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PRINCIPAL HOMOGENEOUS SPACES OVER ABELIAN
VARIETIES.*

By SErGE Laxc and JorN Tare.?

Let A be a commutative group variety defined over a field k. If K/k
is a Galois extension, the group Ax of points of A rational over K is a
module for the Galois group G(K/k), and we denote the associated coho-
mology groups simply by H"(K/k,A) or by H7(k,A) in case K is the
separable closure of k. In case K/k is infinite, we mean of course the coho-
mology groups constructed with cochains of finite type, i.e. coming by
inflation from finite extensions.

In §1, we have carried over to the infinite case the basic propositions
of Gtalois cohomolgy which are familiar in the finite case [2]. This generaliza-
tion is essentially trivial, but it furnishes a good review for the non-expert,
it fixes our notation, and mainly, it is urgently called for when one studies
algebraic groups for the following reason: If A — B— C is an exact sequence
of (separable) homomorphisms defined over &, then Ax— Bg—> Cx is not
necessarily exact but ¢s exact if K is the (separable) algebraic closure of k.
Actually, in the remainder of the paper, we require the cohomological results
only for dimension 1, and most of our applications are based on the special
“Kummer sequence” discussed at the end of §1.

In §2 we discuss systematically the representation of principal homo-
geneous spaces for A over k& by elements of the 1-dimensional cohomology
group (a set if A is non-commutative) H*(k,4). One establishes an injec-
tion of the classes of k-isomorphic spaces into H'(k, 4), and as Serre has
remarked, using Weil’s theorems concerning the field of definition of a
variety, one sees immediately that one actually gets a bijection. Since this
representation has been carried out in special cases by F. Chatelet, we call
H*(k,A) the Chatelet group.

Although the rest of the paper is essentially independent of the principal
homogeneous space interpretation, it is mainly this interpretation and the
consequent relation of the cohomology to diophantine problems which moti-
vates our study of H*(k,4). For example, as Chatelet has shown, an

* Received January 7, 1958.
* Fulbright and Sloan Fellows respectively.
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660 SERGE LANG AND JOHN TATE.

elliptic curve T' is a homogeneous space over its Jacobian 4, and the question
whether I' has a rational point in an extension field K is the same as
whether its cohomology class «(T') € H*(k, A) is split by K.

The essential content of this paper is contained in the theorems of
the last two sections, which concern the structure of H*(k,A) when A4 is
an abelian variety.

We first consider the case where k is a local field. After recalling in
§ 3 some basic facts concerning reduction modyp, we treat in §4 the case
when 4 has a non-degenerate reduction. We show (Theorem 1) how the
study of elements of order prime to p in H*(k, A) can be reduced to a study
of the reduced variety. There results (Theorem 2) a complete description
of the part of H'(k,A) prime to p when k is a p-adic number field. In
particular, it is a finite group.

In §5, we deal with global fields, essentially number fields, function
fields over algebraically closed fields, or fields of finite type, and obtain various
qualitative results. Theorem 3 gives a new variant of the proof that Ax/mA4,
is finite. (For another variant, cf. Roquette [10].) From it, we deduce
the finiteness of H" (K /k, A) for finite K/k and all » > 0, in Theorem 4. We
then consider the subgroup of H*(k, A) consisting of those elements which split
at all primes. Although it is known that this group is not necessarily trivial,
we can show that for each integer m (prime to the characteristic of k), its
subgroup of elements of period m is finite.

Theorems 6 and 7, which are independent of the preceding five, show
on the other hand that H'(k, 4) is large, in different senses. From Theorem
7, it is a corollary that given any positive integer m one can construct a
function field in one variable of genus 1, over a suitable algebraic number
fleld k, the degrees of whose divisors rational over k are exactly the multiples
of m. One still does not have such examples when k=@ is the field of
rational numbers.

1. Galois cohomology. Let k be a field and Q an algebraically closed
field containing k. In Galois cohomology, one deals with a functor A which
attaches to each fleld K between & and Q@ a group A(K) and to each
k-isomorphism ¢: K — K% an isomorphism A(¢): A(K)—> A(K?). The
functor is subjected to three axioms:

(A1) For each K we have A(K)=|J A(F), the union being taken
over all finitely generated subextensions F/k of K/k.

Notice that (A1) implies that all of our groups A(K) are subgroups
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of one big group, namely 4(Q), and that we have 4 (K) C A (L) whenever
K CL.

(A2) If y prolongs ¢, then A (y) prolongs A(¢). If ¢ and ¢ can be
composed, then A(yo¢) =A(y)oA(¢). A(identity) — identity.

From (A2) it follows that any group of k-automorphisms of a field L
operates on 4 (L).

(A3) If L/K is a Galois extension, then A (K) is the set of fixed
points for the operation of the Galois group on A (L).

In most of our applications, 4 will be (the functor derived from)
an algebraic group defined over k, for which A(K)= Ag is the group of
points of A which are rational over K, i.e. whose coordinates lie in K, and
A(¢) is the map obtained by applying ¢ to the coordinates.

From now on in this section, we assume that our functor 4 is commu-
tative, that is, each A (K) is a commutative group. Let K/k be a (possibly
infinite) Galois extension. Then A4 (K) is a module for the Galois group
G(K/k), and we can consider the standard r-cochains a =a(oy,- - -,0,) of
G (K/k) with values in 4 (K). We shall say that such a cochain is of finite
type if there exists a finite sub-extension F such that a(o1,- - -,0,) depends
only on the effects of the automorphisms o; on F. The cochains of finite type,
which are the only ones arising from the usual algebraic processes, form a
subcomplex of the standard cochain complex. We shall denote this sub-
complex simply by C(K/k,A) and its cohomology groups by H7(K/k,A).
These latter are what we mean by Galois cohomology groups. Of course,
it K/k is a finite extension then every cochain is of finite type, and
we have achieved nothing but a simplification of notation: HT(K/k,A4)
— H"(G(K/k),A(K)). Also, even for infinite K, we have H°(K/k, 4)
— H°(G(K/k),A(K)) and this group is just 4 (k) because of (A3). How-
ever, for » > 0 and K /k infinite, our groups may differ from the usual ones.
For example, if A (k) =A(K), that is, if G(K/k) operates trivially on
A(K), then H'(K /k, A) is the group of continuous homomorphisms of G(K/k)
(Krull topology) into 4 (K) (discrete topology), whereas H*(G (K /k), A(K))
is the group of all homomorphisms.

Let K’/k’ be another Galois extension, such that K’ D K and ¥ D k.
Then each cochain a € C(K/k,A) determines a cochain a’€ C(K’/k,A) by
the rule a’(- - -,0’, - *) =a(- - -,0’x,” - *), where o’k denotes the effect
on K of o€ G(K'/K). The cochain map a—>a’ induces a homomorphism
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H(K/k,A)-> H"(K'/k,A) which we simply call the canonical homomor-
phism. However, in the extreme case k — k', it goes by the name of inflation
(inf), and in the other extreme case K = K’, it is known as restriction (res).

PropositioN 1. Let K/k be Galois and let k' be an arbitrary subfield.
Then
H (K/K,A)=lim {H"(F/FNk,A)},
F

the limit being taken induclively with respect to the canonical homomor-
phisms, as F runs over the finite subextensions of K.

Since passage to (co)homology commutes with inductive limits (cf. [2],
Ch. V, Prop. 9.3%), our proposition will follow if we can show that the
corresponding formula holds for the cochain groups. Kach of the canonical
maps C"(F/FNk,A)—Cr(K/k,A) is an injection, because the inclusion
A(FNFK)— A(K) is injective and the natural map G(K/¥')— G(F/FN k)
is surjective. Thus we have only to show that each element a € C"(K /K, A)
is in the image of C7(F/F Nk, A) for some F depending on a. Since a is
of finite type, it has only a finite set of distinct values and by Axiom (A1),
it follows that we can find a finitely generated, hence finite, sub-extension
F/k of K/k such that all valuesof a lie in A (#). Enlarging F, if necessary,

so that a(oy,- © *,0,) depends only on the effects of the o; on FK’, we can
well-define a cochain b€ Cr(F/FNK,A) whose image is a by putting
b(- - -,om * *)=a( - -,0, - ), where or denotes the effect of o on F.

Taking the special case ¥’ =1F, we find as a corollary

H (K [k, A) =1lim (H (F/k, 4) ) =lim (H" (G (F/I), A(F)) ).
F

Thus our cohomology groups are just the inductive limits, under inflation,
of the ordinary cohomology groups of the finite subextensions.

Let L/K be a Galois extension. A k-isomorphism ¢: L — L% induces
an isomorphism C(L/K,A)—> C(L?/K% A) by the rule a?(- - -,0,- - )
=¢a(- - ",¢top,- - ), and it is a fact that the induced cohomology map
H(L/K,A)—> Hr(L?/K? A), called conjugation, depends only on the effect
of ¢ on K. In particular, if L and K are Galois extensions of %, then the
Galois group G (K/k) operates on H"(L/K,A).

Although there is no doubt that the whole spectral sequence of Hoch-
schild-Serre carries over to the case of infinite (Galois extensions we are content
here to discuss only a small corner of it, namely:

ProrositioNn 2. Let K D k be Galois extensions of k. Then there exists
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« canonical transgression homomorphism (tg) such that the following sequence
is exact:

inf res
0— H (K /k,A) — H (K /k,A) —— H*(K/k', A)G®/®
tg inf

— S H2(K/k, A) ——> H* (K /k, A).

Indeed, this proposition is known in the case of ordinary cohomology
groups (Cf. Hochschild, G. and Serre, J-P., “Cohomology of Group Exten-
sions,” Trans. A. M. 8., Vol. 74, 1953). Consequently, for each finite Galois
subfleld ¥ of K, we have, exactly, with obvious abbreviations of notation:

0—>H (FNK/k)—H (F/k)— H*(F/F N k")GFnk/E

t
_f (F K /k)— H2(F/k).

The commutativities required for passing to the inductive limit over F are
satisfied and, by Proposition 1, the limit sequence is the one we are looking
for. The superscript G on the middle term carries over to the limit because
each (FNE/k) is finite.

It is easy to see that our limiting transgression map cap be characterized
in the same way as the ordinary one, namely, we have « =tg g if and only
if there is a cochain b€ C*(K/k,A) whose restriction to C*(K/k,A) is a
cocycle representing B and whose coboundary 8b is the inflation to C*(K/k, 4)
of a cocycle a € C?(k'/k, A) representing a.

If K/k is Galois and Z a finite (not necessarily Galois) subextension,
there exists a éransfer map

tr: H(K/E,A) — Hr(K/k, A)

going in the opposite direction from restriction, whose definition we recall
here, although we have little use for it in the sequel. Let ® be the set of
[E: k] distinct k-isomorphisms of Z. For each ¢ € ®, let ¢ € G(K/k) be a
chosen prolongation of ¢ to K. Then for ¢ € G(K/k), both op, and (o)«
have the same effect on F, and, consequently, the automorphism (o¢)yody,
which we shall denote by (o,¢) leaves E elementwise fixed, i.e. belongs to
G(K/E). The cohomology transfer is that induced by the cochain transfer
a—>tr(a) defined by

(tr(a)) (o1," * -, 0v)
=¢§¢(0102' “rord)ga((on, 00 0 o), (02,050 - co), o, (ar ).
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Although this cochain transfer depends on the choice of prolongations, the
induced cohomology map does not. The main relation between transfer and
restriction is the rule trorves=[E: k]. This and all other such relations
can be guessed from the case of dimension 0, where the transfer 4 (E) — 4 (k)
is just the trace: a— 3 ¢a, and the restriction 4 (k) —> A(F) is just the
inclusion map.

The relation trores=[F: k] shows that if an element a€ H"(K/k)
restricts to 0 in H"(K/L), then [E: k]Ja=0. Applying this remark in
case Il = K 1is a finite Galois extension of %, we see that H"(E/k) is a torsion
group of exponent [%: k] for » > 0, because H"(E/E, A) = 0 for positive r.
From Proposition 1, it now follows that the Galois cohomology groups in
positive dimension are torsion groups for arbitrary K/k.

We conclude this section by, considering the cohomology maps induced
by a homomorphism f: A — B of one of our functors into another. By this
we mean a collection of homomorphisms f(K):4 (K)— B(K) satisfying

(f1) If L D K, then f(K) is the restriction of f(L) to A(K).
(f2) If ¢: K — K¢ is a k-isomorphism, then

f(K?) o A($) =B(¢) of(K).

For example, suppose A and B are algebraic groups defined over k. Then
a k-homomorphism f: 4 — B (that is, an everywhere defined rational map
over k which is a group homomorphism) yields a homomorphism of the
functor 4 into the functor B. We simply let f(K) denote the restriction of
fto A(K). Condition (f2) is satisfied because f is defined over k.

A functor homomorphism f: A — B gives rise to cohomology homo-
morphisms

H(K/k,A)—> H"(K/k,B),

namely, those induced by the cochain map a— foa, and these induced
cohomology maps obviously commute with canonical maps, conjugatiéns, and
transfers. A sequence of functor homomorphisms A”’— A — A” is said to be
K-ezxact if the sequence A’(K)—> A(K)—> A”(K) is exact in the ordinary
sense.

Prorosrrion 3. Let K/k be Galois. A K-exact sequence
0> A"—>A— A" =0

gives rise to an infinite exact cohomology sequence



ABBLIAN VARIETIES. 665

b
= H(K/k,A)—> H(K/k, A”") —— H™"Y (K /k, ") —> H*"(K/k,A)—- - .
This proposition follows as usual from the lemma: If A"—>A— 4" s
K-exact, then the cochain sequence

C(K/k,A") ~C (K /k, A) = C (K /k, A”)

is exact. If a cochain a€ C(K/k, A) goes to 0 in U(K/k,A”), then each of
its values goes to 0 in A”(K). Hence, by K-exactness, we can pick a pre-
image in A’(K) for each of these values and thereby define a cochain a’
whose image is a. Moreover, o’ will be of finite type, provided we select one
single pre-image for each of the distinct values of a, because of Axiom (Al).

In many applications, we shall deal with the case where K is the
separable closure k, of k, and where the sequence of Proposition 3 is kg-exact.
The resulting cohomology sequence involves the cohomology groups H7(ks/k, 4)
which we shall simply write H7(k, 4) since they occur so frequently.

Such a sequence arises from commutative algebraic groups. As a matter

of notation, if X is an abelian group and m a natural number, we shall denote
m
by X, the kernel of the map X ——> X. Let 4 be a commutative group

variety defined over k. If m is prime to the characteristic, the sequence

m
0—>4,>4—>4->0

is kg-exact. Writing Ax instead of 4 (K), our cohomology sequence becomes

m m

0> A4, NAr—>4y—> Ay— HY(k,A,) > H (b, A)—> HY (k,A)— - - -.
A portion of this exact sequence may be written more simply as follows.
0—Ay/mAy— H (k, Ay) = H*(k, 4) — 0.

The group A:/mA; is well known to be of interest in arithmetical questions,
and we shall investigate it from this point of view in §5. For the moment,
we assume further that 4, C Ay, and let Gy be the Galois group of k, over
b, i.e. Gy=G(ks/k). Then Gy operates trivially on 4,, and our sequence
becomes

00— Ay/md;— Hom (G, An) = H (k. A ) — 0.

where Ilom means, of course, the continuous homomorphisms as always.
We shall have many applications for this sequence, and we shall call it the
Kummer sequence, because, in case 4 is the multiplicative group, we have

8
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H*(k,A) =0 by Hilbert’s Theorem 90, so that we find the familiar Kummer
duality
E*/k*m = Hom (G, Am),

always provided that the group of m-th roots of unity 4, is contained in
Ak=k*.

2. Principal homogeneous spaces. Let A be a functor of the type
described in the first paragraph of §1. If the groups A (K) are not commu-
tative, we cannot define cohomology groups H"(K/k,A) for Galois extensions
K/k. The best we can do is define cohomology sets in dimension one, as
follows. We consider 1-cochains a of finite type and we call 1-cocycles those
satisfying the identity aca,” =as,. Here we write A (K) multiplicatively
and write ac instead of a (o) for ¢ € G(K/k). We do not attempt to multiply
1-cocycles, but we explain when two 1-cocycles @ and a’ are cohomologous,
namely, when there exists an element b€ A(K) such that a’¢=>b"asb°.
The cohomology thus defined is an equivalence relation, and we denote the
set of equivalence classes by H'(K/k,A). This set is not a group but it
does have a distinguished element, namely the class of coboundaries of the
form ae = b-1b°, which we call the trivial class.

The reader will easily verify that the canonical maps, in particular,
restriction and inflation, the conjugation maps, and the induced maps make
sense for this non-commutative cohomology.

Proposition 1 holds in dimension 1.

Proposition 2 holds in a weaker form, namely, in the sequence

inf Tes
0— H (K /k,A) —— H* (K /k, A) ——> H* (K /¥, A)G&®

inf is an injection whose image is the inverse image of the trivial class under
restriction.

Proposition 3 collapses to the exactness of the sequence

8
0— A (k) > B(k) = C (k) —> H*(K/k, A) — H (K /k, B) > H (K /k, (),

where we now deal with a K-exact sequence

04— B—>(C—0.

Tere exactness means that the image of each map is the inverse image of the
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trivial element under the succeeding map, and there is the additional feature
that & injects the right coset space C'(k)/gB(k) into H*(K/k,A).

Suppose now that A is a group variety defined over k. We wish to
explain the connection between the 1-dimensional cohomology sets and the
right principal homogeneous spaces for A. To recall the definition of this
latter object, a right phs for A over k is a variety V defined over & on which
A operates simply and transitively, in such a way that the map (v, w) = vw
of VXV into A is an everywhere defined rational map over k. Here we
use the symbeol +~w to denote the uniquely determined element of 4 which
carries the point v into the point w, so that the formula v(vw) — w becomes
an identity. Two phs’s V and V’ are said to be k-tsomorphic if there exists
a birational biholomorphic transformation f: ¥V — V7’ such that f(va) =f(v)a
for v€ V and € A. Among the k-isomorphism classes, there is a distin-
guished class. namely, the class of spaces which are k-isomorphic to A itself,
viewed as phs under right multiplication. A space is in this class if and
only if it has a rational point in k. In case 4 is commutative, Weil [13]
has defined a geometric law of composition which makes the classes of phs’s
into a commutative group.

The following proposition has been proved by F. Chatelet [8], [4] for
various special groups.

Prorosition 4. Let K/k be a Galois extension. There 1is a canonical
bijection belween the first cohomology set H*(K/k,A) and the set of k-
isomorphism classes of principal homogeneous spaces for A over k which have
rational points in K. This bijection is a group isomorphism when A is
commutative.

Proof. Let V be a phs with a rational point v in K. Rach such point
gives rise to a 1-cocyle ag =v"'v?. The different choices of v lead to cocycles
filling out a cohomology class. Denote this class by « (V). If V and V’ are
k-isomorphic, then points v and v* which correspond under a k-isomorphism
yield the same cocycle; hence (V) =a(V’). Conversely, if ¥V and V’ are
given such that a(V) —=a(V’), then there do exist points v and v’ yielding
the same cocycle. When this is the case, the map z— ' (vz) is a k-
isomorphism of ¥ onto V’. 1Indeed, it is a K-isomorphism, and a simple
computation shows that it is invariant under all o€ G(K/k). We have
thus obtained an injection of the classes of spaces into the cohomology set.

As Serre has observed, it follows immediately from Weil’s theorems
concerning the field of definition of a variety that every cocycle comes from a
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space. Indeed, consider the transformations fo: 4 — 4 defined by fo(:c) = aour.
They satisfy the identity foof,”==fo,. Since the cocycle a is of finite type,
it follows from [14] that there exists a variety V defined over & and a
birational biholomorphic transformation #¥: A4 — V defined over K such that
fo=F-1oFs. The operation vb=F(F-*(v)b) for v€V and b€ A makes
V into a phs for 4 over k, not only over K, because a simple computation
shows that (v'w)e= ((v°)'w?). Finally, one sees that the cocycle a with
which we started is that arising from the point v=F (1) on V.

If 4 is commutative, let U, V, W be phs’s and suppose f: U X V—>W
is an everywhere defined rational map over % which exhibits the fact that
the class of W is the product of the classes of U and V (cf. [13], prop. 5).
Select w € U, v € V rational over K and put w={f(w,v). Using the charac-
teristic property of f, namely f(ua, vb) = f(u, v)ad, one tinds that the cocycle
derived from w is the product of those derived from w and v. This concludes
the proof.

Since every variety defined over k¥ has a point whose coordinates lie in
the separable algebraic closure ks of k, it follows from Proposition 4 that
the set (group) of all principal homogeneous spaces for A over k& is isomorphic
to H*(ks/k,A) which we have agreed to write H*(k, 4), and which we shall
call the Chatelet set (group) for A over k.

If ¥’ is an extension field of k, it is obvious that the canonical cohomology
map H(k,A)—> H*(k',A) reflects the homogeneous space operation of
extending the ground field from % to %. The cohomology classes in the
kernel of this map are said to be split by ¥/, and the same terminology is
applied to the corresponding homogeneous spaces. Thus a phs for 4 over k
is split by an extension k" if and only if it is k’-isomorphic to 4, or what is
the same, if and only if it has a rational point in &#’. In case 1’/k is a Galois
extension, the exactness of the sequence

inf res
00— H (K /k,A) ———> H*(k,A) —— H' (K, A)
is obvious from the point of view of homogeneous spaces, for the cohomology
inflation map simply reflects the inclusion of the set of phs’s split by %" in
the set of all phs’s for 4 over k.

Let X be a variety defined over k. We define the index of .U over &
(ind X') to be the greatest common divisor of the degrees of the 0-cycles on
" which are prime rational over k. The degree of a prime rational 0-cycle
is equal to the degree of the extension generated over %k by the coordinates
of one of its points. Thus, in the case of a principal homogeneous space T
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for A over k, we see that ind V is the greatest common divisor of the degrees
of the finite extensions of & which split V, and is consequently subject to a
cohomological analysis.

From now on, we assume that 4 is commutative. Defining the separable
index of V (inds; V) as the greatest common divisor of the degrees of the
finite separable splitting extensions, and the period of V (per V) as the
period of V in the group of classes of principal homogeneous spaces for A
over k. we have

ProvositioN 5. Let V be a principal homogeneous space for A over k.
Then per V divides indV divides ind, V, and all three numbers have the
same prime factors.

Proof. 1t is trivial that the index divides the separable index. Let v,
be a rational point of V in some Galois extension of k. Let f: ¥V — A be the
map v—> v,'v, and let as==v,"v" be the cocycle determined by v,. Then
for any point v€ V. we have ao(f(v))"=f(v7). and consequently, by
linearity, we have

ag48® (f(b) )7 = f (v°)

for any O-cycle b on V. If b is rational over & and of degree d, then p” =1,
and the d-th power of the cocycle as is split by the coboundary of f(v).
This proves that the period divides the index.

Finally, let p be a prime number not dividing the period. We must
show that p does not divide the separable index, that is, we must construct
a finite separable splitting extension K, whose degree is not divisible by p.
To this effect, we simply take any finite Galois splitting extension K/k and
let B, be the subextension cut out by a p-Sylow subgroup of G(K/k).
If a€ H*(K/k,A) is the cohomology class of V, then the period of
resa € H*(K/Ii,A) divides the p-power [K: E] on the one hand, and
divides per V' on the other. Consequently, resa=0, i.e. E splits V.

The reader will have noticed the analogy between the Chatelet group of
classes of principal homogeneous spaces for A4 over % and Brauer’s group
of classes of central simple algebras over k. We have in fact taken over
Proposition 5 and its proof almost word for word from the theory of
algebras. In the case of algebras, the period is not in general equal to the
index as a counterexample of Albert [1] shows. We have found a similar
counterexample in the case of principal homogeneous spaces (end of §4).
Nevertheless, our counterexample, like Albert’s, involves a comparatively
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complicated ground field %, and over number fields and their completions, all
examples which we have satisfy the condition period — index.

The theory of algebras suggests other questions. Since every central
division algebra contains a separable splitting field, it is true for algebras
that (1) the index equals the separable index, and (2) the index is not only
the greatest common divisor, but is actually the minimum of the degrees of
the finite splitting fields. We have not investigated the corresponding state-
ments for homogeneous spaces, except to notice that (2) is true in case A4
is an elliptic curve, for in that case, the Riemann-Roch theorem shows that
every divisor class of positive degree contains positive diivsors.

The divisibilities of Proposition 5 imply

CororLArY. Suppose a€ H*(k,A) is of period m and is split by an
extension E/k of degree m. Then the corresponding homogeneous space hus
ndexr m.

This corollary will enable us to construct, with abelian varieties A, over
various ground fields &, examples of spaces whosc index is a preassigned
integer m (cf. Theorem 7, §5). These examples are of particular interest in
case 4 is an elliptic curve. Then V, which becomes birationally equivalent
to A over an extended ground field, is also a curve of genus 1. The point
is that the index of a curve of genus g 541 is bounded by, and in fact divides,
29 — 2, for the Riemann-Roch theorem shows the existence of divisors rational
over k of degree ¢ —2. On the other hand, our examples show that the
index is completely arbitrary for g=1, a fact conjectured by Artin, but
unknown until now.

3. Non-degenerate reduction. Throughout this section, we assume that
we have a field k and a place of k onto a field &’ such that any two extensions
of it to the algebraic closure [ of & are conjugate over &’. In terms of
valuations, this means that the extension of the valuation is unique, and
this condition is certainly satisfied if % is complete, and the valuation discrete.

We denote by 6 a definite extension of our place to 7. An auto-
morphism o of G (%/k) induces an automorphism o’ of the algebraic closure
of &/, characterized by the relation 0= ¢’. The map oc—> o’ is a homo-
morphism of G(k/k) onto G(F /).

We shall also assume that the valuation is discrete. although this can
presumably be dispensed with. If Z is a cycle rational over an algebraic
extension K of k (say in some projective space), then it has a reduction, or,
as we shall also say, a specialization Z” in the reduced projective space deter-
mined by 6, and rational over K" (Shimura [12]). The only facts concerning
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the specialization Z— Z” which we shall use in the sequel is that it com-
mutes with projections and intersections, i.e. under suitable hypotheses,
(prZ)’ =pr(Z’), and for two positive cycles X, ¥, we have (X - Y)Y =X’ -Y".
We refer to [12] for the proof.

Our place 6 induces a mapping of points P of our projective space,
algebraic over k, onto points P’, algebraic over k’. We shall also write
P’—=0P. We have for any automorphism ¢ of §/k, (cP) =do’P’. If Z is a
positive cycle, then supp(Z’) = (supp Z)’.

We shall now list a few properties of reduction of cycles, and especially
varieties in non-degenerate cases.

To begin with, we have a result which will serve as Hensel’s lemma for
points on varieties.

LemMa.  Let a be a positive 0-cycle rational over k. Let P’ be a point
of a’ which occurs in o' with multiplicity 1. Then there exists a unique
point P of a specializing to P’, and P 1is rational over k.

Proof. Note that P’ is rational over %’ since a’ is rational over k'
Let P be in q, specializing to . Then obviously P occurs with multiplicity 1,
so that P is separable over k. If o is any automorphism of f over k, then
(oP) = (¢'P") =P, and hence oP also specializes to P’. Since a is
rational over k, it follows that P also occurs in a, and since P’ has multi-
plicity 1, we conclude that ¢P = P, and hence that P is rational over k.

We now have the surjectivity of 4, whose proof is due to Chow.

Prorosrrion 6. Let the cycle Z be a variety V, and assume that 7’
is also a variely V', i.e. consists of one component with multiplicity 1. Let
P’ be a simple point of V', rational over k'. Then there exists a point P
of V rational over k which specializes to P’.

Proof. Our statement being local, we may assume that ¥’ is affine.
There exists a linear variety L’ defined over ¥’ such that V’- L’ is defined
and contains P* with multiplicity 1. Lift L’ to a linear variety L over F,
such that V- L is defined. Then VL contains a point P specializing to P’.
Since V-L is rational over k, we need merely apply the lemma and the
compatibility of specializations with intersections to conclude the proof.

For the applications, we are principally interested in abelian varieties.
Let A be an abelian variety defined over k. Its specialization A’ is then a
cyele. If this cycle has one component with multiplicity 1, which is an
abelian variety whose law of composition is obtained by reduction of that
of 4. then we shall say that the specialization A — 4’ is non-degenerale.
(The uniqueness of non-degenerate specializations has been proved in [5].) In
that case, if a. b are two points of .1 algebraic over k. then (¢ + b) —a’ + ¥/,
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the first -+ referring to addition on A and the second on A’. In view of
Proposition 6, we have an exact sequence

0— S}v-—) Ak'—‘> Il’kf—-> O,

where S is simply the kernel of the specialization homomorphism 6. It K
is a finite Galois extension of k& with group G then each one of the groups
Sk, Ax, A’r is a G-module, in view of the relation (oz)’=o’z’. It is to
the exact sequence

0>8Sg—>Ax—> Ak —>0

that we shall apply the cohomology theory in the next section.

Suppose for a moment that k is a p-adic field Q, and 4 is an elliptic
curve of the type considered by Lutz [8]. Then A, contains a subgroup
isomorphic to the integers of (Q,, which is none other than our kernel S
when A4’ is non-degenerate. More generally, if ¥ is an arbitrary p-adic field,
and A an abelian variety of dimension r, then Mattuck [9] has shown that
Ay contains a subgroup isomorphic to r copies of the integers of k. We can
always choose such a subgroup M; of Lutz-Mattuck such that M; C §;. We
shall prove below that Sj is uniquely divisible by an integer m prime to p.
From this one sees that (S;: 3j) is a power of p.

We return to an arbitrary field k& subject to the conditions stated at the
beginning of this section. Let m be an integer not divisible by the charac-
teristic p of &’. Let a be a point of A rational over k. The cycle

(m8)~*(a) = pr:{T - (4 X(a))},

where I' is the graph of mg, consists of the points # on 4 such that mz =a,
each one occurring with multiplicity 1. Specializing, we see that

[(m8)*(a)]) = (m¥&)*(a),
where & is the identity on A’. Taking =0, this shows in particular that
6 induces an isomorphism of the points of finite order prime to p on 4 onto
those points on A4’, i.e. of 4,, onto 4%,. Actually, from Hensel’s lemma,

we get

Prorosition 7. Assume that the specialization 4 — A’ is non-degenerate.
Let m be an integer prime to p. Then the homomorphism 6 induces an
isomorphism of A,, N Ay onto A’y N A%y

Furthermore, we also get information concerning the kernel §; in our
exact sequence above.

ProrosiTioN 8. Assume that the specialization A — A’ is non-degenerate.
Let m be an integer prime to p. Then Sy is uniquely divisible by m.
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Proof. Let a be in Sy, so that a’=0". The cycle (m8)-*(a) specializes
to the cycle (m&)-*(a’) = (m8)-1(0") which consists of the points of order
m on A”. Since (0”) occurs with multiplicity 1 in the reduced cycle, it follows
by Hensel’s lemma that there is exactly one point on (m8)-*(a) which
specializes to 07 and that this point is rational over k.

Prorosition 9. Assume that the specialization A — A’ is non-degenerate.
Let m be an integer prime to p. Let a be a point of Ay, and let K =k(1/m - a)
be the field obtained by adjoining all points x such that mz=a. Then K
is unramaified over k, and K’ =1k (1/m-a").

Proof. This is again an immediate consequence of Hensel’s lemma.
Taking into account the fact that the points in (m8")-(a") are all separable
over &/, we see that K is in fact the uniquely determined unramified extension
of & such that K/ =¥ (1/m-d’).

We conclude this section by a remark on the reduction of principal
homogeneous spaces. Let V be such a space over 4, defined over k. Suppose
that V' has one component with multiplicity 1. Then V¥’ has a simple
rational point in some separable extension of &/, and hence, by Proposition 6,
V has a point in, and is split by, an unramified extension of k.

4. Cohomology and non-degenerate reduction. Let & be a field com-
plete with respect to a discrete valuation and let A be an abelian variety
defined over k& which has a non-degenerate reduction A’ modulo the prime
in k. The only fields we consider are the algebraic extensions K of k and
their residue class fields K”. From the preceding section we know the
following facts:

(R1) The reduction map fx: Ax—> A’y is surjective for each K and
its kernel Sk is uniquely divisible by an integer m prime to the residue
class characteristic, p.

(R?) If K’ is separably closed, then A’ is divisible by m and contains
A7, for m prime to p.

The following cohomological analysis makes no reference to the details
of the reduction process itself, nor even to abelian varieties. It applies to
any pair of commutative functors 4 and A’ of the fields K and K’ (in the
sense of §1) which are linked by a natural homomorphism 6: 4 — A’ so
that conditions (R1) and (RR) are satisfied. Note that (R1) implies,
trivially,

(R1") 6x induces a bijection 4,,N Ag—> A’ N A’k for each K, and
m prime to p.
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Let %k, denote the maximal unramified extension of k. Then the residue
class fleld of k, is the separable closure of the residue class field of %k, or in
symbols, (k)" = (¥'),.

For the rest of this section, we let m be an integer prime to p. Our
goal is now Theorem 1 below.

LemMa 1. If K D k,, then Ag ts divisible by m and contains A,

Proof. K’ is separably closed because K D k,. Hence, by (RR), we
know the divisibility by m of the factor group Ax/Sk =< A’x. Since from
(R1), we know Sk is also divisible by m, we conclude that Ag is. We also
know from (RR) that 4%, C A’x.. This together with (R1’) implies that
Am N Ag is independent of K for K D k,, and consequently, 4,, C Ag.

The group Q,, of m-th roots of unity is contained in %,, and the group
of units in k, is divisible by m. Therefore the maximal abelian extension
of k, of exponent m is the field k, (#*/™) obtained by adjoining the m-th root
of any prime element = of k,. The Galois group of this extension is
canonically isomorphic to Q,,. Indeed, the map o— {o = (#*/™)9! is a homo-
morphism of Gy, onto Q,, whose kernel cuts out %, («*/), and this homo-
morphism is independent of » and its chosen m-th root.

LeMmA R. There is a canonical isomorphism
Hom (Qu, Aw) = H*(ky, A)m

which attaches to each homomorphism x: Qn— A, the cohomology class of
the cocycle o= x(¢o), 0 € G(ks/ky).

Proof. Since Ay, is divisible by m, the Kummer sequence at the end
of §1 is applicable, and since Ay, is divisible by m, it yields an isomorphism

Hom (G Am) = H* (Fuy A) .

Since 4, is commutative of exponent m, any homomorphism h: G, — A,
will have the property that Z(c) depends only on the effect of ¢ on an
abelian extension of exponent m. Consequently, according to the discussion
preceding this lemma, we can factor 2 through o— ¢s, i.e. we can write
h(c) =x (&) for some x: Qu—> 4,

The Galois group G of k,/k operates on H*(k,, A) as explained in §1.
It also operates on Q, and on A4,, and consequently, on Hom (Q,, An) in
the usual manner, so that

(x?) (£2) = ¢ (x())
for ¢ € Gy.

Leyya 3. The isomorphism of Lemma 2 is a Gy-isomorphism.
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Proof. Let x€ Hom(Qm, An) and let as=x({s) be the corresponding
cocycle. Let ¢ € Gy. Then for o€ G, we have
(a?) 0 = ¢pap-10p = Ppx ({p-109) =x?({g104?) = x? ({o)

because
€¢‘10'¢¢ - (,n.l/m)mﬁ—lﬁ _— ( (,n,q‘)) l/m)o‘—l —_ ‘EU-

Note that because of the way Gy is defined to operate on Hom (Qu, 4An),

we have
Hom (Qm, 41n) ¥ = Home, (Qum, Am) ;

in other words, a homomorphism is left fixed by the operation of Gy if and
only if it is a Gy-isomorphism.
Lemma 4. The sequence

inf Tes
0— H*(ky/by A)m—> H* (b, A)y——> [H* (kb A) ]G+ — 0
s exact.

Proof. Of course, it is only necessary to prove that the restriction is
surjective. By the preceding lemmas, an element 2 € H*(k,, 4),, which is in-
variant under G, will be represented by a cocyele of the form ae = x((#'/")7-1),
o € Gy, where x: Q,,—.1,, is a (fr-homomorphism. Here = is an arbitrary
prime in k,. Choosing = in %, and choosing a definite m-th root, we see that
that the expression for as makes sense for all ¢ € Gy, not only for o€ Gy,
Now

o—> (wt/m)o1

is a cocycle in €, (it is a coboundary in Q), and since x: Q,— 4, is a
(y-homomorphism, it follows that ac is still a cocycle. By construction, its
class B€ H'(k, A), restricts to a.

Since ky,/k is unramified, its Galois group may be identified with the
Galois group of its residue class extension. We shall make this identification
from now on, and will designate both groups by the simpler symbol Gy
Of course, §: 4),— A’y is a Gy-homomorphism.

LeEMMA 5. 6 induces an isomorphism H'(ky/ky A)w = H (K, A") .

Proof. Since 4;, and A’;, are divisible by m, we can apply the Kummer
sequence to the extensions k,/k and k'/F’, obtaining the exact horizontal
rows in the diagram

0— Ap/mdy, — H* (ky/k, An) = H (ky/ky, A)m—>0
T
0> A"/ mA"y — H (K,A’,) — H*'(K,A"),, —0
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The left vertical arrow is surjective by (R1). The middle is bijective because
A,, is Gy-isomorphic to 4’ (recall that Gy = G (k,/k)). Consequently, the
right vertical arrow is bijective as contended.

Putting our results together, we see that we have proved a good part of

TuEOREM 1. Let k be a field complete with respect to a discrete
valuation with residue class field k&' of characteristic p=0. Let A and A’
be two commutative functors as in § 1, satisfying (R1) and (R2). Then for
each natural number m not divisible by p, there exists a canonical exact
sequence

0—> H (K, A")— H*(k, A) p,— Homg, (¥, ') = 0,

where 'y, 18 the group of m-th roots of unity in the residue field. Further-
more, if K is a finitte extension of k with ramification index e, the following
diagram 1is commutative:

HY (K, A" ) — H'(k, ) — Homeg, (U, A'm)
Tes Tes (4
HY (K, A )= H (K, A)m—> Home, (Qm, A'm).

Proof. The indicated exact sequence results from the preceding two
lemmas and the trivial replacement of Q, and A4, by the isomorphic @',
and A’,. The commutativity of the left square is obvious. That of the right
tollows from the relationship

X( (”1/;)1)04) — Xe ( (‘77'11/'") 0-1)

for ¢ € Gg,, where =, is a prime in K, and =~ ¢ is a prime in k,.

Naturally, we are interested here in the case where the functors are given
by an abelian variety A defined over k, and a non-degenerate reduction A4’.
Theorem 1 gives especially precise information when H(k’,A’) =0. This
is the case, for example, if ¥’ is algebraically closed, or finite [7]. Then
we obtain simply an isomorphism

H*(k, A)m =~ Homeg, (m, A'w).
From the commutative diagram of the theorem, we obtain the following
corollaries.

CoROLLARY 1. Assume k 1s either finite or algebraically closed. Let A
be an abelian variety defined over k, with a non-degenerate reduction A’.
Then a finite extension K/k splits an element a € H*(k,A), if and only if
the ramification index e(K/k) 1is divisible by the pertod of a.

In terms of homogeneous spaces, this means that the homogeneous space
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V corresponding to « has a rational point in K if and only if e(K/k) is
divisible by its period.

CoroLLARY 2. Let A, A’ be as in Corollary 1. Let V be a principal
homogeneous space of A defined over k, of period prime to p. Then the
index of V 1s equal to its period.

Proof. There exist ramified extensions, e.g. k(x'/¢), with preassigned
ramification index, whose degree is equal to that index.

To describe Hom (Q'y, 4”) more concretely is, of course, easy. We
choose a generator ¢ for Q5. Then a homomorphism yx is determined by the
image x(¢) of ¢, and this may be any element of 4’,. In order that y be a
Gw-homomorphism, it is necessary and sufficient that x(¢7) ==ox(¢) for each
o€ Gy. Defining the integer vo (modm) by {"=1{", we see that the
condition becomes vox(¢) =ox(¢). Thus, Homg, (Q'm, A"n) is isomorphic
to the group of solutions z € A4’,, of the equations oz =vox, 0 € G4. The
isomorphism is not canonical, but depends on the choice of a primitive m-th
root of unity ¢.

In particular, suppose that %" is a finite field with ¢ elements. Then
G has a canonical generator, namely the Frobenius automorphism &-— £
Its effect on an element = of A’ is denoted by z(@. We may therefore express
our result in this case as follows.

THEOREM 2. Let A be an abelian variety defined over k with a non-
degenerate reduction A’, and suppose k' is a finite field with q elements.
Then the group of elements of order prime to p in H*(k,A) 1is 1somorphic
to the group of solutions of ¢@ =gz on A’, of order prime to p.

We observe that £ — 2@ — gz is an endomorphism of 4”. Furthermore,
if & denotes the Frobenius endomorphism of A’, then its transpose = on
the Picard variety is easily seen to be given by the formula

t,,-y = qy(l/Q)_

Consequently, the transpose of =—3& is given by the endomorphism
y—> qy/9 —y on A’. Raising the kernel of this endomorphism to the ¢-th
power, we see that the kernel is isomorphic to the subgroup of A’ satisfying
Y@ =gqy. In particular, we see that the group of solutions of z@ = qz on
A’, of order prime to p, is dual to the group of rational points of A’ in ¥,
of order prime to p.

We close this section with an example of a homogeneous space whose
index is not equal to its period. Suppose first of all that we could construct
an abelian variety 4 over a field k such that 4, C 4; and such that Ax is
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divisible by m for each algebraic extension K of k. Then the Kummer
sequence gives isomorphisms

Hom (G, Am) = H*(k, A)m
and, moreover, for each K/k, a commutative diagram
Hom (Gy, Am) = H*(k, A)m
Tes res
Hom (G, An) = H' (K, A) m,

where the left hand res means restriction of homomorphisms from G to Gg.
If f: Gg— 4,, is a homomorphism, we see that K splits the corresponding
cohomology class if and only if G5 is in the kernel of f. Thus the index of
the corresponding homogeneous space would be the order of the group f(Gx),
whereas its period would be the exponent of the group f(Gx). In particular,
if & has an abelian extension whose group is isomorphic to A4,, i.e. to the
direct product of 2r cyclic groups of order m (r=dim4), then we can
construct a homogeneous space with index m?*" and period m.

An actual example can be constructed easily enough. Let A be defined
over an algebraically closed field k,. Define &;="%;;((¢;)) (power series in
one variable) for 1 =i=2r. One proves by induction that 4;, = mA,,, and
a similar divisibility statement for finite extensions. Then we can construct
our example with ¥ —=Fk,, and the abelian extension k(¢,Y/™,- - -, ¢,,%/™).

One could also construct a similar example over a purely transcendental
function field in 2r variables. Incidentally, we note that the Kummer
sequence shows, for any A and %, that if 4, C 4, and pery V =m, then
ind; V' divides m?. Thus our example is as bad as possible under the
conditions 4,, C 4;.

5. Global fields. Let %k be a field with a fixed set of (inequivalent)
discrete valuations p which we shall call primes. By a prime in a finite
algebraic extension K of k, we mean, of course, a valuation of K which
extends a prime of k. Let m be a natural number not divisible by the
characteristic of k. We shall say that % is an m-global field if each finite
extension K of & has the following two properties.

(GI1) TIf 4 is an abelian variety defined over K, then A has a non-
degenerate reduction at all but a finite set of primes p of K.

(GI2,m) The set of primes of K dividing m is finite, and if S is any
finite set of primes of K, there is only a finite number of abelian extensions
of K of exponent m which are unramified outside 3.
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By well known elementary properties of number fields, one sees imme-
diately that an algebraic number field of finite degree is m-global for every
m, if we take as primes all the inequivalent discrete valuations.

The same remark applies to a field of algebraic functions of one variable
over a finite constant field, and shows that it is m-global for m prime to its
characteristic.

More generally, let & be an algebraic function fleld in n variables (the
case n =0 is not excluded) over a constant field k, such that k.*/(k,*)™
is finite, for instance, a p-adic field, or an algebraically closed field. Choose
as set of primes of % those arising from the prime divisors rational over k,
of a projective normal model of k. Then it is easy to see (using results of
algebraic geometry) that & is m-global.

Finally, if k is a function field over an algebraic number field of finite
degree, then & is m-global for every m. The set of primes is then to be the
set of prime divisors on a “mixed characteristic” model. This can easily be
seen by reducing the proof to a geometric statement. As this, and the above
fields are meant mostly to give concrete examples of m-global fields to the
reader, we do not go in detail into the proofs that they are m-global, since
they are essentially well known.

For the convenience of the reader, we indicate very briefly a sketch of
the manner in which the above fields can be proved to satisfy our two global
axioms.

(G11) actually depends on the fact that an element of the field & has
only a finite number of zeros and poles. To check that a reduction is non-
degenerate, one checks that each property entering into the definition of
an abelian variety has a non-degenerate reduction. For instance, we have:
the absolute irreducibility (say of the Chow form if the variety is in projective
space) ; the non-singularity (which depends on the non-vanishing of a deter-
minant which is an element of k) ; the fact that some mappings are every-
where defined ; associativity; etc.

As for (G1R), say for number fields, one may look at it either from the
point of view that there is only a finite number of unramified extensions of
degree m (abelian or non-abelian), a fact already stated in Hilbert’s Zahl-
bericht, or from the point of view of Kummer theory: After adjoining the
m-th roots of unity, the extension can be obtained by extracting radicals, and
one uses the finiteness of class number and unit theorem. In the geometric
case, one uses the analogous facts, which involve the Jacobian for the case
of curves, and the Picard variety as well as the torsion part of the Neron-
Severi group in higher dimension.
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Ve shall now reprove for global fields the weak part of the Mordell-
Weil theorem, i.e. Theorem 3 below.

ProrosiTioN 10. Let A be an abelian variety defined over a field k.
Let m be prime to the characteristic of k and let K =k(1/m-Ay). Then
(Ay: mAy) is finite if and only of [K: k] is finite.
Proof. 1t is trivial that if (Ay: mAy) is finite, then [K: k] is finite.
Conversely, consider the exact sequence
0—>A4A,>Ag—>mAx—0
Tet G= (G (K/k). We have the cohomology sequence
0— Ji,n M 11,C—>Ak—>mAK N Ak'—)Hl(G, Am).
By assumption, mAyx N Ay = A, and thus we get the injection
0— Ay/mA— H (G, An)
which shows that A./mA; is finite.

CoroLrARY. Lel A be an abelian variely defined over a field k, and
let m be a natural number prime to the characteristic of k. Let L be a
fintte extension of k. If Ap/mAy is finite then so is also Ax/mdy.

Proof. By the proposition, L(1/m-Ayr) is finite over L. This implies
a fortiori that k(1/m-Ay) is finite over k. Using the proposition once
more, we get what we want.

THEOREM 3. Let A be an abelian wvariety defined over an m-global
field k. Then A,/mA; s finite.

Proof. By the corollary, we may assume that 4, C 4. Let K
==k(1/m-Ay). By Proposition 9, we know that K/k is unramified at every
prime p not dividing m at which A has a non-degenerate reduction. From
the definition of m-global, it follows that K is finite over k because it is
abelian of exponent m over k. We now apply Proposition 10, to conclude
the proof.

If K is a finite Galois extension of %k, and if A is an abelian variety
defined over k such that its group of rational points Ax in K is finitely
generated (i.e. satisfies the strong Mordell-Weil theorem), then obviously
Hr(K/k,A) is finite for » > 0. However, Theorem 3 will suffice to prove
the analogous result for m-global fields. For use in the statement of our
next theorem, we recall that the m-primary part of an abelian group consists
of those elements whose period divides a power of m.

TreoREM 4. Let A be an abelian variety defined over an m-global
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field k. If K/k 1s a finite Galois extension, then the m-primary part of the
group H (K /k,A) 1is finite for each r > 0.

Proof. This is an immediate consequence of the following general
cohomological fact.

Lemma. Let G be a finite group and X a G-module such that X/mX
and Xy, are finite. Then the m-primary part of H (G, X) s finite for each
r> 0.

Proof. Since H"(G, X) is a torsion group of bounded exponent (G: 1),
it is enough to prove H"((@, X),, finite. The map m: X — X can be written
as a product m = goh of the maps g and % in the exact sequences

h
04X, > X—mX—0

g
0o>mX— X > X/mX—0.

For the induced cohomology maps in dimension =, we have my=g,h,.
From the exact cohomology sequences derived from ‘our two exact sequences,
we see that the kernels of h, and g, are finite, being homomorphic images
of H (G, X,) and H™*(G,X/mX) respectively. Consequently, the kernel
of my, is finite, which is what we wanted to prove.

If 4 is an abelian variety defined over an m-global field k, we say that
an element o€ H*(k, A) splits at a prime p of k if « is in the kernel of the
canonical map H*'(k,A)—> H'(ky, A), where k, denotes the completion of %
at p. In other words, « splits at p if the corresponding homogeneous space
has a rational point in ky.

Selmer [11] has given examples of principal homogeneous spaces for
abelian varieties of dimension 1 over the rational number field Q which
split at all primes p but do not split in Q0. The elliptic curve 3.X? 4 4Y3 4 522
==0 is such a space over its Jacobian. On the other hand, we can show that
the number of such spaces with given period is finite. More precisely, let
us denote by H*(k, 4, S) the subgroup of H*(k, 4) consisting of the elements
which split at all primes outside a finite set S. We have

~

TurorEM 5. Let A be an abelian variety defined over an m-global
field k. Then H*(k,A,8)n ts finite.

Proof. Without loss of generality, we may assume 4,, C 4;. Indeed,
the restriction of H*(k,A4) to H*(K,A), where K =k (A4,), has finite kernel
by Theorem 4, and a fortiori that of H(k,4,8), to H(K,4,8)n.
Furthermore, we may enlarge S until it contains all primes p dividing m

9
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and all primes p where 4 does not have a non-degenerate reduction. Now
for p¢ S, consider the commutative diagram

0—Ay/mAr— Hom (Gy, A) > H* (b, A),— 0

0—>4,/mAdy— Hom (Gy, A,,) = H*(ky, A)n—> 0.

Here we have abbreviated by A, the group Ay, and by Gy the decomposition
group Gk, which we may view as a subgroup of Gy, uniquely determined
up to a conjugation. The horizontal arrows are the exact Kummer sequences
and the vertical arrows are the canonical maps, the middle one therefore
denoting simply the operation of restricting to (¢, a homomorphism of @,.
What we shall actually prove is that the inverse image of H'(k,4,8), in
Hom (G, A,) is finite. To this effect, it will be enough to show that if
x: Gr—> 4y, is a homomorphism whose cohomology class in H*(k, A) splits
outside S, then the abelian extension Kx/k of exponent m which is cut out
by the kernel of y is unramified outside §. By the commutativity of the right
square of the above diagram we know that the restriction of y to G, is of the
form x(0) = (¢ —1)(1/m - a) for some a € A,. Thus we have Kx C ky(1/m - a),
and, by Proposition 9, it follows that Kx is unramified at p. This completes
the proof of Theorem 5.

It is natural to raise the question whether, given an element of H* (ky, 4).
there exists an element of H*(k,A) which restricts to it. We can prove
this in a special case.

THEOREM 6. Let k be any field with a discrete valuation p and let ky
be its completion. Let m be prime to the characteristic of %k and assume
that the group of m-th roots of unity Q,, lies in k. Let A be an abelian
variety defined over k such that A,, C A,. Then given ap € H*(ky, A) .

there exists an element a€ H(k,A), whose canonical wmage in H*(ky, A)
IS ay.

Proof. We use the Kummer sequence again, and the exact commutative
diagram
Hom (G, A,,) > H*(k,A),,— 0

Hom (Gy, A.n) — H* (kp, A) ,— 0.

We are trying to prove that the right hand vertical arrow is surjective. To
do so, it is enough to prove the left hand vertical arrow is surjective. Since
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A is isomorphic as an abstract group to the direct sum of 27 copies of Q,,
(r=dimA4), we have

Hom (G, 4,,) = (Hom (G, Qy,))?,
and, consequently, it is enough if we show the surjectivity of
Hom (Gy, Q) = Hom (Gy, Q).

Recall now that IHHom means here continuous homomorphisms, so that by the
usual Kummer duality, we have Hom ( Gy, Q) = k*/(k*)™, and similarly for
ky. Thus, we must simply show the surjectivity of k*/(k*)™— kp*/(ky*)™.
This is now obvious since (ky*)™ is an open subgroup of ky*, m being prime
to the characteristic.

Remark. Under the same hypotheses as in the theorem, one can deal
with a finite number of discrete valuations, and use the approximation
theorem to show that there is an o restricting simultaneously to a finite
number of given ay,.

In analogy with Grunwald’s theorem in class field theory, one may
conjecture that if k£ is an algebraic number field and p a given prime, then
given oy € H*(ky, A), there exists a€ H*(k, A) restricting to ay.

Finally, we prove a result indicating that H*(%k, 4) is usually a large
group when k is a global field.

THEOREM 7. Let m be a natural number and let k be a field with an
wfinite number of abelian extensions of exponent exactly m. Let A be
an abelian variety defined over k such that (1) Ax/mAy is finite and (2) Ay
contains at least one element a of exact period m. Then H*(k,A) contains
an infinite number of elements of period m, and, in fact, an infinite number
such that the corresponding homogeneous spaces have index m as well as
period m.

Proof. Let L=1Fk(1/m-A;). Since we have assumed Aj/mAj finite,
L is a finite extension of k. Consequently, by our hypothesis about the
existence of abelian extensions of exponent m, there exists a Galois extension
K of k linearly disjoint from L whose group G — G(K/k) is the direct
product of an arbitrarily large number of cyclic groups of order m. For
each homomorphism yx of G into the cyclic group <a> of order m generated
by a, let ax€ H*(K/k,A) C H*(k,A) denote the cohomology class of the
1-cocycle o —> x (o). We claim that the map x— ax is an injection. Indeed,
if x(o) =(c—1)b, b€ Ay, o€ G, then my(s) = (¢ —1)mb=0 for all o;
hence mb € A;. Since K is disjoint from L, it follows that b € 4, and x=0.
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Thus, H*(k,A) contains a subgroup isomorphic to Hom (@, (a)>), that is,
to the direct product of arbitrarily many cyclic groups of order m. More-
over, for each element of this subgroup, the corresponding homogeneous
space has index = period. This follows from the Corollary of Proposition 3,
§ R because, since <a> is cyclic, the index in G of the kernel of the homo-
morphism y: G— <a)> is equal to the period of x, and the subfield of K cut
out by this kernel splits a.

PARIS.
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