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1. (Easy warm up) Suppose L = Zω1 +Zω2 is a lattice in C. Prove that either ω1/ω2

or ω2/ω1 is in the complex upper half plane.

Solution. We have ω1/ω2 6∈ R, since RL = C. If ω1/ω2 in the lower half plane,
then its inverse is in the upper half plane, by basic algebra.

2. (Warm up) Let Mk denote the space of modular forms of weight k and level 1.
Prove that if k ≥ 2 and f ∈Mk is a constant function, then f = 0.

Solution. Since f ∈ Mk and
(

0 −1
1 0

)
∈ SL2(Z), we have f(−1/z) = z−kf(z) for

all z ∈ h. If f 6= 0 is constant, then z−k = 1 for all z ∈ h, which is a contradiction
since k ≥ 2.

3. Let E be an elliptic curve over C given by a Weierstrass equation y2+a1xy+a3y =
x3 +a2x

2 +a4x+a6. Prove that the differential ω = dx
2y+a1x+a3

has no poles. You
may follow the proof presented in class in the special case when a1 = a2 = a3 = 0.
[Though you can read a complete proof of this in Silverman’s book on elliptic
curves, I encourage you not to.]

Solution. First we consider the behavior of ω at∞. The homogeneous equation
is

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

and x = X/Z, y = Y/Z. Factoring out Z, we find that

X3 = Z(Y 2 + a1XY + a3Y Z − a2X
2 − a4XZ − a6Z

2) = Zu,

where u is a unit in the local ring RP corresponding to the point P = (0 : 1 : 0).
Thus x = u0X

−2, for a unit u0 ∈ RP , hence ord∞(x) = −2 and dx = −2u0X
−3dX

has a pole of order 3 at infinity. Also, ord∞(y) = −3, so using a basic property
of ord, we find that ord∞(2y + a1x + a3) = −3, since ord∞(a1x) ≥ −2 and
ord∞(a3) ≥ −2. It follows that ord∞(ω) = ord∞(dx/(2y + a1x+ a3)) = 0.

Next, we consider the behavior at the affine points P where 2y + a1x + a3 = 0.
Taking derivatives, we have

(2y + a1x+ a3)dy + a1ydx = (3x2 + a2x+ a4)dx,

so

ω =
dx

2y + a1x+ a3
=

dy

3x2 + a2x+ a4 − a1y
, (0.1)

and
dx

dy
=

3x2 + a2x+ a4 − a1y

2y + a1x+ a3
.
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The zeros of 2y + a1x + a3 are at the points where there is a vertical tangent,
i.e., at the nontrivial 2-torsion points on E, so there are exactly 3 distinct zeros.
Since ord∞(2y + a1x+ a3) = −3, these 3 distinct zeros occur with multiplicity 1.
Also, since there are 3 distinct 2 torsion points (at which dx

dy →∞), the function

3x2 + a2x + a4 − a1y cannot vanish at any point where 2y + a1x + a3 vanishes.
Since dy has no poles on the affine plane, and the denominator in the right hand
side of (0.1) does not vanish at the points P , we see that ω has no poles at the
points P .

4. Let K be a number field and ` a prime number. Prove that

K ⊗Q Q`
∼=
∏
λ|`

Kλ.

Here λ | ` are the prime ideals of the ring of integers of K that contain ` and Kλ

is the completion of K at λ.

Solution. Let R be the ring of integers of K. We prove that R⊗Z` ∼=
⊕

λ|`Rλ.

Using that R is a Dedekind domain, we can write (uniquely) `R =
∏
λi|` λ

ei
i ,

and for each positive integer n, we have `nR =
∏
λi|` λ

ein
i . Using the Chinese

remainder theorem and various compatibilities between finite direct sums and
limits, we have

R⊗ Z` ∼= R⊗ lim←−
n

Z/`nZ ∼= lim←−
n

R⊗ Z/`nZ ∼= lim←−
n

R/`nR

∼= lim←−
n

⊕
λi|`

R/λeini
∼=
⊕
λi|`

lim←−
n

R/λeini
∼=
⊕
λ|`

Rλ.

The result then follows by tensoring both sides of the above isomorphism by Q.

5. Let E be the elliptic curve y2 = x(x − 1)(x + 1). Show that the representation
ρ : Gal(Q/Q) → GL2(F2) that gives the action of the Galois group on E[2] is
reducible, i.e., has an invariant subspace of dimension 1.

Solution. The representation sends each element σ ∈ Gal(Q/Q) to the identity
matrix ( 1 0

0 1 ). Thus any nonzero proper subspace is invariant.

6. In the section of the textbook called Modular forms as functions on lattices we
define maps between the setR of lattices in C and the set E of isomorphism classes
of pairs (E,ω), where E is an elliptic curve over C and ω ∈ Ω1

E is a nonzero
holomorphic differential 1-form on E. Prove that the maps in each direction
defined in the book are bijections. (See Appendix A1.1 of Katz’s p-adic properties
of modular schemes and modular forms.)

Solution. If you understand Section 5 of Chapter VI of [Silverman, The Arith-
metic of Elliptic Curves] then you can do this problem. In particular, given an
elliptic curve E over C and a nonzero differential ω on E, we can use algebra to
find a Weierstrass equation of the form y2 = 4x3 + ax + b with ω = dx/y. The
proof of [Prop. 5.2(a), loc. cit.] implies that if Λ = {

∫
γ
ω : γ ∈ H1(E(C),Z)}, then

C/Λ ∼= E(C) via the analytic isomorphism induced by the Weierstrass function
℘Λ associated to Λ. This implies surjectivity of R → E and that the composition
of the two maps is the identity on E . The other key fact you need is [Cor. 5.1.1,
loc. cit.], which ensures that R → E is injective. (Silverman does not give a
complete proof, but gives four references for the key fact that he omits.)
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7. Prove that the number of subgroups of Z2 of index n is equal to the sum of the
positive divisors of n. [Hint: first do the case n = p is prime first as a warm up,
then reduce to the prime power case.]

Solution. First we reduce to the prime power case by applying the structure
theorem for finite abelian groups to the abelian group Z2/L of order n. We
may thus assume that the index of L in Z2 is a prime power pm. The lattices
L of index pm in Z2 are in bijection with the Hermite normal form matrices of
determinant pm, which are easy to count. They are the one matrix

(
pm 0
0 1

)
, the p

matrices
(
pm−1 b

0 p

)
with 0 ≤ b < p, the p2 matrices

(
pm−2 b

0 p2

)
with 0 ≤ b < p2,

etc., up through the pm matrices
(

1 b
0 pm

)
with 0 ≤ b < pm. Summing, we find

1 + p+ p2 + · · ·+ pm matrices, as claimed.
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