Math 581g, Fall 2011, Homework 6: SOLUTIONS

William Stein (wstein@uw.edu)

December 1, 2011

1. (Warm up) Using the formula from class (or the book), compute the genus of the modular curve $X(54)$. Be prepared: what is the genus of $X(2012)$?
Solution. The formula for the genus of $X(N)($ for $N \geq 3)$ is $g=1+\frac{d}{12 N}(N-6)$, where $d=\# \mathrm{SL}_{2}(\mathbf{Z} / N \mathbf{Z}) / 2=N^{3} \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right)$. Here is an implementation in Sage:
```
def genus(N):
    d = N^3* prod(1-1/p^2 for p in N.prime_divisors())/2
    return 1+d*(N-6)/(12*N)
```

And here we use it to solve the problem:

```
sage: genus(3) # double check
0
sage: genus(5) # double check
0
sage: genus(7) # double check
3
sage: genus(54)
3889
sage: genus(2012)
253767025
```

2. Consider the map $j: X(N) \rightarrow \mathbf{P}_{\mathbf{C}}^{1}$ for $N \geq 3$. Following the argument presented in class, prove that

$$
\# j^{-1}(1728)=\frac{\# \mathrm{SL}_{2}(\mathbf{Z} / N \mathbf{Z})}{4}
$$

Solution. Let $\tau=i$, so $j(\tau)=1728$. The automorphism group of $E_{\tau}=\mathbf{Z} i+\mathbf{Z}$ is of order 4, generated by the automorphism [i] induced by multiplication by $i \in \operatorname{End}\left(E_{\tau}\right)$. We have $P_{\tau}=1 / N$ and $Q_{\tau}=i / N$, which have Weil pairing -1 . With respect to the basis P_{τ}, Q_{τ}, the matrix of $[i]$ is $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. The powers of A are:

$$
\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Since $\operatorname{det}(A)=1$, and the above 4 matrices are distinct modulo $N \geq 3$, we see that the set of triples (E, P, Q) with $j(E)=1728$ are divided up into orbits of size 4 by [i], as claimed.
3. Explicitly compute the sets $\Gamma_{0}(N) \backslash \mathbf{P}^{1}(\mathbf{Q})$ for $N=3, N=9$, and $N=54$, using the method I described in class. [Hint: You should double check your work with Sage: Gamma0(N).cusps(), but don't just get the answer this way.]
Solution. This problem is pretty tedious to solve by hand. The answer you should get is as follows:

```
sage: Gamma0(3).cusps()
```

[0, Infinity]
sage: Gamma0 (9).cusps ()
[0, 1/3, 2/3, Infinity]
sage: Gamma0 (54). cusps ()
[0, 1/27, 1/18, 1/9, 1/6, 2/9, 5/18, 1/3, 1/2, 2/3, 5/6, Infinity]
4. Let N be a positive integer. Prove that

$$
\# \mathrm{SL}_{2}(\mathbf{Z} / N \mathbf{Z})=N^{3} \cdot \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right),
$$

where the product is over the prime divisors of N.
Solution. First reduce to the prime power case, by noting that $\mathrm{SL}_{2}(\mathbf{Z} / N \mathbf{Z}) \cong$ $\prod_{p \mid N} \mathrm{SL}_{2}\left(\mathbf{Z} / p^{\nu_{p}} \mathbf{Z}\right)$. Next, compute the cardinality of $\mathrm{GL}_{2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)$ using the exact sequence

$$
1 \rightarrow K \rightarrow \mathrm{GL}_{2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right) \rightarrow \mathrm{GL}_{2}(\mathbf{Z} / p \mathbf{Z}) \rightarrow 1
$$

where K is by definition the kernel, which has a simple description as

$$
K=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+A: A \in p M_{2 \times 2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)\right\} .
$$

We find that

$$
\begin{aligned}
\# \mathrm{GL}_{2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right) & =\# \mathrm{GL}_{2}(\mathbf{Z} / p \mathbf{Z}) \cdot \# K \\
& =\left(\left(p^{2}-1\right) \cdot\left(p^{2}-p\right)\right) \cdot p^{4(n-1)}
\end{aligned}
$$

Using the exact sequence

$$
1 \rightarrow \mathrm{SL}_{2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right) \rightarrow \mathrm{GL}_{2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right) \rightarrow\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)^{*} \rightarrow 1
$$

we relate the cardinality of $\mathrm{SL}_{2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)$ to that of $\mathrm{GL}_{2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)$ to obtain

$$
\begin{aligned}
\# \mathrm{SL}_{2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right) & =\frac{\# \mathrm{GL}_{2}\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)}{\#\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)^{*}} \\
& =\frac{\left(p^{2}-1\right) \cdot\left(p^{2}-p\right) \cdot p^{4(n-1)}}{p^{n-1}(p-1)} \\
& =\frac{(p-1)^{2} \cdot(p+1) \cdot p^{4(n-1)+1}}{p^{n-1}(p-1)} \\
& =p^{3 n} p^{-2}(p-1)(p+1)=N^{3}\left(1-\frac{1}{p^{2}}\right) .
\end{aligned}
$$

