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GALOIS COHOMOLOGY

LAWRENCE C. WASHINGTON

In these lectures, we give a very utilitarian description of the Galois
cohomology needed in Wiles’ proof. For a more general approach, see any
of the references.

First we fix some notation. For a field K, let K be a separable closure
of K and let G =Gal(K/K). For a prime p, let G, = Gy, where ), is
the field of p-adic numbers, and let I, C &, be the inertia group.

Let G be a group, usually either finite or profinite, and let X be an
abelian group on which G acts. Such an X will be called a G-module.
If there are topologies to consider, we assume the action is continuous,
though we shall mostly ignore continuity questions except to say that all
maps, actions, etc. are continuous when they should be.

§1. HY, H', anp H?
We start with

HYG,X) = X® = {z € X|gz = z for all g € G}.
For example, G acts on K* and
HY% Gy, K*) = K*.
For another example, let u,, denote the group of n-th roots of unity. Then

{£1} if 2|n,

0 —
H{GQ'#"}-_{I if 24 n.

Oeceasionally, for a finite group &, we will need the modified Tate coho-
mology group -
HYG, X) = X%/ Norm(X),

where Norm(z) = }_ . gz (if X is written additively). For example, if X
is an abelian group of odd order on which Gal(C/IR) acts, then Norm(X') 2
2(XC) = X%, so H(Gal(C/R), X) = 0.
We now skip H'(G, X) in order to give a brief description of H?(G, X).
Define
H*(G,X) = cocycles/coboundaries,

1
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where a cocycle is a map (of sets) f: G x G — X satisfying

6f = f(g1,9293) — f(9192,93) + 91 - f(92.93) — f(g1,92) =0,

and where f is a coboundary if there is a map h : G — X such that

flg1.92) = g1 - h(ga) — h{g1g2) + h(g1) = h.

This definition might seem a little strange; we will give a slightly different
form of it later after we define HY(G, X).

Here is an example. Let p be prime and let G = G, Let a,b € Q] with
a not a square. Define

b if g1v/a = —y/a and gav/a = —\/a,

1 otherwise,

f(g1,02) ={

It is easy to check that f: Gy x G, — @ satisfies the cocycle condition,
hence yields an element of H*(Gp, Q). Suppose b is a norm from Q,(/a),

so b = 2% — ay® for some z,y € Q,. Let h(g) = z + yv/a if g/a = —\/a
and h(g) = 1 otherwise. Then

f(g1,92) = (g1h(g2))h(g1)/h(g192),

so the element of H? we obtain is trivial. Conversely, it can be shown
that if this element is trivial, then b is a norm from Q,(1/a). Recall the
Hilbert symbol (a, b),. which equals 1 if b is a norm from Q,,(1/a) and equals
—1 otherwise. Thus the above cohomology class we obtain is essentially
the same as the Hilbert symbol. We also have (a,b), = 1 if and only if
r} — axj — bxrj 4 abzri = 0 has a non-zero solution in Q. Equivalently,
(a,b); = 1 if and only if the generalized quaternion algebra Q,[i, j, k], with
i = a, j2 = b, k* = —ab, ij = k, ete., is isomorphic to the algebra of
two-by-two matrices over , (rather than being a division algebra). In
general, H?(Gg, K*) is known as the Brauer group and classifies central
simple algebras over the field K. We will need the following result.

Proposition 1. Let p be a prime number. Then H E{GP, Q;‘} ~ Q/L.

This result is an important result in local class field theory. For a proof,
see [Se|. In our example, the cohomology class of f is 0 if (a,b), = 1 and
is + mod Z if (a,b), = —1.

We now turn our attention to H!, which is the most important for us.
Define

HY(G,X) = cocycles/coboundaries,

where a cocycle is a map f : G — X satisfying f(g192) = f(g1) + g1 f(2)
(a “crossed homomorphism”) and where f is a coboundary if there exists
z € X such that f(g) = gz — z.
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Before continuing, we write the cocycle conditions in a different form
that perhaps seems more natural. For a 2-cocycle f, let

F(a,b,c) =a- f(a~'b,a"'¢),

where a,b,c € G. Then F(ga, gb, gc) = g - F(a, b, ¢) and the cocvele condi-
tion becomes

F(a,b,c) = F(a,b,d) + F(a,c,d) — F(b,c,d) = 0.

For a 1-cocycle f, let F(a,b) = a- f(a='b). Then F(ga,gb) = g- F(a,b)
and the cocycle condition reads

F{a,b) = F(a,e)+ F(b,c) = 0.

We can even describe HY in this manner: a O-cocycle is a map f from
the one point set to X, hence simply an element z of X, that satisfies
gr—z =0, If we let F(a) = az, then F(ga) = g- F(a) and F(a)— F(b) =0
for all a,b € G. In all three cases, the coboundary condition says that F is
the coboundary of a function from the next lower dimension. For example,
the function F for a 2-coboundary is of the form H(a, b) — H(a,c)+ H(b,¢)
for a function H satisfying H(ga,gb) = ¢ - H(a,b) (explicitly, H(a,b) =
a - h{a='b) in the above notation). It should now be clear how to define
higher cohomology groups H™(G, X) for n > 3. With one exception, we
will not need these higher groups, and in this one exception, the element
we need will be 0; therefore, we may safely ignore them for the present
exposition.

A fundamental fact that will be used quite often is the following. Sup-
pose

D—A—=B-=C—=10

is a short exact sequence of G-modules. Then there is a long exact sequence
of cohomology groups (write H"(X) for H" (G, X) )
0 — H°(A) — H°(B) — H'(C) — H'(A)
— H'(B) = H'(C) — H*(A) —» H*(B) — ---
The proof is a standard exercise in homological algebra.
Let’s return to H'(G, X). Suppose the action of G is trivial, so gz = =
for all g and . Then cocycles are simply homomorphisms G — X. A

coboundary f(g) = gr — z is the 0-map. Therefore we have proved the
useful fact that

HI{G,X} = Hom(G, X) if the action of G is trivial.

Here “Hom" means (continuous) homomorphisms of groups. For exam-
ple, let K be a field and let G = Gi. Then Gy acts trivially on Z/2Z,
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so HY Gk, Z/2Z) = Hom(G g, Z/2Z), which corresponds to the separable
quadratic (or trivial) extensions of K; namely, if f is a non-trivial homo-
morphism, then the fixed field of the kernel of f is a quadratic extension.
The trivial homomorphism corresponds to the trivial extension K/K.

Suppose now that G is a finite cyclic group: G = {g) with g" = 1. The
cocycle relation yields by induction that

fley=Q+g+g*+ - +g ") f(g).

Therefore f(1) = f(g™) = Norm(f(g)). The cocycle condition easily im-
plies that f(1) = 0, so f(g) is in the kernel of Norm. Any such choice for
f(g) yiclds a cocycle via the above formula. A coboundary corresponds to
f(g) = (g — 1)z for some x € X. Therefore

HY (G, X) ~ (Kernel of Norm)/(g —1)X for a finite cyclic group G.

As an example, consider a Gg-module X of odd order. Let ¢ be complex
conjugation. Write X = -I—%'EX & -1—§5X . Note that %EX is the kernel of
Norm = 1 + ¢, and is also equal to (¢ = 1)X. Therefore H'(Gg, X) = 0.
More generally, it can be shown that if G and X are finite with relatively
prime orders, then H(G, X) = 0 for all i > 0, and also for i = 0 if we use
the modified groups H%(G, X).

When G is infinite cyclic, or is the profinite completion of an infinite
cyelic group, and X is finite, then there is a similar description. Let g be
a (topological) generator. Let x € X be arbitrary. There are k,n > 0 such
that ¢"z = z and kx = 0. Define a cocycle by f(g') = (14g+---+¢ =z
fori > 0. Ifi > jand i = j mod kn, then g7 4+ -.-g"! is a multiple
of 1 + g™ +--- 4 g"*=1) which kills z. Therefore f(g') depends only on
i mod kn, so f extends to a continuous cocycle on all of G. Since, as above,
every cocycle must be of this form, we have

HY G, X)=X/(g—-1)X

when G is (the profinite closure of) an infinite cyclic group and X is finite.
This result will be applied later to the case where F is a finite field and
G = Gal(F/F), which is generated by the Frobenius map.

Let L/K be a finite extension of fields with cyclic Galois group G gener-
ated by g. Then G acts on L*. The famous Hilbert Theorem 90 says that
if x € L* has Norm 1 then z = gy/y for some y € L*. This is precisely
the statement that H'(G, L*) = 0. More generally, we have

HY(Gal(L/K), L*) =0

for any Galois extension of fields L/K ([Se]).
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Let n > 1 be prime to the characteristic of the field K and consider the
exact sequence of G g-modules

1=y, = K* 2 K* =1

induced by the n-th power map. The long exact sequence of cohomology
groups includes the portion

HYG,K*) = HYGg,K*) = H (Gk,pa) = H'(Gg, K*),

where the first map is the n-th power map. Since the last group is 0, we
find that
HY Gk, pn) = K™ [(K¥)".

Explicitly, let ¢ € K* and fix an nth root o of a. Then g — ga/a defines a
cocycle and hence an element of H(Gg, pt,). When p, € K, HY(Gk, pin)
becomes Hom(G g, jtn), which corresponds (in an obvious many to one
fashion) to cyclic extensions of K of degree dividing n, and a is a Kummer
generator for this extension (and, correspondingly, there are several Kum-
mer generators mod nth powers for each extension). When n = 2, note that
Z/2Z and pg are isomorphic as G i-modules, and we find that H' (G, p3z)
classifies quadratic extensions of K, though in a slightly different manner
than HY(Gg,Z/2Z).

§2. PRELIMINARY RESULTS

Suppose H is a (closed) normal subgroup of a group G and X is a G-
module. Then X is a module for G/H in the obvious way. A cocycle for
G/H can also be regarded as a cocycle for G (“inflation”) by composing
with the map G — G/H. A cocycle for G can be regarded as a cocycle
for H by restriction. Also, G/H acts on H'(H, X) by the formula f9(h) =
g - f(g~'hg), where [ is a cocycle and g is a representative of a coset in
G/H. An easy calculation shows that if ¢’ is another representative of

the coset of g then f9 and f¢ differ by a coboundary, so the action is
well-defined.

Proposition 2 (Inflation-Restriction). There is an exact sequence

0— HYG/H,X") — H(G, X) — H'(H, X)¢/H
— H*(G/H,X") - H*(G, X).

This is the exact sequence of terms of low degree in the Hochschild-
Serre spectral sequence, hence is sometimes referred to by that name. For
a proof, and the definition of the map from H! to H?, see [Sh].

For example, let p be a prime and let G = G,. Let H = I, =
Gal(Q,/Q,""), where Q" is the maximal unramified extension of Qp, so
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I, is the inertia subgroup of G, and G, /I, ~ Gal(F,/F,). The beginning
of the above sequence implies that

H'(Gy/Ip, X'r) = Ker (H'(Gy, X) = H (I, X)).

Thus we can regard H'(G,/I,, X ') as the subgroup of H(G,, X ) consist-
ing of those cohomology classes that become trivial when restricted to the
inertia subgroup; hence, we call these the unramified classes. For example,
when X = Z/2Z, the unramified classes are those homomorphisms from G,
to Z/2Z that are 0 on I, hence that can be identified with homomorphisms
from G,/1I, to Z/2Z. There are two such homomorphisms, the 0 homo-
morphism and the one corresponding to the unique unramified quadratic
extension of Q, (or of F,). This is well-known, but is also a consequence
of the following, which often allows us to calculate the order of the group
of unramified classes, since HD(GF. X) = XO,

Lemma 1. Let X be finite. Then #H'(G,/I,, X'r) = #H%(G,, X) (and
both are finite).

Proof. There is an exact sequence

(Frob—1)

0— X% = xtb X% — X' f(Frob-1)X" — 0.

The exactness at the first X'r follows from the fact that if z € X' and
(Frob—1)z = 0, then z is fixed by both I, and Frob, which (topologi-
cally) generate G,. The first term gives H%(G),, X ) and the last term gives
HY(Gp/I;, X'). The result follows easily. O

The last preliminary topic that we need is cup products. In general,
suppose X, X2, and X3 are G-modules, and there is a G-module homo-
morphism ® : X; ® X; — X3. The cup product is a map

Hi(G:XI} X HJ{G:-XE} = Hi+j[G:X3]'

We define the cup product only when i 4 j = 2, since this is the main case
we need. Let fi € H*(G, X,), so we may regard f; as (being represented
by)amap f, : GxG — X,. Let z; € X¥ = HY(G, X3). Then f3 = fiUzg
is the 2-cocycle satisfying fi(g91,¢2) = ®(f1(g1,92) ® z2). The cup product
of H? and H? is defined similarly. Now let ¢, € H(G, Xi) for k = 1,2.
Define

(@1 U d2)(91,92) = ®(d1(g1) ® 91 P2(92)).

It is easy to see that this defines a 2-cocycle, hence an element of H2(G, X3).

For example, let a,b e Q7. Let ¢ € HY(G,,Z/2Z) be defined by ¢(g) =
0 if g(va) = a and ¢(g) = 1 otherwise. Define ¢ € H(Gp,uz) by
¥(g) = g(vb)/vb. We may regard pp =~ Hom(Z/2Z, u3) as the dual of
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Z/2Z; hence there is a map Z/2Z @ pz — pta C Q). Therefore ¢ U ¢ €
H?(Qp, Q) ). Fix a square root Vb and let h(g) = (gvh)*@. A calculation
shows that ¢ U ¢ multiplied times the coboundary h(g;) - g1h(g2)/ k(g1 92)
equals the cocycle f defined earlier, the one corresponding to the Hilbert

symbol (a,b),. In fact, this cup product is one way to define the Hilbert
symbol; see [Se]. We now have a pairing

HYGy, 2/2Z) x H (Gp, a) — H*(G,, Q) = Q/Z.

The non-degeneracy of this pairing is equivalent to the non-degeneracy of
the Hilbert symbol.

Now let p be odd and consider the group H'(G,/1,,, Z/2Z) of unramified
classes. Assume a is not a square. The element ¢ is in this group if \/a
generates an unramified extension (in fact, the unique quadratic extension)
of 0, which means we may assume a is a p-adic unit. We have (a,b), = 1
<= b is a norm from Q,(\/a) <= b is a square times a p-adic unit
(this follows from the fact that p is a uniformizer for Q,(y/a)) <= the
cocycle v is unramified. Therefore, the unramified classes in H 1[@;...!1:]
form the annihilator of the unramified classes in H'(Q,, Z/2Z) under the
above pairing. All of this will be greatly generalized in the next section.

§3. LocaL Tate DuaLiTy

Let p be prime and let X be a G -module of finite cardinality n. Let
X* = Homgz(X, pn),

where G, acts on X* by (9z*)(z) = g(z*(g7'z)). Note that X @ X* ~
pn € QF as Gp-modules.

Theorem 1 (Local Tate Duality). (a) The groups H'(G,, X) are finite
foralli> 0, and =0 fori = 3.
(b) Fori=0,1,2, the cup product gives a non-degenerate pairing

HY(Gp, X) x H* Y (Gp, X*) — H*(G,,Q)) ~ Q/Z.
(c) If p does not divide the order of X then the unramified classes
HY(Gp/Ip, X'*) and H(Gp/Ip,(X")r)

are the ezact annihilators of each other under the pairing H'(G,, X) x
HY(G,, X*) — Q/Z.

Proof. For a proof, see [Mi].

For the archimedean prime, the groups H '(Gr, X) are finite for all i, If
we use the modified group HY in place of H?, then we have #H%(Gg, X) =
#H'(Gyg, X) for all i > 0. There is a non-degenerate pairing

H'(Gr,X) x H'(Gr, X") = Q/Z,
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and also ,
H%Gg,X) x H*(Ggr,X*) — Q/Z

(and with H® and H? reversed); note that we use the modified H® here
Another result we need evaluates Euler characteristics.

Proposition 3. Let p be prime and let X be a finite G,-module. Then

#H' (G, X) N #H' Gy, X) _ up(#X)
#HO(Gy, X) - #H%(Gp, X)  #H%(Gp, X) - #H(Gp, X7)  © '

Proof. The first equality follows from Theorem 1. For a proof of the propo-
sition, see [Mi].

By using Theorem 1 and Proposition 3, we can evaluate #H'(G,, X)
and #H?(Gy, X) in terms of #H"(G,, X) and #H"(Gp, X*). These are
much easier to calculate in most cases.

54. EXTENSIONS AND DEFORMATIONS

The main reason that Galois cohomology arises in Wiles’ work is that
certain cohomology groups can be used to classify deformations of Galois
representations. In order to explain this, we need a few concepts.

Suppose (¢ is a group acting on an abelian group M, and assume in
addition that M is a free module of rank n over a ring R (commutative
with 1), and the action of G commutes with the action of R. The action
of ( is then given by a homomorphism

p: G — GL,(R).

This yields an action of G on M,(R), the ring of n x n matrices, via

x =+ p(g)zp(g)~t. Let Adp denote M, (R) (or Endr(M)) with this action.

We also will need the submodule Ad” p consisting of matrices with trace 0.
An extension of M by M will mean a short exact sequence

o A

o0—M — EFE — M — ),

where E is an R[G]-module and o and # are R[G)-homomorphisms. The
equivalence of two extensions is given by a commutative diagram
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where v is an R|G]-isomorphism. The set of equivalence classes of such
extensions is denoted Ext® (M, M).

Let Rle] denote the ring R[T]/(T?) (so €® = 0). An infinitesimal defor-
mation of p is an extension of p to

¢ : G = GLa(R[e])

such that p’ maps to p under the map ¢ — 0. Two such infinitesimal
deformations p’ and p” are equivalent if there is a matrix A = I mod ¢
such that Ag’A~! = p"”. The idea behind this is that we want to fit p into
a family of representations. Suppose, for example, that R is a local ring
with maximal ideal M, and that we can extend p to p : G — GL,(R[T])
(or R|[T]] if R is complete). Then we can evaluate T' at anything in the
maximal ideal M and get a representation congruent to p mod M. The
infinitesimal deformations are the first steps in the direction of constructing
such families.

Proposition 4. The following sets are in one-one correspondence.
(a) H'(G,Adp).

(b) Ext'(M,M).

(¢) FEquivalence classes of infinitesimal deformations of p.

Proof. Consider an extension 0 — M % E £ M — 0. Since M is
free over R, there is an R-module homomorphism ¢ : M — E such that
Bo¢ =idy. Let g € G and m € M. Since g is an R[G]-homomorphism,
gd(g~'m) — ¢(m) is in (Ker 3). Let T, : M — M be defined by

Ty(m) = a~'(g9d(g~'m) — ¢(m)).

It is easy to check that T}, ,, = T}, + ¢1T,,, where the action of G is the one
on Ad p. Therefore g — T, gives an element of H'(G, Ad p). If we have two
equivalent extensions and ¢, and ¢ are the corresponding maps, and T
and T, are the corresponding cocycles, then (Tz2), — (T1) = g¥ — ¢, where
¢ =a "y g2 —v¢1) : M — M. Therefore T3 — T} is a coboundary for
Ad p, hence Ty and T% represent the same class in H'(G, Ad p). Therefore
we have a well-defined map Ext'(M, M) — H(G, Ad p).

Note that the trivial extension E = M @& M (as R[G]-modules) yields
the trivial cohomology class.

We remark that this method of obtaining cocycles is fairly standard;
namely, take an element, such as ¢, in a bigger set, in this case Hom(M, E),
and form g¢ — ¢. Something of this form will automatically satisfy the
cocycle condition, but of course we also want g¢ — ¢ to be in the original
set. When ¢ itself is in the original set, in this case Ad p, the cocycle is a
coboundary.

Now suppose we have two extensions E, and FE; and corresponding
cohomology classes Ty and 75, and suppose these classes are equal. Then
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there exists an R-map ¥ : M — M such that (T2), — (T1), = gy — ¢. Let
e; € E;. We can uniquely write e; = a;(m) + ¢(m’) with m,m’' € M.
Define v(e, ) = az(m) + ¢2(m’) — az(p(m’)). A calculation shows that - :
E; — FE; is an R[G]-homomorphism that makes the appropriate diagram
commute (and is therefore an isomorphism, by the Snake Lemma); hence
the extensions are equivalent. We have proved that the map Ext!(M, M) —
HY(G, Ad p) is an injection.

Finally, let g — C(g) € Ad pbe acocycle. Let E = M®gpR[e] = eMaM.
We regard p(g) as an element of GL,(R[e]) via the natural containment
GL,(R) € GL,(R[e]). The matrix I + ¢C(g) is also in GL,(R][¢]), so we
define

P'(g) = (I + ¢C(g))plg)-

This is easily seen to be a homomorphism, and gives an action of G on E.
We have the short exact sequence

£

0 —— M » E y M ———— (.

Let ¢ : M — E = eM @ M be the map to the second summand. Then the
above recipe gives

Ty(m) = ¢ ((1+€C(9))p(9) #(pl9)*m) — ¢(m)) = C(g)(m).

Therefore this extension yields the cocycle C, so the map Ext!(M, M) —
HY (G, Ad p) is surjective.

The above shows that a cocycle yields an infinitesimal deformation. Con-
versely, if g/ : G — GL,(Rle]) extends p, define C(g) by I + eC(g) =
P (g)p(g)~'. An easy calculation shows that C is a cocycle. The identity

(I+eA)(I+eC)p(I—€A)=(I+e(A—pAp™' +C))p

shows that equivalence of deformations corresponds to equivalence of coho-
mology classes. Note that the trivial cohomology class corresponds to the
trivial deformation p’ = p. This completes the proof. O

One of the themes in Wiles’ work is to consider deformations with var-
ious restrictions imposed. By the above, this corresponds to considering
cohomology classes lying in certain subsets of H1(G, Ad p). For the mo-
ment, we consider two such examples.

Example 1. Suppose we want to consider deformations where the deter-
minant remains unchanged. Note that det((] + eC)p) = (1 + €Tr(C))detp.
Keeping the determinant unchanged is equivalent to having C € Ad p.
Since Ad(p) = Ad" p@® R, where R represents the scalar matrices with triv-
ial action of G, we have HY(G,Adp) = HY(G,Ad" p) @ HY(G, R). From
the above, H'(G, Ad"” p) gives the classes of infinitesimal deformations with
fixed determinant.
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Example 2. Let p be prime and consider a cohomology class
C € H'(Gp/I,,(Ad p)™),

which is the kernel of the restriction map H'(Gp, Adp) — H'(I,, Adp).
Let p’ be the corresponding deformation. Then p’ restricted to I, is (equiv-
alent to) the trivial deformation: p'|; = p|; . Therefore p’ is unramified
at p if and only if p is unramified at p (i.e., p[;, is trivial). Moreover, if p
is ramified, all the ramification of the deformation p' comes from that of p.
We will often require certain cohomology classes to be unramified in order
to control the ramification of the corresponding deformations of p.

i5. GENERALIZED SELMER GROUPS

Let X be a Gg-module. Eventually, X will be Ad" p, but for the moment.
we do not need to make this restriction. As indicated above, we want to
study cohomology classes in H'(Gg, X) with various local restrictions. For
each place £ of @, including the archimedean one, we may regard the group
(¢ as a subgroup of Gg. There are many ways to do this, but all the results
we obtain will be independent of these choices. We have the restriction

maps
resy : H'(Gg, X) — H* (G, X).

Let £ = {L;} be a family of subgroups Ly C H!(G, X) as £ runs through
all places of Q, with Ly, = H' (G, /I, X'*) for all but finitely many £. Such a
family will be called a collection of local conditions. Define the generalized
Selmer group

H}Q,X) = {re H(Gqg, X) | res¢(z) € L; for all £}.

Let £* = {L}}, where L; is the annihilator of L, under the Tate pairing.

By Theorem 1, L} = HYG¢/I;, X*") for all but finitely many £. The
following result is crucial in Wiles' proof. It was inspired by work of Ralph
Greenberg [Gr].

Theorem 2. The group H:(Q, X) is finite, and

#HIQ.X)  #HGe.X) rr __ #Le
#HL.(QX)  #H%(Go, X™) o #H(Gr, X))

Note that #H®(G;, X) = #H'(G¢/I;, X'¢) by Lemma 1, so almost all
factors in the product are 1. The formulation of the theorem is that of
[DDT], which differs slightly from that of [Wi]. An easy exercise, using
Theorem 1 and Proposition 3, shows that the two versions are equivalent.

We sketch the proof of the theorem at the end of the paper.

In the applications, £ is chosen so that H};,, == (). Since the terms on the
right are fairly easy to work with, we obtain information about the group
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H}, which for appropriate X describes deformations of representations with
certain local conditions.

To show how the formula may be used, we now give an application in
a fairly concrete setting. The techniques are much in the spirit of those
used by Wiles. Let X = Z/p"Z (with trivial Galois action), where p is
an odd prime. Let S be a finite set of primes containing p and oc. For
L€ S, let Le = HY Gy, Z/p"E). For £ ¢ S, let Ly = HY(G¢/I,Z/p"Z).
Then L} = 0 for £ € S and L} = HY(Ge/Iy,pp) for £ ¢ S. Consider
Hr.lf.' (Q: Hp ]'

From above, we know that every element of H'(Ggq, utp~ ) is represented
by a cocycle of the form g — ga/a, where a?” = a € Q. To be in H..,
it must be unramified everywhere. Since

H(Ig, ppn ) = HY(Gopnr ipn) == (QF™)* /((QF™")*)?",

where Q}"" is the maximal unramified extension of @y, this implies that
ve(a) =0 mod p" for all £. Therefore a = p™th power in Q (we can ignore
+1 since p is odd) and the cocycle represents the trivial cohomology class.
It follows that H7.(Q, ppn) = 0.

We now evaluate the right side of the formula. First,

#H(Gq,Z/p"Z) = #Z/p"Z = p".

Since we chose p to be odd, H%(Gg, y1,») = 0. In the product, the terms
for £ & S are all 1. When £ # oo is in S, the factor is

#HY (G, Z/p"Z)
#HO(G¢,Z/p"Z)

= #H"(Ge, ptpn) - 7407

by Proposition 3. The number of p™th roots of unity in Q; is (£—1, p"), s0
this is the order of H “(G;,ppn}. Since # Hom(Gg, Z/p"Z) = 1, the factor
for £ = oo is 1/p™. Putting everything together, we find

#HLQ,Z/p"EZ)=p" [] (¢-1,p").

teS\mo

Note that H'(Ggq,Z/p"Z) = Hom(Ggq,Z/p"Z) classifies cyclic extensions
of degree dividing p", and H;(Q,Z/p"Z) gives those extensions that are
unramified outside S.

We already have a good supply of such extensions coming from subfields
of eyclotomic fields. For each finite prime £ € S, there is a cyclic extension
of degree (£ — 1, p™) contained in the £-th cyclotomic field. There is also
a cyclic extension of degree p" contained in the p™*!st cyclotomic field.
These extensions are disjoint, so we obtain an abelian extension of exponent
p" and degree p" [[,.5(€ — 1, p")- The Galois group of this extension
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has this many homomorphisms into Z/p"Z, so all homomorphisms of Gg
into Z/p"Z unramified outside S are obtained from subfields of cyclotomic
fields. By enlarging S arbitrarily, we find that every cyclic extension of
of degree dividing p" is contained in a cyclotomic field. The same analysis
may be done for powers of 2 with the same result. Since every finite abelian
group is a product of cyclic groups of prime power order, we obtain the
Kronecker-Weber theorem that every abelian extension of Q is contained
in a cyclotomic field. (Of course, this proof is by no means elementary,
since the full power of class field theory is used in the proof of Theorem 2.)
As in the proof of the Kronecker-Weber theorem just given, it will some-
times be necessary to enlarge the set of primes at which ramification is
allowed. The following estimates how much the Selmer group increases.

Proposition 5. Lel p be prime and suppose #X is5s a power of p. Let
L = {L¢} be a collection of local conditions and let g # p be a prime for
which L, = HY(G,/1;, X"). Define a new collection L' = {L,} of local
conditions by Ly = Ly if £ # q and L, = H'(G,, X). Then

#HE'{.Q: I}
#H(Q, X)

< #H(Gy, X*).

Proof. Since L;'...J' = 0, the conditions defining H}.. are more restrictive
than those defining H}., so Hl.. has order less than or equal to the or-
der of H}.. When L is changed to £’ in Theorem 2, all factors on the
right remain the same except the one for g, which changes from 1 to
#HYG,, X)/#H°(G,, X). By Proposition 3, this equals #H"(G,, X*),
since g { #X. The result follows easily. [

§6. LOCAL CONDITIONS

From now on, fix a finite set ¥ of primes (including oo, though this
will not be important). Let p be an odd prime and assume R is a finite
ring of cardinality a power of p. We will work with X = Ad”p, where
p : Gg =GLa(R) is a 2-dimensional representation. We also assume p is
an odd representation. For our present purposes, we take this to mean that
if ¢ is (any choice of) complex conjugation, then the matrix p(c) is similar
oy )

0D -1

Define a collection of local conditions as follows:

Ly = H'(Ge/I¢, (Ad° p)"*) for £, L#p,

Li=HYGe, Ad"p) forfe X, £4#p,
Ly will be specified later.
In other words, if we think in terms of infinitesimal deformations, we allow

as little ramification as possible at the primes # p outside £, the ramifica-
tion at those places being due to ramification in p. At the primes £ # pin X
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we allow arbitrary ramification. At p we want to control what happens a
little more carefully, depending on properties of p.

In the formula of Theorem 2, we need to evaluate, or at least estimate,
the factors #L;/# H(Gy, Ad” p) corresponding to the various primes.

e The factors for the primes £ &€ X with £ # p are all 1 by Lemma 1.
e The factor for the infinite prime is easy. Since Gy has order 2
and Ad” p has odd order, H I[GH,Adﬂ p) = 0. Therefore L is a
subgroup of the trivial group, hence trivial. We may assume that

ple) = (; _[}1 ) Since p(e)Ap(c)~! = A is equivalent to A being

diagonal, we see that H?(Gg, Ad” p) has order #R. Therefore the
factor for oo is 1/#R.

e Let £ € X, £ # p, oo. Then, as in the proof of Proposition 5, we
have

#HY (G, Adp) | o 0 s
SH0Ge A ) #H(Ge, (Ad" p)*).

§7. CONDITIONS AT p
Ordinary representations. Suppose plg, has the form (for some choice

of basis) (w&t 1;?), where ¢4 and 1 are unramified characters (with

values in R™ ), and ¢ is now the cyclotomic character (not the infinitesimal
element from above) giving the action of G, on the p-power roots of unity.

Let W? be the additive subgroup of Ad° P given by matrices of the form
0 =
(0 3)

Lemma 2. G, acts on W by multiplication by ¢e/v.

Proof.
vre *\ (0 b\ [ve *\ ' _ [0 veb/un
0 w/\oo/J\Lo w) “\lo o '
Lemma 3. #H(G,,(W°)") = #R/(% (Frob,) — 1)R.

Proof. An element of (W")" is a group homomorphism ¢ : B — py» (for
some sufficiently large n), and ¢ is fixed by G,, if and only if ¢(gr) = gé(r)
for all g € G, and r € R. By Lemma 2, this means ¢(?—¢Er} = e(r).
Note that ¢ takes values in the image of Z, in R, which is the same as the
image of Z in R. Therefore we can regard ¢ as an integer that is also a
unit in R, and consequently obtain qﬁ[%;-r] = ¢(r). Since 1", and ¢ are
unramified, it suffices to check this for g = Frob,, so we let a = ¥1(Frob,).
We need ¢ to satisfy @({a — 1)r) = 0 for all r. This says that ¢ is a
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group homomorphism from R/(a — 1)R to pynZ. The number of such
homomeorphisms is #R/(a - 1})R. U

We now look at two choices for L,,.

Choice 1. L, = Ker(H'(Gp, Ad p) — H' (I, Ad" p/W"))
In terms of infinitesimal deformations p, this requires p’|; always to be

£

0
the case of an elliptic curve with good ordinary reduction at p.

Consider the diagram

equivalent to the form T) This case will be used, for example, in

H'(G,, Ad® p)

| w

1
0 — HY(G,/I,, (Ad® p/ W) r) — HY(G,, Ad" p/W?)

_res, Hll[fp,&d" p{W”]GF‘”F.

Then L, = Ker(res o u) and H'(G,, Ad” p)/L, = Im(res cu).

From the exact sequence,

#Im(resou) > # lmu/#H (Gp/Ip, (Ad° p/W°)'»)
= #Im uf#H“[G,,TAd“ p/WY),

the last equality following from Lemma 1. The exact sequence (with
H'W(X) = H' Gy, X))

0 — H' (W) — H%Ad" p) — H°(Ad" p/W?)

— HY (W) - H'(Ad" p) = Imu — 0

yields # Imu as the alternating product of the orders of the other terms,
and we obtain

#Ly - #H' (G, Ad" p)
#HY(Gp Ad" p)  #H(Gp, Ad” p) # Im(res ou)
o #H'(Gy, Ad” p)#H (G, Ad” p/W?)
H #HO(G,, Ad” p) # Imu
_ #HY G, W)
- #H(G,, WO)
=#R-#H(G,, (W")").
The last equality follows from Proposition 3. Combining this with Lemma
3, we obtain

. R/ oty -
#HE(GP,ﬁdU p) s #R #[‘R;{%[F‘mhﬁ 1)R] .
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Choice 2. L, = Ker(H'(Gy, Ad° p) — H'(Gp, Ad® p/W?))

This is used when working with an elliptic curve that has bad multiplicative
reduction at p. It is similar to the previous case, except that it specifies
what happens on all of G,. Actually, in this case (“ordinary but not flat”
[DDT], or “strict” [Wi]} we could use the same L, as before, by a result of
Diamond [Wi, Proposition 1.1, but the present choice is more convenient
for our calculations. By the calculations just completed, but with the new

choice of Ly, we have Hl{Gp,hd" p)/ Ly = Imu and

#Ly  _ #R-#H(Gp (WO))
#H(G, Ad"p) ~ #HO(G,, Ad® p/WO)

In the case where this will be applied, we will have

1451=T-':’2-

so #HY(Gp, (W?)") = #R by Lemma 3. Also, we will have a matrix
s 1:"!'rl"f Y . ®
p[g]_(ﬁ Tﬁ'ﬂ) withy e R

in the image of p|g,. Since

(3 a2 ) (% 8) (8 Lla)
0 ¥/\ec a0 % hit g

it follows that an element of Ad” p/W? fixed by G, is represented by a
diagonal matrix. Therefore #Hﬂ[(}'p,ﬂdu p/W?% = #R. Putting things
together, we obtain

#Lp

FIOGC, AL T

Flat representations. This is a more technical situation that must be
used in the case of an elliptic curve with good supersingular reduction.
Let L, = H}(G,,Ad” p) be those cohomology classes in H'(Gy, Ad" p)
representing extensions 0 — M — E — M — 0 in the category of R|G,})-
modules attached to finite flat group schemes over Z,. We also assume
that R = O/A", where O is the ring of integers in a finite extension of Q,,
and A generates the maximal ideal. The theory of Fontaine-Lafaille implies

that
#L,
#H(G,, Ad” p)

= #R.
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§8. ProOF OF THEOREM 2

We first address a technical point. Let ¥ be a finite set of primes and
let Qy be the maximal extension of @ unramified at the primes not in
Y. Let X be a module for Gy =Gal(Qg/Q). Then X is also a mod-
ule for Gg that is unramified outside ¥. Some papers, for example [Wi],
consider H'(G'g, X ), while others, for example [DDT)], consider the classes
of H'(Gg, X) unramified outside £. Fortunately, the two groups are iso-

morphic. In the following, we will find it more convenient to work with
HY(Gg, X).

Proposition 6. H'(Gy, X) = Kcr(Hl[Gq,X] . H Hl{th})+
lgx

Proof. The following diagram commutes (the top row is inflation-restric-
tion).

0 — H'(Gg,X) — HY (G, X) — HY(Gal(Q/Qx), X)

l 5

[] Hom(Ze, X) < Hom(Gal(Q/Qs), X).
gL

The map ¢ is injective since a homomorphism that is 0 on I, for all £ &€ £
must vanish on the smallest normal subgroup generated by all such Iy,
which is Gal(Q/Qy:). The result follows easily. O

Proposition 7. If X is finite then H'(Gy, X) is finite.

Proof. Choose an open normal subgroup H of Gy such that I acts trivially
on X. Let K be the fixed field of H. The group H'(H, X) = Hom(H, X) is
finite since it classifies Galois extensions of K, unramified outside X, with
(GGalois group isomorphic to a subgroup of X, and there are only finitely
many such extensions by a theorem of Hermite-Minkowski. Since Gy /H is
finite, the group H'(Gx/H, X) is finite by its definition. The result now
follows from the inflation-restriction sequence. C]

Corollary. H}(Q, X) is finite.
Proof. The group is isomorphic to a subgroup of HY(Gg, X). O

Let X be a finite module for Gg. Fix a set ¥ containing oo, all the prime
divisors of #X, and all primes such that [, does not act trivially on X.
There exists an open subgroup that acts trivially on X. This subgroup
corresponds to some finite extension K/}, and the inertia group of any
prime not ramifying in K acts trivially on X, Therefore we can take ¥ to
be finite. Let £ be the set of finite primes in . For an integer r =0, 1, 2,
let

a, : H'(Gg,X) — H"(Gr,X) x [[ H"(Ge. X)
deky
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be induced by the restriction maps, where H"(Gg,X) is the modified
Tate cohomology group (when r > 0, let H™ = H"). By Theorem 1,

H™(Gg, X)x[1 H"(Gy, X) is the dual of H*~"(Gg, X*) x [ H*~"(G¢, X*),
so we may dualize the map

H*"(Gg, X*) = H* (G, X*) x [[ H*"(Ge, X*)

Fe I:Jr
to obtain

G, : H™(Ga, X) x [] H'(Ge, X) — H*"(Gg, X*),

[EX

where AY = Hom(A, Q/Z) is the dual of an abelian group A. Let
Ker' (Gg, X) = Kera,.

Proposition 8. There is a non-degenerate canonical pairing

Ker’(Gy, X) x Ker' (Gy, X*) — Q/Z.

Proof. The pairing can be defined as follows. Let f € Ker® and g € Ker'.
For £ € X, we can write res; f = 6¢, and res; g = 6y, where ¢ : Gy — X,
e € X*, and § is the coboundary map of the appropriate dimension. It
can be shown that the cup product fUg=0¢€ H*(Gx,Q%), 50 fUg = 6h
for an appropriate fii. Then

(fUYe) = h=(deUg) = h+6(¢eUtly),

hence (f U t¢) — h and (¢y U g) — h represent the same class

ze € H*(G1, Q) ~ Q/Z,

and x, is independent of the choices involved. Define

< f,g>= Z:c; e Q/Z.

feE

The proof of the non-degeneracy is much more difficult. See [Mi]. O

Proposition 9. ag 5 tnjective, 32 15 surjective, and for r = 0,1,2, we
have Im o, = Ker 3,.

Proof. For a proof, see [Mi].

This can all be summarized in the following.
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Proposition 10 (Poitou-Tate). The following nine-term sequence is ex-
act:

0 — H%(Gx, X) =% A%Gg, X) x [[ H(Ge, X) 2 H*(Gg, X*)

L{=3 2]
— HYGz, X) 25 [ HY(Ge. X) 2 HY(Gs, X*)Y
=X
— H(Gg, X) 25 T HX(Ge, X) 2 HY(Gg, X*)¥ — 0,
ieX

where the unlabeled arrows are maps defined by the non-degeneracy of the
patring in Proposition 8.

It is also possible to work with infinite sets I, but then some restrictions
need to be made on the direct products involved.

We can now prove Theorem 2. The definition of the Selmer group yields
the exact sequence

0— H:(Q,X") — H'(Gs, X*) = [ H'(Ge, X*)/ Lt
E

Dualizing (i.e., Hom(—, Q/Z)) and using the pairing of Theorem 1 yields
0 — HE(QX)Y « HY(Ge, X*)Y « [] Le.
Splicing this into the nine-term sequence yields
0 — HY(Gx, X) 2% H°(Gz, X) x [] H%(Ge, X) 2 H*(Gx, X")Y

fEE_f

— HA(Q,X) 25 [ Le 2 HY(Gx, X*)¥ — HE.(Q,X*)¥ —0.
el

Therefore

#HL(Q,X)
#HL.(Q, X*)
#H(Gx, X) #H*(Gg, X*)¥ #(1 + )X H #L¢
#H(Gg, X*) x #H(Ge, X)'

where we have used the fact for £ = oo that
H%(Gg,X) = H(GRr, X)/(1 + ¢) X.

We now need the following formula for what may be regarded as a global
Euler characteristic.
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Proposition 11. Let X be finite. The groups H"(Gg, X), r=0,1,2, are
finite, and

#H%Gsg, X) #H*(Gg, X) _ #H"(Gg, X)
#H'(Gxg, X) #X

Proof. For a proof, see [Mi, p. 82].

Since H%(Gyg,X") is finite, it has the same order as its dual. Also,
H%(Gg,X) = X% = XGo = HY(Gq,X). Therefore the proposition,
applied to X*, reduces the proof to the following.

Lemma 4. #(1+c)X - #H(Ggr, X*) = #X".

Proof. The (non-degenerate) pairing X x X* — pu,, satisfies {ex,ex*) =
c{z,z*) = (x,z*)~!, from which it follows that {(1+c)z,z*) = (z, (1-c)z"*).
Therefore z* is fixed by ¢ <= (1-¢)z* =0 <= (z,(1 -c)z*) =
0 for all z <= ((1+ ¢)z,z") = 0 for all z. Therefore H%(Gg, X*) is the
exact annihilator of (1 + ¢)X, hence is dual to X/(1 + ¢)X. The result
follows easily. O
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FINITE FLAT GROUP SCHEMES

JoHN TATE

INTRODUCTION

The kernel of an isogeny of degree n of abelian varieties of dimension g
is, at a place of good reduction, a finite flat group scheme of order n® over
the local ring of the place. That is perhaps the main reason for studying
finite flat group schemes, although they are interesting enough in their own
right, and it is in any case the reason a discussion of them appears in this
volume. For that reason also, the commutative case is the most important
for us, and it is in that case that the theory is most interesting and highly
developed by far. Nevertheless we do not assume commutativity at the
beginning and develop the basics of the theory without that assumption.

We use the language of schemes, but without much loss of generality we
can, and mostly do, restrict to the affine case, because a finite morphism of
schemes is affine. Thus only very elementary scheme theory is needed —
not much more than the equivalence between the category of affine schemes
and the category of rings with arrows reversed. By ring or algebra in this
paper we mean one which is commutative with unity, unless mention is
made to the contrary. If R is a noetherian ring, a finite flat group scheme
(G over R (that is, over Spec(R)) is of the form G = Spec(A), where A
is a commutative Hopf algebra over R which is locally free of finite rank
as R-module. In essence, our topic is the theory of such Hopf algebras.
Although we treat the case of a general noetherian base ring as far as
possible, the reader will not lose much by restricting to the case in which R
is a discrete valuation ring or a field, in which case even the commutative
algebra involved is quite elementary.

Beyond the very general properties of group schemes, the only more
special results we treat (in §4) are some of Raynaud’s, over valuation rings
of mixed characteristic. For the more refined theory in characteristic p, we
refer the reader to [del]

In dealing with group schemes it is extremely convenient to use some
basic categorical concepts, in particular, the fact that attaching to an object
G in a category C the contravariant set functor represented by G embeds C
as a full subcategory of the category C of all such functors. It is often easier
to describe the functor represented by a group scheme than to describe the
group scheme or Hopf algebra itself.
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