Stochastic Financial Mathematics Exchange Rates and Volatility

Andrey Sarantsev Aleksey Eremenko

Objective

- Use Sage to manipulate currency data
- Analyze results

Five currencies used: Euro, UK Pound,
Chinese Yuan, Japanese Yen, Russian Ruble

Method

- Define n-long set S of exchange rates
- State that $S_{(k+1)} = S_{(k)} e^{(x_{(k+1)})}$ for some x_{k+1}
- Equivalently, $x_{(k+1)} = \ln(\frac{S_{(k+1)}}{S_{(k)}})$
- Assume set of x are independent, identically distributed RVs (Normal)
- Able to calculate variance of subset of x
- What does this variance mean?

Moving Variance

- Note this is Empirical Variance
- Subset of x-set length m
- Data limitations (days)
- Meaningful results
- Why moving variance?

EUR - green, GBP - blue, Yuan - black, JPY - red, RUB - yellow

Chinese Yuan

Varying Window Sizes

