Homework Assignment 4 Due Wednesday October 23

William Stein

Math 124

HARVARD UNIVERSITY

Fall 2002

Instructions: Please work with others, and acknowledge who you work with. There are 7 problems.

1. In this exercise (which is taken from Andrew's Number Theory), we extend the definition of $\left(\frac{a}{m}\right)$ to include the case where m is any odd number. If $m=p_1p_2\cdots p_r$ where the p_i are odd primes (not necessarily distinct), then

$$\left(\frac{n}{m}\right) = \left(\frac{n}{p_1}\right) \left(\frac{n}{p_2}\right) \dots \left(\frac{n}{p_r}\right).$$

This extended symbol is called the $Jacobi\ symbol$. In each of the following problems, assume what we've proved in class and what is in the notes.

- (a) (2 points) Compute $(\frac{7}{5!})$.
- (b) (2 points) Prove that if c is odd, then $\left(\frac{ab}{c}\right) = \left(\frac{a}{c}\right) \left(\frac{b}{c}\right)$.
- (c) (3 points) Prove that if b and c are odd, then $\left(\frac{a}{bc}\right) = \left(\frac{a}{b}\right) \left(\frac{a}{c}\right)$.
- (d) (2 points) Prove that if $a \equiv b \pmod{c}$, where c is odd, then $\left(\frac{a}{c}\right) = \left(\frac{b}{c}\right)$.
- (e) (3 points) Prove that if c is odd, then $\left(\frac{-1}{c}\right) = (-1)^{(c-1)/2}$.
- (f) (4 points) Prove that if a and c are odd and relatively prime, then

$$\left(\frac{a}{c}\right)\left(\frac{c}{a}\right) = (-1)^{\frac{1}{4}(a-1)(c-1)}.$$

- (g) (3 points) Is it possible that $\left(\frac{n}{m}\right) = 1$ while the congruence $x^2 \equiv n \pmod{m}$ has no solution? Prove your answer.
- 2. (2 points each) Show how to solve each of the following problems by making intelligent use of MAGMA and the MAGMA documentation. Include the MAGMA code you write in your solution.
 - (a) Find all pairs $(x, y) \in \mathbb{Z}/17 \times \mathbb{Z}/17$ such that $y^2 + y = x^3 + x$.
 - (b) How many positive integers n < 100 have the property that $(\mathbb{Z}/n)^{\times}$ is **not** cyclic?
 - (c) The equation $x^2 + 3x + 5 = 0$ has two solutions in the ring \mathbb{Z}_5 of 5-adic integers. Find each of them to precision $O(5^{21})$, so your answers should be of the form $a_0 + a_1 5 + a_2 5^2 + \cdots + a_{20} 5^{20} + O(5^{21})$. [Hint: If R:=pAdicRing(5), then the command R'SeriesPrinting:=true; switches to printing 5-adics in the form $a_0 + a_1 5 + a_2 5^2 + \cdots$.]

- (d) Find an integer x such that $x^2 + 3x + 5 \equiv 0 \pmod{5^{30}}$.
- (e) Find the coefficient of q^{289} in the product

$$q \cdot \prod_{n=1}^{\infty} (1 - q^n)^2 (1 - q^{11n})^2.$$

3. (3 points) Find a prime p such that the equation

$$x^2 + y^2 + z^2 - 7 = 0$$

has no solution in \mathbb{Z}_p . (Prove your assertion.)

4. (2 points each) Compute the first 5 digits of the 10-adic expansions of the following rational numbers:

$$\frac{13}{2}$$
, $\frac{1}{389}$, $\frac{17}{19}$, the 4 square roots of 41.

5. (3 points) Let N > 1 be an integer. Prove that the series

$$\sum_{n=1}^{\infty} (-1)^{n+1} n! = 1! - 2! + 3! - 4! + 5! - 6! + \cdots$$

converges in \mathbb{Q}_N .

- 6. Prove that 9 has a cube root in \mathbb{Q}_{10} using the following strategy (this is a special case of "Hensel's Lemma".)
 - (a) (2 points) Show that there is $\alpha \in \mathbb{Z}$ such that $\alpha^3 \equiv 9 \pmod{10^3}$.
 - (b) (6 points) Suppose $n \geq 3$. Use induction to show that if $\alpha_1 \in \mathbb{Z}$ and $\alpha^3 \equiv 9 \pmod{10^n}$, then there exists $\alpha_2 \in \mathbb{Z}$ such that $\alpha_2^3 \equiv 9 \pmod{10^{n+1}}$. (Hint: Show that there is an integer b such that $(\alpha_1 + b10^n)^3 \equiv 9 \pmod{10^{n+1}}$.)
 - (c) (2 points) Conclude that 9 has a cube root in \mathbb{Q}_{10} .
- 7. (2 points each)
 - (a) Let p and q be distinct primes. Prove that $\mathbb{Q}_{pq} \cong \mathbb{Q}_p \times \mathbb{Q}_q$.
 - (b) Is \mathbb{Q}_{p^2} ismorphic to $\mathbb{Q}_p \times \mathbb{Q}_p$ or \mathbb{Q}_p ?