Math 480 (Spring 2007): Homework 1

Due: Monday, April 2

There are 7 problems. Each problem is worth 5 points, and parts of multi-part problems are worth equal amounts.

Office Hours. My official office hours are on Thursdays 4–6pm in Padelford C423.

- 1. (This problem must be done without help from anyone else.) Let a, b, c, d, and m be integers. Prove that
 - (a) if $a \mid b$ and $b \mid c$ then $a \mid c$,
 - (b) if $a \mid b$ and $c \mid d$ then $ac \mid bd$,
 - (c) if $m \neq 0$, then $a \mid b$ if and only if $ma \mid mb$, and
 - (d) if $d \mid a$ and $a \neq 0$, then $|d| \leq |a|$.
- 2. (This problem must be done by hand without help from anyone else.) In each of the following, apply the division algorithm to find q and r such that a = bq + r and $0 \le r < |b|$:

a = 300, b = 17, a = 729, b = 31, a = 300, b = -17, a = 389, b = 4.

- (a) (Do this part by hand.) Compute the greatest common divisor of 323 and 437 using the algorithm described in class that involves quotients and remainders (i.e., do not just factor a and b).
 - (b) Compute by any means the greatest common divisor

gcd(314159265358979323846264338, 271828182845904523536028747).

- 4. (a) Suppose a, b and n are positive integers. Prove that if $a^n \mid b^n$, then $a \mid b$.
 - (b) Suppose p is a prime and a and k are positive integers. Prove that if $p \mid a^k$, then $p^k \mid a^k$.
- 5. (a) Prove that if a positive integer n is a perfect square, then n cannot be written in the form 4k + 3 for k an integer. (Hint: Compute the remainder upon division by 4 of each of $(4m)^2$, $(4m + 1)^2$, $(4m + 2)^2$, and $(4m + 3)^2$.)
 - (b) Prove that no integer in the sequence

$11, 111, 1111, 11111, 111111, \dots$

is a perfect square. (Hint: $111 \cdots 111 = 111 \cdots 108 + 3 = 4k + 3$.)

- 6. Prove that a positive integer n is prime if and only if n is not divisible by any prime p with 1 .
- 7. So far 44 Mersenne primes $2^p 1$ have been discovered. Give a guess, backed up by an argument, about when the next Mersenne prime might be discovered (you will have to do some online research).