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1 Introduction

Let E be an elliptic curve given by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where the ai are integer. If we consider E as a curve over Q, then for any finite field

Fq, the number of points (x, y) in Fq x Fq which satisfy the elliptic curve equation

(when taken for all finite fields) characterizes the isogeny class of the curve E. If

instead we take E as a curve over some finite field Fq from the beginning, then the

number of points of E/Fq can help to solve the discrete logarithm problem for two

points P and Q on E.

The value #E(Fq), the cardinality of E over Fq, can be determined by several

means. As the most straightforward solution, we could take all points in Fq x Fq, and

see if they satisfy the equation, which would take O(q2) operations. We could also

express the curve as f = y2 = x3 +Ax+B (ignoring the case where the characteristic

of Fq is two), and use the relationship

#E(Fq) = q + 1 − aq and

aq =
∑

x∈Fq

(

f(x)

q

)

where
(

f(x)
q

)

is the Legendre synbol. In this way, we would need to compute f(x)

for all x ∈ Fq, which would be O(q) computations.
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Other techniques to compute E(Fq) include baby-step / giant-step, which is also

exponential time O(q1/4).

2 Schoof’s algorithm

In 1985, René Schoof published a paper describing an algorithm to compute the

cardinality of E(Fq) for such a curve. If q = pe where p is a large prime, and

f = y2 = x3 + Ax + B is the equation for E, then Hasse’s theorem state that

|aq| ≤ 2
√
q. We can use this short form of the Weierstrass equation for E because

the characteristic of Fq is not 2 or 3. Thus, if we can calculate aq modulo l for a set

S of small primes l such that
∏

l∈S

l > 4
√
q,

then aq can be reconstructed using the Chinese Remainder Theorem.

When l = 2 the determination of aq modulo l is straightforward. We know

that E[2] contains O, the unique point at infinity, and by Hasse’s theorem that

#E(Fq) = q + 1 − aq. Since q + 1 is even, this gives #E(Fq) ≡ aq mod 2. If

f = x3 + Ax + B has no root in Fq, then E(Fq) has no 2-torsion points, and so aq

is odd. If x3 + Ax + B has a root (e, 0) in E(Fq), then the fact that E[n] ≃ Z/2Z x

Z/2Z forces #E(Fq) to be even.

Instead of checking all points in Fq to find if x3 + Ax + B has a root, we use

the fact that the points in Fq are exacty the points satisfying xq − x = 0. Thus,

gcd(xq − x, x3 + Ax+B) = 1 ⇐⇒ f has no root in Fq.

3 The trace of Frobenius

For l > 2 an odd prime, another method is used to determine aq modulo l. The

q-power Frobenius endomorphism on E

τ : E(F̄q) −→ E(F̄q)

τ : x 7−→ xq

τ : O 7−→ O
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satisfies its characteristic polynomial

x2 − aqx+ q = 0,

where aq is the trace of the Frobenius element. If P = (x, y) ∈ E(Fq), this becomes

(xq2

, yq2

) + q(x, y) = aq(x
q, yq).

When l is an odd prime for which gcd(q, l) = 1, and P ∈ E[l] is an l-torsion point of

E, then

(xq2

, yq2

) + [q](x, y) ≡ [aq](x
q, yq) modulo l.

Thus the set S of residues aq modulo l can be obtained by restricting our attention

to the l-torsion points of E for each l. Using those points only, the above comparison

will yield each residue [aq] modulo l.

4 Torsion polynomials

In order to work with all points in E[l] simultaneously, Schoof saw that the compar-

ison could be carried out in a particular quotient ring Rl = Fq[x, y]/(f − y2, fl) of

Fq[x, y]/(f − y2). The torsion polynomials (equivalently called division polynomials),

given by

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx−A2,

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 − A3),

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1, for m ≥ 2,

ψ2m =

(

ψm

2y

)

·
(

ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1

)

, for m ≥ 3.

are useful for this application because they satisfy the following properties. Let

fm(x, y) =

{

ψm(x, y), if m is odd;

ψm(x, y)/2y, if m is even.

• For all positive integers m, the polynomial ψm is contained in the polynomial

ring Z[A,B, x, y]. Furthermore, the polynomial fm depends only on x.
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• A point P = (x, y) ∈ Fq x Fq is a root of the torsion polynomial ψm if and only

if P is a non-zero m-torsion point of E over Fq. Similarly, x is a root of fm if

and only if x is the x-coefficient of such a point P .

• The multiplication by m map needed to compute aq can be expressed as a

rational map in the ψi. In particular

[m]P =

(

x− ψm−1ψm+1

ψ2
m

,
ψ2m

2ψ4
m

)

.

• For l odd, the order of ψl or fl is 1
2
(l2 − 1).

5 The quotient ring Rl = Fq[x, y]/(f − y2, fl)

Because the roots of ψl in Fq are the l-torsion points of E(Fq), when working with

the l-torsion points of E, we can perform the comparison

(xq2

, yq2

) + [q](x, y) ≡ [aq](x
q, yq) modulo l

in the smaller ring Rl. So Schoof’s algorithm interates over the integer residues

modulo l, and checks for the equality

(xq2

, yq2

) + [q mod l](x, y) ≡ [aq mod l](xq, yq) in Rl.

Because we are working modulo f − y2, all powers of y greater than or equal to 2

can be reduced to power 0 or 1 in Rl. Because the order of ψl is 1
2
(l2 − 1), powers

of x can be similar reduced so that multiplications and comparisons are done with

polynomials of x degree less than or equal to 1
2
(l2 − 1), and y degree less than 2.

6 Schoof’s algorithm – outline of the steps

We are given a prime power order of a finite field, q = pe, and an Elliptic curve E: f

= y2 = x3 + Ax+B over that field. We want to find #E(Fq) = q + 1 − aq.

1. Choose a smallest set of the first n prime S such that each prime l is coprime

to q, and
∏

l∈S l > 4
√
q.

2. For l = 2, calculate gcd(xq − x, f). If the gcd is 1, set aq ≡ 0 modulo 2, else

aq ≡ 1 modulo 2.
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3. For each odd prime l ∈ S:

(a) Calculate the x coordinate of (xq2

, yq2

)+[q](x, y) in Rl where [q] is q modulo

l.

(b) For each residue nl modulo l:

i. Calculate the x coordinate of [nl](x
q, yq) in Rl.

ii. Compare the x coordinates of (xq2

, yq2

) + [q](x, y) and [nl](x
q, yq) in

Rl.

iii. If they are equal:

A. Calculate the y coordinate of (xq2

, yq2

) + [q](x, y) modulo Rl

B. Calculate the y coordinate of [nl](x
q, yq) in Rl.

C. Compare the y coordinates of (xq2

, yq2

) + [q](x, y) and [nl](x
q, yq)

in Rl.

D. If they are equal, set aq ≡ nl modulo l. Else aq ≡ −nl modulo l.

E. Move to next prime l until S exhausted. This prime l is done.

iv. Else, continue to next residue nl modulo l.

(c) If all residues modulo l are exhausted, and there was no x coordinate

match, check if q is a square modulo l.

i. If not, then set aq ≡ 0 modulo l.

ii. If so, choose w so that w2 ≡ q modulo l.

A. Calculate the x coordinate of (xq, yq) − [w](x, y).

B. If gcd(numerator of x-coordinate, ψl) = 1, set aq ≡ 0 modulo l.

C. Otherwise, calculate the y coordinate. If gcd(numerator of (y-

coordinate)/y, ψl) 6= 1, set aq ≡ 2w modulo l. Else set aq ≡ −2w

modulo l.

4. When all residues of aq modulo prime in S are computed, compute aq such

that aq is the unique integer satisfying those congruences, and in the range

−2
√
q ≤ aq ≤ 2

√
q.

7 Elkies & Atkin improvements

For the Elkies & Atkins improvements to Schoof’s original algorithm, we let E be

an elliptic curve defined over Fp where p is a large prime. We also require that E is
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not supersingular, meaning that E[p] is not trivial. This is not a severe restriction

because in the case that E/Fp was supersingular, we would have #E(Fp) = p + 1.

We also require that j(E), the j-invariant of E, is not zero or 1728.

The improvements follow from the determination of whether l is an Elkies or

Atkin prime, for each prime l ∈ S as in Schoof’s. This equates to whether the

reduced characteristic polynomial of the Frobenius endomorphism,

χl(x) = x2 − [ap]x+ [p]

splits in Fp, where [ap] and [p] are ap and p modulo l respectively, with τ the p-power

Frobenius endomorphism and ap the trace of the Frobenius as in the q case. This in

turn equates to the question of whether the Frobenius discriminant ∆χl
= [ap]

2 −4[p]

is a square in Fl.

As aq is the quantity to be determined by the algorithm, this cannot be computed

at the outset, but is determined from the behaviour of the l-th modular polynomial

Φl(x, j(E)) on E, described in the next section.

The basis for the performance improvements of Elkies’ & Atkin’s contributions to

Schoof’s algorithm are several-fold. For Elkies primes, arithmetic can be carried out

in a smaller quotient ring R′
l, and the search for [ap] modulo l is simplified. The ring

will be R′
l = Fq[x, y]/(f − y2, Fl) where Fl is a degree (l−1)/2 polynomial, versus the

degree (l2 − 1)/2 degree polynomial fl. For Atkin primes, we will need to work with

elements in the extension Fl2 of Fl. But the search for the residue [ap] modulo l will

only have to consider operations on the primitive r-th roots of unity in Fl2 where r

is the degree of the Frobenius endomorphism acting on E[l].

8 Background to define the modular polynomial

To define the modular polynomial Φl(x, j(E)) and explain its use in SEA, we define

the j-invariant j(E) of an elliptic curve E, the Weierstrass ℘ function, and explain

the relationship between an elliptic curve E/C and the associated lattice Λ ⊂ C. We

try to keep this minimal and focus on the methods of the algorithms.

Briefly, there is a bijective relationship between isomorphism classes of elliptic

curves over K̄, and the values of the j-invariant j(E), so that E1/K̄ ≃ E2/K̄ ⇐⇒
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j(E1) = j(E2). The j-invariant can be defined as j(E) = 1728( 4A3

4A3+27B2 ). Addition-

ally, each isomorphism class of elliptic curves over C is associated with a particular

lattice (fully identified by τ = ω1/ω2 ∈ H the upper half plane, with (ω1, ω2) a homo-

geneous basis so that Λ = Zω1 + Zω2 = Z+ τZ) Λ of C. With E in short Weierstrass

form, there is a bijective correspondence between E and C/Λ given by the map

C/Λ −→ E

z + Λ 7−→
{

(℘(z), (℘′(z)/2), for z /∈ Λ;

O, for z ∈ Λ.

Here, ℘ is the Weierstrass ℘ function, relative to Λ, given by the series

℘(z; Λ) =
1

z2
+

∑

ω∈Λ\{0}

1

(z − ω)2
− 1

ω2
.

When the lattice Λ is fixed, as when dealing with a particular elliptic curve, we

write ℘(z). Furthermore, because of the correspondence between j-invariants of iso-

morphism classes of elliptic curves over C, and lattices in the complex plane, the

j-invariant function can be given in terms of the lattice Λ in the complex plane, in-

dependent of any specific elliptic curve.

Schoof [3] creates the following formal power series in Z[[q]] and uses a relation of

Jacobi to express j as a function of q = e2πiτ .

E4(q) = 1 + 240

∞
∑

n=1

n3qn

1 − qn
≡ −48A modulo B

E6(q) = 1 − 504
∞

∑

n=1

n5qn

1 − qn
≡ 864B modulo B

j(q) = 1728

(

E4(q)
3

E4(q)3 − E6(q)2

)

.

Here B is a prime ideal of Ok for a number field K in which E4(q) and E6(q) are

integers, and the residue field Ok/B ≃ Fp. With j expressed in terms of the complex

variable τ ∈ H, we can define the modular polynomial.
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9 The modular polynomial Φl(x, j(E))

For n ∈ Z>0, let

S∗
n =

{(

a b

0 d

)

such that a, b, and d ∈ Z, 0 ≤ b < d, ad = n, and gcd(a, b, d) = 1.

}

Define j ◦ α by j ◦ α(τ) = j(aτ+b
d

).

Definition 1 (Modular polynomial). Let l ∈ Z>0. Then the l-th modular polynomial

Φl(x, j) is given by

Φl(x, j) =
∏

α∈S∗

n

(x− j ◦ α).

This Φl(x, j) has the property that if jE1
and jE2

are the j-invariants of two ellip-

tic curves E1 and E2 defined over C, then Φl(jE1
, jE2

) = 0 if and only if there is no

isogeny of degree l from E1 to E2.

Let E be an elliptic curve defined over the finite field Fp and l be a prime coprime

to p. Recall that E[l] ≃ Z/lZ x Z/lZ, and that therefore E[l] has l+1 cyclic subgroups

of order l. In this situation, the zeroes j̃ of Φl(x, j(E)) = 0 are the j-invariants of the

isogenous curves Ẽ = E/C where C is one of those order l subgroups.

10 Distinguishing Atkin & Elkies primes

Recall that a prime l was an Elkies prime for an elliptic curve E defined over Fp

if the characteristic polynomial of the reduced p-power Frobenius endomorphism

x2 − [ap]x + p = 0 splits into linear factors over Fl, and an Atkin prime otherwise.

The modular polynomial provides a way to determine if this polynomial splits with-

out knowing ap.

The comparison turns out to be straightforward. If the degree of gcd(Φl(x, j(E)), xp−
x) = 0, then l is an Atkin prime. Otherwise, l is an Elkies prime. Recall that the

roots of xp − x are the elements of Fp, so that the above gcd will be 1 if and only if

Φl(x, j(E)) has no root in Fp. In this case, the degree is zero.

The correspondence follows from a theorem of Atkin [3] classifying the possible

factorizations of Φl(x, j(E)) in Fp[x]. In summary, when E/Fp is ordinary with j 6=
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0, 1728, and Φl(x, j(E)) = h1h2...hs is the factorization of Φl(x, j(E)), then the hi

have degree either

1. (1, 1, . . . 1) or (1, l). In these cases, [aq]
2 − 4p ≡ 0 modulo l and so is a square.

2. (1, 1, r, . . . r). In this case [aq]
2 − 4p is a square modulo l.

3. (r, r, . . . r). In this case, [aq]
2 − 4p is not a square modulo l.

11 Elkies primes

When ∆χl
is a square modulo l, and χl(x) = x2 − [ap]x+[p] = (x−λ)(x−µ) splits in

Fl, we can find a factor Fl of division polynomial fl with linear degree (l+1)/2. This

new polynomial can be used to create a smaller quotient ring R′
l in which to find [ap]

modulo l such that (xq2

, yq2

)+[p](x, y) = [ap](x
q, yq) as in Schoof’s original algorithm.

To construct the polynomial Fl, first a root of the modular polynomial Φl(x, j(E)) ∈
Fp[x] is found, giving an isogenous curve Ẽ to E. (In practice, polynomials which

have smaller coefficients than the modular polynomials, but have similar properties,

such as Müller’s modular polynomial Gl(x, y) [1].) Rarely, this curve may not provide

the necessary isogeny and another curve may need to be used, if (j, j̃) is a singular

point of Φl(x, y).

From the Weierstrass equations of E and Ẽ, the coefficients ai of

Fl(x) = x(l−1)/2) + a(l−3)/2x
(l−3)/2 + . . .+ a0

can be computed, using the Laurent series of ℘ as described in [3].

Furthermore, since χl(x) splits in Fp, we know that [ap] = λ+µ = λ+ [p]
λ

for some

λ, µ ∈ Fp, so it suffices to find λ. A theorem of Atkin (treated briefly in next section)

categorizes the possible cases for Elkies primes. Both λ and µ are the eigenvalues of

the Frobenius τ , so that there is a point P ∈ E[l] \ O with τ(P ) = [λ]P . Expanding

the multiplication by λ map, we have that the x-coefficient of P must satisfy

xp = x− ψλ−1ψλ+1

ψ2
λ

.
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Since P is an l-torsion point, this means that P satisfies both Fl(P ) = 0 and ψ2
λ(x

−x)+

ψλ−1ψλ+1 = 0. So the computation of [ap] modulo l is reduced to finding λ ∈ Fl such

that

gcd(ψ2
λ(x

−x) + ψλ−1ψλ+1, Fl) 6= 1.

12 Atkin primes

In the case that χl(x) = x2 − [ap]x + p does not split in Fp, ie where Φl(x, j(E)) is

irreducible in Fp[x], we use another technique. We find the degree r of the smallest

extension field Fpr of Fp containing the roots ofΦl(x, j(E)). From Atkin’s theorem

[3], r will be the smallest integer such that

gcd(Φl(x, j(E)), xpr − x) = Φl(x, j(E)).

Atkin’s earlier theorem on the factorization of Φl(x, j(E)) restricts the values that

must be checked, as r must satisfy r|(l+1) and (−1)(l+1)/r = (p
l
). Further, this r will

equal the degree of the Frobenius endomorphism acting on E[l].

Since Fl2 contains a primitive r-th roots of unity for Fl, it turns out that χl(x) =

(x−λ)(x−µ) splits in Fl2, which is isomorphic to Fl[
√
d] for some non-square d ∈ Fl,

and that λ/µ must be such a primitive r-th root. If g is a generator of F∗
l2 , then

γ = g(l2−1)/2) is a primitive r-th root, and powers (all powers n coprime to r) give the

other primitive r-th roots.

Since λµ = [p] ∈ Fl and λ + µ = [ap] ∈ Fl, we know that λ = a1 + a2

√
d and

µ = a1 − a2

√
d for some a1, a2 ∈ Fl, and d non-square as above. After fixing such a

d, Atkin’s technique checks for each of the γn = gn1
+ gn2

√
d whether p(gn1

+ 1)/2 is

a square in Fl. If not, that γn can be discarded because it cannot possibly satisfy

γn = gn1
+ gn2

√
d =

λ

µ
=
λ2

λµ
=
a2

1 + da2
2 + 2a1a2

√
d

p

=
a2

1 + da2
2

p
+

2a1a2

p

√
d.

For a particular γn to satisfy the above (γn = λ/µ), since p = a2
1 − da2

2 and pgn1
=

a2
1 + da2

2 we would have a2
1 = p(gn1

+ 1)/2. For the non-discarded γn, each ±2a1 is

added to the possible ap since ap = λ + µ = 2x1. In this technique, a (small) set of

possible residues [ap] modulo l is collected, instead of a single value as with Schoof’s

original algorithm and Elkies primes.
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13 SEA algorithm – outline of the steps

We are given a prime order of a finite field, p, and an Elliptic curve E: f = y2 =

x3 + Ax+ B over that field. We want to find #E(Fp) = p + 1 − ap. For each Elkies

prime, we will keep a residue El ≡ ap modulo l. For each Atkin prime, we will keep

a set Al of possible residues of ap modulo l.

1. Compute the j-invariant j = j(E).

2. Loop over primes l while ap is not fully determined. For each prime l:

(a) Compute gcd(Φl(x, j), x
p − x).

(b) If the degree of the gcd is 0, this is an Atkin prime.

i. Find degree r of p-power Frobenius τ acting on E[l].

ii. Choose a non-square element d of Fl.

iii. Find a generator g of F∗
l2 .

iv. Create T = {gn: gcd(n, r) = 1, n ∈ Fl}.
v. For each γ ∈ T :

A. Express γ as g1 + g2

√
d.

B. Check if p(g1 +1)/2 is a square in Fl. If not, move to next element

of T . If so, calculate a1 such that a2
1 = p(g1+1)/2 and add {±2a1}

to the set Al, possible residues ap mod l.

(c) Otherwise, this is an Elkies prime.

i. Find polynomial Fl factor of fl.

ii. Find λ ∈ Fl such that gcd(ψ2
λ(x

−x) + ψλ−1ψλ+1, Fl) 6= 1.

iii. Save [ap] = λ+ p/λ as El.

3. Recover aq from the Al and El residues, as the unique integer satisfying those

congruences in the range −2
√
q ≤ aq ≤ 2

√
q.

14 Complexity of the algorithms and a few bench-

marks

Schoof’s original algorithm is not implemented in practice, because its O(log8q) com-

plexity is prohibitive. Using SEA, it may be necessary to work with a larger set of
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primes than in Schoof’s algorithm, due to the set of possible residues [ap] modulo l

when l is an Atkin prime. However, in SEA the modular polynomials can be precom-

puted, and with Elkies primes, it is much faster to compute in the smaller quotient

ring R′
l.

The following table is of the algorithm complexities for baby-step / giant step,

Schoof’s algorithm, and SEA.

Algorithm

BSGS Schoof’s SEA

Largest prime O(logq) O(logq)

Outer loop on l O(logq) O(logq)

Inner loop over nl O(log6q) bit ops in Rl O(log4q) bit ops in R′
l

Total O(q1/4) O(log8q) O(log6q)

SEA is implemented in the PARI number theory software package, which is in-

cluded with the open source Sage software system. Another common but commercial

implementation of SEA is in the Magma computer algebra system. The following

rough benchmarks were done in Sage 4.6 (with PARI 2.4.3) and in Magma version

2.17-1 via an online calculator. In each case, the cardinality of E : y2 = x3 + x + 1

was found over Fp where p was the first prime with n digits.

Algorithm & Implementation

Number of digits of p BSGS, Sage SEA, Sage SEA, Magma

15 1.02 s 4.43 ms 340 ms

20 23.4 s 38.6 ms 370 ms

80 - 7.79 s 8.429 s

90 - 14.9 s 14.720 s

100 - 20.1 s 19.339 s

110 - 24.8 s 26.600 s

120 - 54.2 s 48.649 s

130 - fail 59.659 s

140 - fail > 60 s, so could not complete

Because these tests were run on different computers, with different hardware con-
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figurations and different operating systems, they cannot be taken as a fine-grained

comparison. However, they clearly highlight the improvement that Schoof’s algorithm

(and SEA in particular) were to previous algorithms.
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