
Hilbert Symbols

Probably Late

1 Hilbert Symbols over Number Fields

There are many motivations for studying Hilbert symbols over number fields.
They give useful information about whether a quaternion algebra is a division
ring or a matrix algebra. This information additionally allows us to compute
maximal orders of quaternion algebras. [Voight] Away from quaternion algebras,
the Hilbert symbol is seen to encode information as to whether the quadratic
form ax2 + by2 represents 1 over a given field. [Voight] Finally, in elliptic curves
the Hilbert symbol is used in the algorithm to compute the root number. [Sage
Days 22 code]

Throughout this paper, F is a number field with ring of integers OF and B =(
a,b
F

)
is a quaternion algebra over F with basis 1, i, j, ij where i2 = a, j2 = b,

and ij = −ji. I will assume a working knowledge of quaternion algebras and
basic algebraic number theory. For an introduction to quaternion algebras and
background for this paper see John Voight, The arithmetic of quaternion al-
gebras, book in preparation. http://www.cems.uvm.edu/~voight/crmquat/
book/quat-modforms-041310.pd

1.1 Valuations.

Let v be a valuation of F . Then the field Fv has ring of integers Rv and let
πv be a uniformizer (denoted by π when v is obvious). Then we can define
Bv = B ⊗ Fv. Then Bv is a quaternion algebra over Fv.

Useful fact about local norms: If F is a number field with noncomplex valuation
v, then Fv has a unique unramified quadratic extension Kv. This fact gives us
the following:

1

wstein
Sticky Note
.pdf

wstein
Sticky Note
use "\usepackage{url}" then \url{..}

Lemma 1. Let v be a noncomplex place of F . Then there is a unique quaternion
algebra Bv over Fv which is a division ring up to Fv-algebra isomorphism.

As C is algebraically closed, there is no division quaternion algebra. Over R the
unique division algebra is the Hamiltonians, H =

(−1,−1
R
)
. Over R, if B =

(
a,b
R

)
is not a division algebra, then B ∼= M2(R).

If v is nonarchimedean, then Fv has Kv as it’s unique unramified extension.
Thus to create a division ring over Fv, Bv ∼=

(
Kv,πv

Fv

)
. Similarly, if Bv is not a

division ring, then Bv ∼= M2(Fv).

1.2 Hilbert Symbols

To encode the two possibilities, division ring or matrix algebra, we use the
Hilbert symbol.

Definition 1. Let K be a field and a, b ∈ K. Then the Hilbert symbol is defined
to be

(a, b)K =

{
1 when B =

(
a,b
K

)
is split.

−1 otherwise.

}

Notice that K can be a global field (i.e., K = F) or we could take K to be a
local field, K = Fv. Notice that B is split if and only if B has a zero divisor.
Additionally, we have the following theorem:

Theorem 1. Let K be a field, a, b ∈ K× and B =
(
a,b
K

)
. Further, let L = K[i]

where i2 = a. Letting NL/K(L×) denote the norm from L/K onL×, we have
that (a, b)K = 1 if and only if b ∈ NL/K(L×).

This theorem is very handy if we also recall that Fv has a unique unramified
quadratic extension, Kv. In the case that B is ramified at v, we then have
Bv ∼=

(
Kv,πv

Fv

)
. So if v divides 2 and if Bv ∼=

(
a,b
Fv

)
with Kv = Fv[i], i2 = a,

then (a, b)v = 1 if ordv(b) even and (a, b)v = −1 if ordv(b) is odd.

In the case that F is understood and we are computing the Hilbert symbol
locally, we use the following notation: (a, b)v := (a, b)Fv

. If v is a complex
place, then Bv = B ⊗C must be split. This is because C is algebraically closed
and thus has no field extensions. Thus for the rest of the paper, when I refer to
a place of F , I will mean either a real place or a finite place.
Theorem 2.
Lemma 2. We have the following equalities:

2

1. (a, b)K = (b, a)K = (−ab, b)K
2. For any u, t ∈ K×, (a, b)K = (at2, bu2)K .

These equalities hold as the quaternion algebras in each case are isomorphic.

2 Algorithms and Implementations

The Hilbert symbol is currently implemented in both Magma and Pari. In
Magma, the Hilbert symbol was implemented by John Voight using his algo-
rithm from Identifying the Matrix Ring. I will outline this algorithm below.
Pari uses a similar algorithm. Both algorithms are divided into two cases, odd
places and even places.

Definition 2. We say that v is an odd place if v is archimedean or if v is an
odd prime (lies over an odd prime of Z.) Otherwise we say that v is even. In
this case v lies over 2.

The main difference between the Magma and Pari implementations is when
computing (a, b)v and v is an even place.

2.1 Voight’s Algorithm

As mentioned above, this algorithm has two cases, odd places and even places.
The case where v is an odd place can be simplified to computing what Voight
calls the square symbol:

Definition 3. Take a ∈ F and v an odd place then the square symbol is defined
as follows:

{a
v

}
=

 1 if a ∈ F×2
v

−1 if a 6∈ F×2
v and ordv(a) is even

0 if a 6∈ F×2
v and ordv(a) is odd

 .

With the square symbol, the odd case relies on the following theorem from
[Voight]:

Theorem 3. Let v be an odd place of F and let a, b ∈ F×v . Then (a, b)v = 1 if
and only if {a

v

}
= 1 or

{
b

v

}
= 1 or

{
−ab
v

}
= 1

or if
{a
v

}
=
{
b

v

}
= −1.

3

Thus by computing
{
a
v

}
,
{
b
v

}
, and possibley

{−ab
v

}
= 1 we can compute (a, b)v.

Computing the square symbol is straight forward. If v is complex, then
{
a
v

}
is

trivial. If v is real,
{
a
v

}
is 1 or 0 if a > 0 or a < 0 respectively. If v is nonar-

chimedean, we can do a little more work and reduce this to Legendre symbol.
Suppose ordv(a) = e. If e is odd then

{
a
v

}
= 0. If e is even then we define

a0 = aπ
−e/2
v and now

{
a
v

}
=
(
a0
v

)
, so we’ve reduced the case of computing the

Legendre symbol.

Now for the even case. Let v be an even place, which will be denoted by the
prime p, and Bp =

(
a,b
Fp

)
Throughout the even case it is useful to remember

that the Hilbert symbol computes whether Bp is ramified or split. We know
that Fp has a unique unramified quadratic extension Kp. We also know that in
the split case Bp = M2(Fp) thus has a zero divisor. So our goal in the even case
is to either:

• find Kp = Fp[i′] for some i′ ∈ Bp with (i′)2 = a′ and compute ordp(b′)

• or to find a zero divisor.

Algorithm for even places: Let B =
(
a,b
F

)
, a, b ∈ F×, p be an even prime

of F , and e = ordp(2). This algorithm returns (a, b)p.

1. Multiply a and b by squares in F× so that a, b ∈ OF .

2. Compute y, z, w ∈ OF so that 1 − ay2 − bz2 + abw2 ≡ 0(mod p2e). Take
i′ = 1+yi+zi+wij

2 and let p(t) = t2 − trd(i′)t + nrd(i′) be the minimal
polynomial of i′ inOF . Notice that nrd(i′) = 1−y2−z2−w2 ≡ 0(mod p2e),
so we’ve constructed a probable zero divisor in Fp.

3. If p has a solution mod v then by Hensel’s lemma we can lift this to a root
in OF,p and we’ve found a zero divisor, i′. Thus return 1.

4. Otherwise, we can change basis by taking j′ = (zb)i− (ya)j and b′ = (j′)2

(so that i′j′ = −j′i′). As p has no roots in Fp, by adjoining the root i′

of p to Fp we get the unique unramified quadratic extenion Kp = Fp(i′).
Thus if ordp(b′) is even, return 1 and otherwise, return −1.

To use this algorithm we must be able to compute y, z, w as above. Up to
this point, Sage has all the machinery to compute Hilbert symbols natively. To
compute the y, z, w in an intelligent manner (i.e., not just looping through all
choices), Voight uses a Hensel-type lift which requires working in residue rings,
OF /pn for some integer n of size up to 2e. Sage does not yet have general residue
rings implemented. We start with a, b mulitplied by elements in F×2 so that a, b
are square free. Thus we have the following cases for their valuations:

1. ordp(a) = 0 and ordp(b) = 1

2. ordp(a) = ordp(b) = 0

4

Notice that if ordp(a) = ordp(b) = 1, then −ab is not square free, so we can
reduce to one of the previous cases by possibly replacing a or b with −ab.

In the following algorithms, when we write
√
u, we mean that for u ∈ (OF /p2e)×

take any lift of
√
u ∈ (OF /p)× to OF /p2e.

Case 1: ordp(a) = 0 and ordp(b) = 1

This algorithm outputs y, z ∈ OF /p2e such that

1− ay2 − bz2 ≡ 0(mod p2e).

1. Initialize y = 1/
√
a and z = 0.

2. Define N := 1− ay2 − bz2 ∈ OF /4OF and let t := ordp(N). If t ≥ 2e, go
to step 3. Otherwise, if t is even, replace y with

y = y +

√
N

aπt
πt/2

and if t is odd, replace z with

z = z +

√
N

bπt−1
πbt/2c

Return to step 2.

3. Return y, z.

Proof: See Voight.

Case 2: ordp(a) = ordp(b) = 0

This algorithm outputs y, z, w ∈ OF /p2e such that

1− ay2 − bz2 + abw2 ≡ 0(mod p2e).

1. If a, b ∈ (Of/pe)×2 find a0 and b0 such that

(a0)2a ≡ 1(mod pe) and (b0)2b ≡ 1(mod pe).

Return y = a0, z = b0, w = a0b0.

2. Swap a, b so that a 6∈ (OF /pe)×. Take t to be the largest integer such
that a ∈ (OF /pt)×2 but a 6∈ (OF /pt+1)×2. Now lift, meaning, find a0 and
at in OF so that a = a2

0 + πtat. We have now reduced to Case 1. Input
a,−πat/b into Case 1 to get y1, z1. Return

y =
1
a0
, z =

πbt/2c

a0z1
, w =

y1π
bt/2c

a0z1
.

Proof: See Voight.

So the only problem with implementing this algorithm in Sage is lifting from
(OF /p)× to OF /p2e.

5

2.2 Pari’s Imlementation

For the case where v is an odd place, Pari’s implementation seems to be the
same as Voights. For the even place case Pari calls a function called

nf_hyperell_locally_soluble

which:

/* = 1 if equation y^2 = z^deg(T) * T(x/z) has a pr-adic rational solution
* (possibly (1,y,0) = oo), 0 otherwise.
* coeffs of T are algebraic integers in nf */

and this and the full source code can be found at:

http://pari.math.u-bordeaux.fr/cgi-bin/viewcvs.cgi/trunk/src/basemath/
buch4.c?view=markup&root=pari&pathrev=12778

3 Code/patch in sage

The trac ticket for this project is number 9334. To wrap Pari’s Hilbert symbol
in Sage the following code works, but is slow:

def pari_hs(K,a,b,P):
nK = gp(K)
na = gp(a)
nb = gp(b)
hnfP = nK.idealhnf(gp(P))
mP = gp.idealfactor(nK,hnfP)
np = mP[1,1]
return nK.nfhilbert(na,nb,np)

and to compute the Hilbert symbol in Magma the analogous code is:

>P<x>:=PolynomialRing(IntegerRing());
>f:=x^5-23;
>K<a>:=NumberField(f);
>b:=-a+5;
>g:=-7*a^4+13*a^3-13*a^2-2*a+50;
>OK:=RingOfIntegers(K);
>Q:=ideal<OK|g>;
>HilbertSymbol(a,b,Q);
>1

6

4 References

[Sage Days 22 code] http://wiki.sagemath.org/days22/dokchitser?action=
AttachFile&do=view&target=root_number.sage

[Voight] John Voight, Identifying the Matrix Ring, submitted. http://www.
cems.uvm.edu/~voight/articles/quatalgs-040110.pdf

7

