
Enumerating Words and Compositions

Jair Taylor

3-9-2012

Consider the following problem: How many words can be made from the word “Mississippi”?
By this I mean I’d like to know the number of words that can be made using the letters
m, i, s, p so that the number of times each letter is used is at most the number of times it
appears in the word (disregarding capitalization). To answer this question, consider how
we might choose such a word. First, we decide how many of each letters we will use. For
example, let’s say we choose m, 3 s’s, 2 p’s and and no i’s. How many words can we make
using all of these letters and no others? Well, an initial guess might be 6! = 40320, since
we have 6 total letters that may be put in any order. However, we have overcounted: some
permutations of the letters correspond to the same word. For example, if we have the word
“mpsssp”, if we switch the two p’s, the word remains the same. Similarly, we may permute
the s’s in any way and still the word will be the same. So in our count of 6!, we have counted
the word “mpssspii” 3!2! times. Each word will be counted this many times, so the true
count will be 6!/(3!2!). In general, if we have letters c1, ..., c,, and the number of copies of
ci we have is ni, then the number of words using all (and only) these letters will be the so
called multinomial

n!

c1!c2!...cm!
.

Now, consider the expression

(1 + t)(1 + t+
t2

2!
)(1 + t+

t2

2!
+
t3

3!
+
t4

4!
)(1 + t+

t2

2!
).

We have chosen the degree of each polynomial factor to be the number of times each letter
appears in the word “Mississippi”: 1 m, 2 i’s, 4 s’s and 2 p’s. If you were to expand this
polynomial without combining the like terms, each term would correspond to choosing a
term in each expression; for example, you might get the expression

t · t
3

3!
· t

2

2!
· 1 =

t6

3!2!
.

This looks similar to our expression 6!/(3!2!). We can think of each term as correspond
letters we may use, with the chosen power of x in the kth factor corresponding to the kth
letter; for this one corresponds to m, 3 s’s, 2 p’s and and no i’s. The power of t in the
resultant product gives the total number of letters we’ve chosen. But we’re not complete:
we need that 6! in the numerator. To make it appear, we use the Laplace transform. Recall
that the Laplace transform Lf(s) of a function f(t) is defined to be

1

Lf(s) =

∫ ∞
0

e−tsf(t) dt.

The reason the Laplace is useful for our purposes is because it has the property that if
f(t) = tn then its Laplace transform is Lf(s) = n!

sn+1 . This is close to what we want - it
makes the factorial appear. Having the s appear in the denominator with power n + 1 is
a little inconvenient, so we use instead a modified Laplace transform, which I denote by l,
defined by lf(s) = 1

s
Lf(1

s
), i.e.:

lf(s) =
1

s

∫ ∞
0

e−
t
sf(t) dt.

Then we get the useful property:

If f(t) = tn, then (lf)(t) = n! · tn.

In other words, it allows us to change an exponential generating function

f(t) =
∑
n

an
n!
tn

into the ordinary generating function

lf(s) =
∑
n

an t
n.

Applying this to the expression above, we get the expression 6!
3!2!
s6. Thus, summing all of

these terms together, we see that that the coefficient of sn is the number of words of length
n. If we don’t care about the lengths and only want the total number of words, we may set
s = 1. Putting this all together, we get the following.

Theorem 1. Let {c1, c2, ...} be a sequence of letters, and {nk} a sequence of nonnegative
integers, and let an be the number of words made from these letters of length n such that
the number of times the letter ck appears is at most nk. Then we have

∑
n

ans
n = l

(
m∏
k=1

nk∑
i=1

ti

i!

)

= s−1
∫ ∞
0

e−t/s
m∏
k=1

nk∑
i=1

ti

i!
dt.

In particular, the total number of such words is

∑
n

an =

∫ ∞
0

e−t
m∏
k=1

nk∑
i=1

ti

i!
dt.

2

For example, the number of words made from “Mississippi” is then∫ ∞
0

e−t(1 + t)(1 + t+
t2

2!
)(1 + t+

t2

2!
+
t3

3!
+
t4

4!
)(1 + t+

t2

2!
+
t3

3!
+
t4

4!
)dt = 107899.

There are a number of variations on this theme. Recall that a composition of a number n
in an ordered tuple (a1, a2, ..., am) of positive integers whose sum is n. It is essentially the
same as a word - the only difference being that we think of the characters being numbers
and we are interested in their sum. We can count these just as easily, by introducing a new
variable u which keeps track of the value or “weight” of each character. Since each factor in
the expressions above represent a letter, we may replace the t in these factors by some ukt,
where k is the weight of the character. We immediately get the following.

Corollary 2. Let {nk} be a sequence of nonnegative integers, and let an,m be the number of
compositions of n in m parts so that the number of times any k appears is at most nk. Then

∑
n,m

an,mu
n sm = l

(
∞∏
k=1

nk∑
i=1

(ukt)i

i!

)

(In these notes, the Laplace is always taken with respect to t.)

By setting u = 1, we ignore the weights on the symbols 1, 2, ... and we regain our original
formula; if we set s = 1 then the coefficient of un gives the number of compositions of n with
this restriction, regardless of the number of parts.

Let’s give an application of the above. Because our polynomials are the Taylor series of the
exponential, it is easy to send the number of letters to infinity by replacing a polynomial by
ex. For example, one might ask a question like “How many compositions of a number n are
there only using letters 1 and 2?” To answer this, we set our weights to be 1 and 2 and -
ignoring for the moment questions of convergence - send the number of terms to infinity in
the above expression, getting

∞∑
i=1

(ut)i

i!
= eut

∞∑
i=1

(u2t)i

i!
= eu

2t

so we only need to compute ∫ ∞
0

e−teut+u2t dt =
1

1− x− x2

3

which you might recognize as the generating function for the Fibonacci numbers:

1

1− x− x2
= 1 + x+ 2x2 + 3x3 + 5x4 + ...

How about the following problem: How many compositions of n are there that have at most
one part which is 1? We can do the same trick as above; but to eliminate the possibility of
having two or more ones, we limit the first factor to only two terms: 1+ux. The 1 represents
the choice of no 1’s, and the ux represents choosing exactly one 1 to be in our composition.
Then the factor for the 2’s is eu

2t, as above, and in general the factor corresponding to the
possible part k is eu

kt. We get

(1 + ux)eu
2teu

3t... = (1 + ux)et(u
2+...) = (1 + ux)e

t
1−u
−t−ut

and so

∫ ∞
0

e−t(1 + ux)e
t

1−u
−t−ut dt =

(2u3 − 2u2 − u+ 1)

(u4 + 2u3 − u2 − 2u+ 1)

= 1 + u+ u2 + 3u3 + 4u4 + ...

is the desired generating function. Since it is rational, we can use standard techniques to find
a recurrence relation for the sequence of coefficients and so compute them very efficiently. I
have verified these numbers via a brute force calculation, and I’ve submitted the sequence
to The On-Line Encyclopedia of Integer Sequences A206268. Of course, I could have just as
easily found generating functions for other similar questions.

Now, we will generalize the idea substantially. We would like to consider the problem of
counting words, or compositions, with various restrictions - in particular, to count the num-
ber of words created from our multiset that have some given word as a subword. To return
to our running example, we might ask how many words can be formed from the letters in
“xylophone” that contain “ox” as a subword? Note that when I say subword, I mean that
that the letters of the word have to appear in the right order, and consecutively. For exam-
ple, “miss” is such a word, but “sis” is not.

To answer this question, we need the following tool - sequence of polynomials with a certain
nice property. To find them, I first guessed that they might exist and then used Sage to com-
pute their coefficients if they did - then from these values I was able to guess a simple formula.

Definition. We write

qi(t) =
i−1∑
k=0

(−1)i−1−k
1

(k + 1)!

(
i− 1

k

)
tk+1 for i ≥ 1

and q0(t) = 1. The first few such polynomials are q0(t) = 1, q1(t) = t, q2(t) = −t+ t2

2
.

Lemma. Then for any n ∈ N we have

4

http://oeis.org/A206268

∫ ∞
0

e−t qi(t)
tn

n!
dt =

(
n+ 1

i

)
. (1)

Proof. For i = 0 we get
∫∞
0
e−t t

n

n!
dt = 1 =

(
n+1
0

)
. For i ≥ 1 we have

∫ ∞
0

e−t qi(t)
tn

n!
=

∫ ∞
0

i−1∑
k=0

(−1)i−1−k
1

n!(k + 1)!

(
i− 1

k

)
tn+k+1 dt

=
i−1∑
k=0

(−1)i−1−k
(n+ k + 1)!

n!(k + 1)!

(
i− 1

k

)

=
i−1∑
k=0

(−1)i−1−k
(
n+ k + 1

n

)(
i− 1

k

)
and so we’ve reduced to showing

i∑
k=0

(−1)i−k
(
n+ k + 1

n

)(
i

k

)
=

(
n+ 1

j + 1

)
.

This identity can be easily established using Wilf-Zeilberger theory or other means.�

Definition. Given a word nonempty word W , a composition is an ordered list of nonempty
words such that, when concatenated in order, produce W . We take the convention that the
empty word has exactly one composition, namely the composition with no parts.

For example, (“Miss”, “is”, “ippi”) is a composition of “Mississippi”. This is exactly analo-
gous to the usual definition of composition of a number; it is easy to see that the number of
compositions of a word is equal to the number of (numerical) compositions of the length of
that word.

Definition. Let M be a finite multiset, and let A be a set of compositions of words on M .
Call the compositions in A “allowed” compositions. For a given word W , let nW,k be the
number of allowed compositions of W in exactly k parts, and denote by len W the length of
W (i.e., the number of letters). We say that a specific word is allowed if the composition of
that word with one part is an allowed composition. Define

pM,A(t, s) =
∑

W∈A,k≥0

nW,ks
len W qk(t/s).

Then we have:

5

Theorem 3. Let an be the number of allowed words of length n. Then∑
n

ans
n = lpM,A(s).

Note that we allow the Laplace transformation of a function f(s, t), where the integration is
respect to t. The transform lf is then only a function of s, and is defined by

lf(s) =
1

s

∫ ∞
0

e−
t
sf(s, t) dt.

Proof. We have

l(qk(
t

s
)) =

1

s

∫ ∞
0

e−
t
s qk(

t

s
)dt

=
1

s

∫ ∞
0

e−uqk(u)sdu

=

∫ ∞
0

e−u(u0)qk(u)sdu

=

(
0 + 1

k

)
which is 0 for k > 1, and 1 when k = 1 or k = 0.

Thus we have

l

(∑
W∈A,k≥0

nW,ks
len W qk(t/s)

)
=

∑
W∈A

slen WnW,0 + slen WnW,0q1(t/s)

= n∅,0 +
∑
W∈A

nW,1s
len W (∅ denotes the empty word)

since there is only one word that has any allowed compositions with 0 parts, namely the
empty word - n∅,0 is 0 or 1 depending on whether the empty word is allowed. Since nW,1 = 1
for every word but the empty word, we get the desired expression.�

You might well wonder, at this point, what the point of defining these polynomials in such
a strange way is. Since we need to find the statistics nW,k in order to calculate them, why
on earth would we ever use them to find the number of words when we already had access
to them in the first place?! The reason is that the polynomials pM,A play well together -
we can easily string several requirements on our set of allowed words together to get a new
polynomial. The only caveat is that the associated multisets should be disjoint. For exam-
ple, we could ask: how many words can be made from the multiset “aaaabbb” that contain
both of the subwords “aaa” and “bb”? The following theorem tells us that to do so it is only
necessary to compute the polynomials pM1,A1 , pM2,A2 , where M1 = {a, a, a, a}, M2 = {b, b, b}

6

and the sets of allowed words A1, A2 are those containing “aaa” and “bb”, respectively, and
then multiply them.

Definition. If ψ is a composition of a word W on an alphabet M (possibly a multiset, al-
though the multiplicities are irrelevant here.) For M ′ ⊆ M and a word W on M , let W ′ be
the word on M ′ induced from W , i.e., W ′ is W with all letters not in M ′ removed. Then
let ψ′ be the composition of W ′ created as follows: for each part of ψ, divide that part into
pieces which are the substrings whose letters are in M ′, separating these substrings when
there is a letter between them that is not in M’. Then remove any empty parts. We call ψ′

the composition of W induced by M ′.

This is a long-winded definition of a simple idea. For example, if M = {a, a, b, b} and
M ′ = {a, a}, then the induced composition of (“abba”, “aab”, “b”) is (“a”, “a”, “aa”). This
is implemented as the function “inducedcomp” in my code.

Definition. Let (M1, A1) and (M2, A2) be two disjoint multisets and two sets of allowed
words. Let M = M1 ∪M2 and let A be the set of compositions ψ of words on M so that
the compositions of ψ induced by M1 and M2 are in A1 and A2, respectively. We write
(M1, A1) ∗ (M2, A2) = (M,A). This is implemented as the function “combinedcomps”.

The following is the most important part of the theory. Unfortunately, as of right now I
cannot prove this, so I won’t call it a theorem. However, I can provide numerical evidence
- see the Sage worksheet paired with this paper, and I feel very strongly that it is true. I
hope to prove it soon.

Conjecture 4. Let M1 and M2 be disjoint, with sets of allowed compositions (of words) A1, A2

respectively. Then
p(M1,A1)∗(M2,A2),A = pM1,A1(t, s) · pM2,A2(t, s).

Of course, inductively, this extends to any number of multisets M1, ...,Mn and associated
sets of allowed words A1, ..., An.

Proof. To come!

Corollary. Let Mn be the multiset consisting of a single letter repeated n times, n ≥ 0, and
let A be the set of all words on M - i.e., every word is allowed. Then

pMn,A(s, t) =
n∑

i=1

tn

n!
.

Notice that this polynomial is not a function of s.

Proof. To come!

Now, we can return to the problem of counting words on a multiset that have a given sub-
word. We can apply Theorem 4 directly: Let M1 be some multiset, W be a word on M1, and

7

A1 be the set of compositions of words on M that have at least one of their parts containing
the subword. Then if M2 is a multiset disjoint from M1, and taking A2 to be the set of all
compositions on M1 (i.e., putting no restrictions), (M1, A1) ∗ (M2, A2) will count for us the
number of words on M1 ∪M2 containing W . To see this, recall that the allowed words are
defined to be those whose composition in one part is allowed. The composition in one part of
a word is allowed in M1 ∪M2 if and only if its induced composition is allowed, which means
that, removing the letters of M2 and dividing the remaining letters into parts corresponding
to their division by letters of M2, one of the parts will contain W ; and this happens exactly
when our word contains W .

Recall the problem posed above: How many words can be made from “xylophone” containing
“ox”? To answer this, we divide up our multiset into the two smaller multisets and use Sage
to compute the appropriate polynomials. We find pM1,A1(t, 1) = t + t2 where M1 = “xoo”
and the allowed words are those containing “ox”. Note that we are throwing away the
extra information of the lengths of the allowed words by setting s = 1. Then we let M2 be
the remaining letters: “ylphne”, and allow any words; we don’t need Sage to compute this
polynomial, because the last corollary implies that it should be (1 + t)6 since there are 6
letters, none repeated. So we get that the number of words is∫ ∞

0

e−t
(
t+ t2

)
(1 + t)6 dt = 95901.

There are a number of applications of these ideas that I have not mentioned. For example,
all of the above we can apply to compositions of a number - we might ask, for example, how
many compositions of n have the substring “1212′′? This might turn out to be too hard for
the theory to handle - we need to put bounds on the number of 1’s and 2’s. For example, we
can ask: how many compositions of n have the substring “1212′′, with fewer than five 1’s and
fewer than five 2’s? We can also find variants of Corollary 2, by adding more variables with
different weights. For example, putting a second variable v with different weights is adding
a second dimension to our compositions - this will allow us to count the number of walks
on the integer lattice from the origin to a given point. We might also ask for the number of
walks that have a certain shape somewhere in the walk.

8

