
34 CHAPTER 2. MODULAR FORMS OF LEVEL 1

Bas Edixhoven, Jean-Marc Couveignes and Robin de Jong have proved that
τ(p) can be computed in polynomial time; their approach involves sophisticated
techniques from arithmetic geometry (e.g., étale cohomology, motives, Arakelov
theory). This is work in progress and has not been written up in detail yet. The
ideas they use are inspired by the ones introduced by Schoof, Elkies and Atkin
for quickly counting points on elliptic curves over finite fields (see [Sch95]).

Edixhoven describes the strategy as follows:

1. We compute the mod ℓ Galois representation ρ associated to ∆. In
particular, we produce a polynomial f such that Q[x]/(f) is the fixed field
of ker(ρ). This is then used to obtain τ(p) (mod ℓ) and do a Schoof-like
algorithm for computing τ(p).

2. We compute the field of definition of suitable points of order ℓ on the
modular Jacobian J1(ℓ) to do part 1. (This modular Jacobian is the
Jacobian of a model of Γ1(ℓ)\h

∗ over Q.)

3. The method is to approximate the polynomial f in some sense (e.g.,
over the complex numbers, or modulo many small primes r), and use an
estimate from Arakelov theory to determine a precision that will suffice.

2.7 Fast Computation of Bernoulli Numbers

This section1 is about the computation of the Bernoulli numbers Bn, for n ≥ 0,
defined in Section 2.1.2 by

x

ex − 1
=

∞
∑

n=0

Bn
xn

n!
. (2.7.1)

One way to compute Bn is to multiply both sides of (2.7.1) by ex − 1 and
equate coefficients of xn+1 to obtain the recurrence

B0 = 1, Bn = −
1

n + 1
·

n−1
∑

k=0

(

n + 1

k

)

Bk

This recurrence provides a straightforward and easy-to-implement method for
calculating Bn, if one is interested in computing Bn for all n up to some bound.
For example,

B1 = −
1

2
·

((

2

0

)

B0

)

= −
1

2
,

and

B2 = −
1

3
·

((

3

0

)

B0 +

(

3

1

)

B1

)

= −
1

3
·

(

1 −
3

2

)

=
1

6
.

1This section represents joint work with Kevin McGown.

2.7. FAST COMPUTATION OF BERNOULLI NUMBERS 35

However, computing Bn via the recurrence is slow; it requires us to sum over
many large terms, it requires storing the numbers B0, . . . , Bn−1 in memory, and
it takes only limited advantage of asymptotically fast arithmetic algorithms.

A second approach to computing Bn is to take advantage of Newton iteration
and asymptotically fast polynomial arithmetic to compute 1/(ex − 1). See [?]
[Buhler et al.] for extensive details on applications of this method modulo a
prime p.

A third way to compute Bn is to use Proposition 2.1.6. E.g., one can use
the resulting algorithm paper to compute the rational number B105 (which
has over 370000 digits) in a few minutes using the implementation in [BCea].
Much of what we will describe was gleaned from the PARI-2.2.11 source code,
which computes Bernoulli numbers using an algorithm based on (2.1.6). This
algorithm appears to have been independently invented by several people: by
Bernd C. Kellner (see www.bernoulli.org); by Bill Dayl; and by H. Cohen and
K. Belabas.

The Riemann zeta function has a product representation

ζ(s) =

∞
∑

m=1

m−s =
∏

p prime

(1 − p−s)−1.

We compute Bn as an exact rational number by approximating ζ(n) to very
high precision using the Euler product, using (2.1.6), and using the following
theorem:

Theorem 2.7.1 (Clausen, von Staudt). For even n ≥ 2,

denom(Bn) =
∏

p−1 |n

p.

Remark 2.7.2. The Sloane sequence A103233 is the number of digits of the
numerator of B10n . The following is a new quick way to compute the number of
digits of the numerator of Bn. By Theorem 2.7.1 we have dn = denom(Bn) =
∏

p−1|n p. The number of digits of numerator is thus

⌈log10(dn · |Bn|)⌉

But

log(|Bn|) = log

(

2 · n!

(2π)n
ζ(n)

)

= log(2) + log(n!) − n log(2) − n log(π) + log(ζ(n)),

and ζ(n) ∼ 1 so log(ζ(n)) ∼ 0. Finally, Stirling’s formula gives a fast way to
compute log(n!) = log(Γ(n + 1)):

log(Γ(z)) =
1

log(2π)
+

(

z −
1

2

)

log(z) − z +

∞
∑

m=1

B2m

2m(2m − 1)z2m−1
.

Using this method we can compute the number of digits of B1050 in a second.

36 CHAPTER 2. MODULAR FORMS OF LEVEL 1

We return the problem of efficiently computing Bn. Let

K =
2 · n!

(2π)n

so that |Bn| = Kζ(n). Write

Bn =
a

d
,

with a, d ∈ Z, d ≥ 1, and gcd(a, d) = 1. It is elementary to show that
a = (−1)n/2+1 |a| for even n ≥ 2. Suppose that using the Euler product
we approximate ζ(n) from below by a number z such that

0 ≤ ζ(m) − z <
1

Kd
.

Then 0 ≤ |Bn|−zK < d−1, hence 0 ≤ |a|−zKd < 1. It follows that |a| = ⌈zKd⌉
and hence a = (−1)n/2+1 ⌈zKd⌉.

It remains to compute z. Consider the following problem: given s > 1 and
ε > 0, find M ∈ Z+ so that

z =
∏

p≤M

(1 − p−s)−1 ,

satisfies 0 ≤ ζ(s) − z < ε. We always have 0 ≤ ζ(s) − z. Also,

∑

n≤M

n−s ≤
∏

p≤M

(1 − p−s)−1

so

ζ(s) − z ≤
∞
∑

n=M+1

n−s ≤

∫ ∞

M

x−s dx =
1

(s − 1)M s−1
.

Thus if M > ε−1/(s−1), then

1

(s − 1)M s−1
≤

1

M s−1
< ε ,

so ζ(s) − z < ε, as required. For our purposes, we have s = n and ε = (Kd)−1,
so it suffices to take M > (Kd)1/(n−1).

Algorithm 2.7.3 (Compute Bernoulli number Bn). Given an integer n ≥ 0
this algorithm computes the Bernoulli number Bn as an exact rational number.

1. [Special cases] If n = 0 return 1, if n = 1 return −1/2, and if n ≥ 3 is odd
return 0.

2. [Factorial factor] Compute K =
2 · n!

(2π)n
to sufficiently many digits of

precision so that ceiling in step 6 is uniquely determined (this precision
can be determined using Remark 2.7.2).

2.7. FAST COMPUTATION OF BERNOULLI NUMBERS 37

3. [Denominator] Compute d =
∏

p−1|n

p

4. [Bound] Compute M =
⌈

(Kd)1/(n−1)
⌉

5. [Approximate ζ(n)] Compute z =
∏

p≤M

(1 − p−n)−1

6. [Numerator] Compute a = (−1)n/2+1 ⌈dKz⌉

7. [Output Bn] Return
a

d
.

In step 5 use a Sieve to compute all primes p ≤ M efficiently. In step 4 we
may replace M by any integer greater than the one specified by the formula, so
we do not have to compute (Kd)1/(n−1) to very high precision.

Example 2.7.4. We illustrate Algorithm 2.7.3 by computing B50. Using 135
binary digits of precision, we compute

K = 7500866746076957704747736.71552473164563479

The divisors of n are 1, 2, 5, 10, 25, 50, so

d = 2 · 3 · 11 = 66.

We find M = 4 and compute

z = 1.00000000000000088817842109308159029835012

Finally we compute

dKz = 495057205241079648212477524.999999994425778,

so

B50 =
495057205241079648212477525

66
.

Remark 2.7.5. A time-consuming step in Algorithm 2.7.3 is computation of
n!, though this step does not dominate the runtime. See [] [[fast factorial web
page]] for a discussion of several algorithms.

