# Math 581g, Fall 2011, Homework 2: SOLUTIONS 

William Stein (wstein@uw.edu)

October 20, 2011

1. (Easy warm up) Suppose $L=\mathbf{Z} \omega_{1}+\mathbf{Z} \omega_{2}$ is a lattice in $\mathbf{C}$. Prove that either $\omega_{1} / \omega_{2}$ or $\omega_{2} / \omega_{1}$ is in the complex upper half plane.
Solution. We have $\omega_{1} / \omega_{2} \notin \mathbf{R}$, since $\mathbf{R} L=\mathbf{C}$. If $\omega_{1} / \omega_{2}$ in the lower half plane, then its inverse is in the upper half plane, by basic algebra.
2. (Warm up) Let $M_{k}$ denote the space of modular forms of weight $k$ and level 1 . Prove that if $k \geq 2$ and $f \in M_{k}$ is a constant function, then $f=0$.
Solution. Since $f \in M_{k}$ and $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})$, we have $f(-1 / z)=z^{-k} f(z)$ for all $z \in \mathfrak{h}$. If $f \neq 0$ is constant, then $z^{-k}=1$ for all $z \in \mathfrak{h}$, which is a contradiction since $k \geq 2$.
3. Let $E$ be an elliptic curve over $\mathbf{C}$ given by a Weierstrass equation $y^{2}+a_{1} x y+a_{3} y=$ $x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$. Prove that the differential $\omega=\frac{d x}{2 y+a_{1} x+a_{3}}$ has no poles. You may follow the proof presented in class in the special case when $a_{1}=a_{2}=a_{3}=0$. [Though you can read a complete proof of this in Silverman's book on elliptic curves, I encourage you not to.]
Solution. First we consider the behavior of $\omega$ at $\infty$. The homogeneous equation is

$$
Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}
$$

and $x=X / Z, y=Y / Z$. Factoring out $Z$, we find that

$$
X^{3}=Z\left(Y^{2}+a_{1} X Y+a_{3} Y Z-a_{2} X^{2}-a_{4} X Z-a_{6} Z^{2}\right)=Z u
$$

where $u$ is a unit in the local ring $R_{P}$ corresponding to the point $P=(0: 1: 0)$. Thus $x=u_{0} X^{-2}$, for a unit $u_{0} \in R_{P}$, hence $\operatorname{ord}_{\infty}(x)=-2$ and $d x=-2 u_{0} X^{-3} d X$ has a pole of order 3 at infinity. Also, $\operatorname{ord}_{\infty}(y)=-3$, so using a basic property of ord, we find that $\operatorname{ord}_{\infty}\left(2 y+a_{1} x+a_{3}\right)=-3$, since $\operatorname{ord}_{\infty}\left(a_{1} x\right) \geq-2$ and $\operatorname{ord}_{\infty}\left(a_{3}\right) \geq-2$. It follows that $\operatorname{ord}_{\infty}(\omega)=\operatorname{ord}_{\infty}\left(d x /\left(2 y+a_{1} x+a_{3}\right)\right)=0$.
Next, we consider the behavior at the affine points $P$ where $2 y+a_{1} x+a_{3}=0$. Taking derivatives, we have

$$
\left(2 y+a_{1} x+a_{3}\right) d y+a_{1} y d x=\left(3 x^{2}+a_{2} x+a_{4}\right) d x
$$

so

$$
\begin{equation*}
\omega=\frac{d x}{2 y+a_{1} x+a_{3}}=\frac{d y}{3 x^{2}+a_{2} x+a_{4}-a_{1} y} \tag{0.1}
\end{equation*}
$$

and

$$
\frac{d x}{d y}=\frac{3 x^{2}+a_{2} x+a_{4}-a_{1} y}{2 y+a_{1} x+a_{3}}
$$

The zeros of $2 y+a_{1} x+a_{3}$ are at the points where there is a vertical tangent, i.e., at the nontrivial 2 -torsion points on $E$, so there are exactly 3 distinct zeros. Since $\operatorname{ord}_{\infty}\left(2 y+a_{1} x+a_{3}\right)=-3$, these 3 distinct zeros occur with multiplicity 1 . Also, since there are 3 distinct 2 torsion points (at which $\frac{d x}{d y} \rightarrow \infty$ ), the function $3 x^{2}+a_{2} x+a_{4}-a_{1} y$ cannot vanish at any point where $2 y+a_{1} x+a_{3}$ vanishes. Since $d y$ has no poles on the affine plane, and the denominator in the right hand side of (0.1) does not vanish at the points $P$, we see that $\omega$ has no poles at the points $P$.
4. Let $K$ be a number field and $\ell$ a prime number. Prove that

$$
K \otimes_{\mathbf{Q}} \mathbf{Q}_{\ell} \cong \prod_{\lambda \mid \ell} K_{\lambda}
$$

Here $\lambda \mid \ell$ are the prime ideals of the ring of integers of $K$ that contain $\ell$ and $K_{\lambda}$ is the completion of $K$ at $\lambda$.
Solution. Let $R$ be the ring of integers of $K$. We prove that $R \otimes \mathbf{Z}_{\ell} \cong \bigoplus_{\lambda \mid \ell} R_{\lambda}$. Using that $R$ is a Dedekind domain, we can write (uniquely) $\ell R=\prod_{\lambda_{i} \mid \ell} \lambda_{i}^{e_{i}}$, and for each positive integer $n$, we have $\ell^{n} R=\prod_{\lambda_{i} \mid \ell} \lambda_{i}^{e_{i} n}$. Using the Chinese remainder theorem and various compatibilities between finite direct sums and limits, we have

$$
\begin{aligned}
& \cong \lim _{n} \bigoplus_{\lambda_{i} \mid \ell} R / \lambda_{i}^{e_{i} n} \cong \bigoplus_{\lambda_{i} \mid \ell} \lim _{\stackrel{ }{ }} R / \lambda_{i}^{e_{i} n} \cong \bigoplus_{\lambda \mid \ell} R_{\lambda} .
\end{aligned}
$$

The result then follows by tensoring both sides of the above isomorphism by $\mathbf{Q}$.
5. Let $E$ be the elliptic curve $y^{2}=x(x-1)(x+1)$. Show that the representation $\bar{\rho}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{2}\right)$ that gives the action of the Galois group on $E[2]$ is reducible, i.e., has an invariant subspace of dimension 1.
Solution. The representation sends each element $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ to the identity matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Thus any nonzero proper subspace is invariant.
6. In the section of the textbook called Modular forms as functions on lattices we define maps between the set $\mathcal{R}$ of lattices in $\mathbf{C}$ and the set $\mathcal{E}$ of isomorphism classes of pairs $(E, \omega)$, where $E$ is an elliptic curve over $\mathbf{C}$ and $\omega \in \Omega_{E}^{1}$ is a nonzero holomorphic differential 1-form on $E$. Prove that the maps in each direction defined in the book are bijections. (See Appendix A1.1 of Katz's p-adic properties of modular schemes and modular forms.)
Solution. If you understand Section 5 of Chapter VI of [Silverman, The Arithmetic of Elliptic Curves] then you can do this problem. In particular, given an elliptic curve $E$ over $\mathbf{C}$ and a nonzero differential $\omega$ on $E$, we can use algebra to find a Weierstrass equation of the form $y^{2}=4 x^{3}+a x+b$ with $\omega=d x / y$. The proof of [Prop. 5.2(a), loc. cit.] implies that if $\Lambda=\left\{\int_{\gamma} \omega: \gamma \in \mathrm{H}_{1}(E(\mathbf{C}), \mathbf{Z})\right\}$, then $\mathbf{C} / \Lambda \cong E(\mathbf{C})$ via the analytic isomorphism induced by the Weierstrass function $\wp_{\Lambda}$ associated to $\Lambda$. This implies surjectivity of $\mathcal{R} \rightarrow \mathcal{E}$ and that the composition of the two maps is the identity on $\mathcal{E}$. The other key fact you need is [Cor. 5.1.1, loc. cit.], which ensures that $\mathcal{R} \rightarrow \mathcal{E}$ is injective. (Silverman does not give a complete proof, but gives four references for the key fact that he omits.)
7. Prove that the number of subgroups of $\mathbf{Z}^{2}$ of index $n$ is equal to the sum of the positive divisors of $n$. [Hint: first do the case $n=p$ is prime first as a warm up, then reduce to the prime power case.]
Solution. First we reduce to the prime power case by applying the structure theorem for finite abelian groups to the abelian group $\mathbf{Z}^{2} / L$ of order $n$. We may thus assume that the index of $L$ in $\mathbf{Z}^{2}$ is a prime power $p^{m}$. The lattices $L$ of index $p^{m}$ in $\mathbf{Z}^{2}$ are in bijection with the Hermite normal form matrices of determinant $p^{m}$, which are easy to count. They are the one matrix $\left(\begin{array}{cc}p^{m} & 0 \\ 0 & 1\end{array}\right)$, the $p$ matrices $\left(\begin{array}{cc}p^{m-1} & b \\ 0 & p\end{array}\right)$ with $0 \leq b<p$, the $p^{2}$ matrices $\left(\begin{array}{cc}p^{m-2} & b \\ 0 & p^{2}\end{array}\right)$ with $0 \leq b<p^{2}$, etc., up through the $p^{m}$ matrices $\left(\begin{array}{cc}1 & b \\ 0 & p^{m}\end{array}\right)$ with $0 \leq b<p^{m}$. Summing, we find $1+p+p^{2}+\cdots+p^{m}$ matrices, as claimed.

