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1 Introduction

As part of the discussion of modular curves in this course, we studied the following corre-
spondence between elliptic curves with attached level N structures and points in the complex
upper half plane h. For τ ∈ h, let Λτ be the lattice Z + Zτ , and let Eτ be the elliptic curve
C/Λτ . For any elliptic curve E over C,

(a) If C is a cyclic subgroup of E of order N , there exists τ ∈ h such that E ≈ Eτ and the
isomorphism maps C to the subgroup of Eτ generated by 1/N .

(b) If P ∈ E has order N , then there exists τ ∈ h such that E ≈ Eτ and the isomorphism
maps P to 1/N .

(c) If P,Q ∈ E and e(P,Q) = −1 (where e is the Weil pairing), then there exists τ ∈ h
such that E ≈ Eτ and the isomorphism maps P to 1/N and Q to τ/N .

Following the proof of these statements given in the course (Proposition 5.2.8 in [1]), we
can explicitly compute τ for a given E and a given level N structure by this procedure:

1. Compute ω1, ω2 ∈ C such that E ≈ C/(Zω1 + Zω2), i.e. so that Zω1 + Zω2 is the
period lattice of the invariant differential ω attached to E.

2. Determine the point(s) in C/(Zω1 + Zω2) corresponding to the level N structure.

3. Make a change of basis from 〈ω1, ω2〉 to 〈ω′1, ω′2〉 so that (a) C maps to the cyclic group
generated by ω′1/N , (b) P maps to ω′1/N , or (c) P maps to ω′1/N and Q maps to ω′2/N .

4. Change basis from 〈ω′1, ω′2〉 to 〈1, τ = ±ω′2/ω′1〉, choosing the sign so that Im(τ) > 0.

The proof from class implies an algorithm for steps 3 and 4, so here I will focus on steps
1 and 2. Section 2, based on Ch. VI of [2], describes a procedure for the first two steps that
uses line integrals of the differential ω over suitably chosen paths. Section 3 discusses the
method already implemented in Sage, which uses connections between arithmetic-geometric
sequences, chains of lattices in C, and chains of 2-isogenies of elliptic curves.
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2 Line integral method

Given an elliptic curve E over C, we begin by changing variables so that its Weierstrass
equation has the form

E : y2 = x(x− 1)(x− λ) (1)

where λ 6= 0, 1 (since E must be smooth). The complex points on E then lie on a torus,
which can be viewed as two copies of C joined along some choice of branch cuts for the
differential ω = dx/y = dx/

√
x(x− 1)(x− λ) attached to E. The conventional branch cut

for the square root function (along the negative real axis) leads to a natural choice of branch
cuts for ω: if λ is real and λ < 0, we take one branch cut along the negative real axis from
−∞ to λ, and another along the real axis from 0 to 1. Otherwise, we let one cut join −∞
and 0 and let the other join 1 and λ.

By numerically integrating ω over two paths that circle the torus in different directions
(Fig. 1), we can compute ω1, ω2 ∈ C such that the torus is isomorphic to C/(Zω1 +Zω2). In
addition, given P = (xP , yP ) ∈ E, we can compute the point in C/(Zω1+Zω2) corresponding
to P by integrating ω along any path from the point at infinity to xP . To ensure that the
integral converges, it is convenient to use the path

x(t) = Re(xP ) + it, ∞ > t ≥ Im(xP ),

so that

P 7−→
∫ P

O

ω =

∫ P

O

dx√
x(x− 1)(x− λ)

=

∫ Im(xP )

∞

i dt√
(Re(xP ) + it)(Re(xP ) + it− 1)(Re(xP ) + it− λ)

(2)

As t→∞, the integrand is of order t3/2, so the integral converges.
Before numerically performing any of these integrals it is necessary to check whether the

path crosses either of the branch cuts (or equivalently, whether the quantity under the square
root crosses the negative real axis). If so, the path must be broken up so that each piece lies
on only one branch of the integrand. This is straightforward when λ is real, but somewhat
difficult to do for a general λ ∈ C.

As an example, let E have the Weierstrass equation y2 = x(x − 1)(x + 3). The natural
branch cuts join −3 to −∞ and 0 to 1, so to compute a basis for the period lattice we first
integrate around one branch cut:

ω1 = lim
ε→0

(∫ −3

−∞

dt√
(t+ iε)(t+ iε− 1)(t+ iε+ 3)

+ lim
ε→0

∫ −∞
−3

dt√
(t− iε)(t− iε− 1)(t− iε+ 3)

)

≈ −3.3715i
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Figure 1: (a) Branch cuts in the complex plane for the differential dx/y attached to the
elliptic curve E : y2 = x(x − 1)(x − λ), with integration paths to compute a basis for the
period lattice. (b) Two copies of C joined to form a torus, with the integration paths from
(a) shown. Note that the path joining 1 and the point at infinity includes a piece on each
branch of dx/y.

We then integrate from 0 to the point at infinity and back, using a different branch for each
part of the integral:

ω2 =

∫ 0

−∞

i dt

−
√
it(it− 1)(it+ 3)

+

∫ ∞
0

i dt√
it(it− 1)(it+ 3)

≈ −4.31303

The point P = (3, 6) ∈ E has order 4. The corresponding complex number is given by
integrating dx/y from 3 + i∞ to 3, breaking up the integral at the point x = 3 + 6i (where
y crosses the negative real axis):

P 7→
∫ 6

∞

idt

−
√

(3 + it)(3 + it− 1)(3 + it+ 3)
+

∫ ∞
6

idt

+
√

(3 + it)(3 + it− 1)(3 + it+ 3)
≈ −1.07826

This is (1/4)ω2, so we change basis from 〈ω1, ω2〉 to 〈1,−ω1/ω2〉 and conclude that

(E,P ) ≈ (Eτ , Pτ ) with τ ≈ 1.27926i.

3 Arithmetic-geometric mean sequence method

If E is an elliptic curve, the existing Sage command

sage: E.period_lattice(CC)

returns the lattice in C corresponding to E, and

sage: E.period_lattice(CC).basis()

returns a numerical approximation to a basis for the lattice. In addition, for P ∈ E,
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E.period_lattice(CC).elliptic_logarithm(P)

returns the point in C/(Zω1 + Zω2) corresponding to P . Each calculation is performed by
taking the limit of an appropriately chosen sequence, as described in [3] and sketched here.

A lattice chain (of index 2) is a sequence of lattices Λn ⊂ C such that

1. Λn ⊃ Λn+1 for all n ≥ 0,

2. [Λn : Λn+1] = 2 for all n ≥ 0, and

3. Λn + 1 6= 2Λn−1 for all n ≥ 1.

A good lattice chain is a lattice chain in which Λn+1 = 〈ω〉 + 2Λn, with ω an element of
Λn − 2Λn−1 with minimal absolute value, for all but finitely many n. It is possible to show
that a lattice chain is good if and only if the intersection

Λ∞ =
∞⋂
n=0

Λn

has rank 1. Furthermore, if ω∞ is a generator of Λ∞ for a good chain, then it is a primitive
element of Λ0, i.e. there is some ω2 ∈ Λ0 such that 〈ω∞, ω2〉 = Λ0. It then follows that
Λn = 〈ω∞, 2nω2〉 for all n ≥ 0. Now, the Weierstrass ℘-function associated to Λn is

℘Λn(z) =
1

z2
+

∑
06=ω∈Λn

1

(z − ω)2
− 1

ω2

=
1

z2
+

∑
r,s∈Z

(r,s)6=(0,0)

1

(z − (rω∞ + s2nω2))2
− 1

(rω∞ + s2nω2)2

As n→∞, all the terms with s 6= 0 vanish, leaving

lim
n→∞

℘n(z) =
∑
r∈Z

1

(z − rω∞)2
−
∑

06=r∈Z

1

(rω∞)2

℘∞(z) =

(
π

ω∞

)2
1

sin2(zπ/ω∞)
− π2

3ω2
∞

(3)

This suggests that, given a sequence of elliptic curves En with period lattices Λn that form a
good chain, we could compute at least one element of a basis for Λ0 by looking at the limit
of the Weierstrass equations for the En.

It turns out that we can construct the required elliptic curves from an appropriately
chosen arithmetic-geometric mean sequence. An AGM sequence is a sequence of ordered
pairs (an, bn) ∈ C2 (n ≥ 0) such that an, bn 6= 0, a2

n 6= b2
n, and

an+1 =
an + bn

2
, bn+1 = ±

√
anbn
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for all n. The sequence is said to be good if the signs of the bn are chosen so that Re(bn/an) ≥ 0
for all but finitely many n. It is possible to show that a good AGM sequence converges,
and that limn→∞ an = limn→∞ bn 6= 0. We will denote this limit by MS(a0, b0), where
S = {n ∈ Z≥0 : Re(bn/an) < 0} is the set of “bad” indices.

Given a good AGM sequence (an, bn), consider the sequence of elliptic curves En defined
over C by

En : y2 = 4x(x+ a2
n)(x+ b2

n)

By direct calculation we can check that the point Pn = (anbn, 2anbn(an + bn)) ∈ En has
order 4, since 2Pn = (0, 0) = Tn. Roughly speaking, we can explicitly write down a sequence
of 2-isogenies ϕn : En → En−1 such that ϕ(Pn) = Tn−1, and such that the corresponding
lattices form a good lattice chain as defined above. However, instead of working directly
with En, however, we make a shift in x and work with the isomorphic elliptic curve E ′n with
Weierstrass equation

E ′n : y2 = 4(x− e(n)
1 )(x− e(n)

2 )(x− e(n)
3 )

e
(n)
1 =

a2
n + b2

n

3
, e

(n)
2 =

a2
n − 2b2

n

3
, e

(n)
3 =

b2
n − 2a2

n

3

This shift was chosen to set e
(n)
1 + e

(n)
2 + e

(n)
3 = 0, so that

℘Λn(ω
(n)
1 /2) = e

(n)
1 , (4)

where ω
(n)
1 is one of the periods of ℘Λn . For n ≥ 1, we can then define a 2-isogeny ϕ′n : E ′n →

E ′n−1 by

ϕn(x, y) =

(
x+

(e
(n)
3 − e

(n)
1 )(e

(n)
3 − e

(n)
2 )

x− e(n)
3

, y

(
1− (e

(n)
3 − e

(n)
1 )(e

(n)
3 − e

(n)
2 )

(x− e(n)
3 )2

))
.

It is then possible to show that ϕ∗n(dωn−1) = dωn, from which it follows that the ϕn commute
with the isomorphisms (℘, ℘′) : C/Λn → E ′n and the natural maps C/Λn → C/Λn−1. Finally,
from Eqs. (3) and (4) and the definition of the E ′n, we can conclude that

ω∞ = ±π/MS(a0, b0).

This means that we can compute a basis for a given E by choosing a0 and b0 such that
E0 ≈ E and taking the limit of the resulting AGM sequence. To compute another element
of the basis, we permute the e

(n)
i in the definition of ϕn.

This procedure is generally faster than the numerical integration approach, and the pre-
cision is easier to control, since AGM sequences converge rapidly. Using the same curve and
point as in the previous section,
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sage: def_lattice_tau(E,N,P):

....: L = E.period_lattice(CC)

....: omega = L.basis()

....: [a,b] = L.coordinates(L.elliptic_logarithm(P))

....: [a,b] = [ int(round(N*a)), int(round(N*b)) ]

....:

....: while gcd(a,b)!=1 or b==0: b += N

....: d = inverse_mod(a,b)

....: c = (a*b - 1)/b

....: tau = ( c*omega[0] + d*omega[1] )/( a*omega[0] + b*omega[1] )

....: tau = tau - floor(real_part(tau))

....:

....: return tau

....:

sage: E = EllipticCurve([0,2,0,-3,0])

sage: lattice_tau(E,4,E(3,6))

0.710057309320031 - 0.0416309862711467*I
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