =

1, then 22 = a mod p has two solutions or no solution according as a7’ =1 or
= —1 mod p. Letting a = 1, we see that is p is an odd prime, then 2 = 1 mod p has
two solutions, and from inspection we can see these are +1. [ |
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