Plan for Math 124, Fall 2001^1

DATE		Note	Reading	Subject
W	Sept 12		D 7–8, K ix–4	Overview 1: What is This Course About?
F	Sept 14		D 16–31	Primes 1: Prime Factorization
Μ	Sept 17		D 179–181, P 1–13	COMPUTING 1: Introduction to Computing and PARI
W	Sept 19	hwk	D 35–38	Primes 2: The Sequence of Prime Numbers
F	Sept 21		D 41–48	Congruences 1: Fermat's Theorem
Μ	Sept 24		D48-51	Congruences 2: Chinese RT, Wilson's Theorem, Prime Modulus
W	Sept 26	hwk	D 51–56	Congruences 3: Equations Modulo N
F	Sept 28		D 206–209	CRYPTOGRAPHY 1: Intro to Public-key Crypto. (Diffie-Helman)
Μ	Oct 1		D 210–211	Cryptography 2: The RSA Cryptosystem
W	Oct 3	hwk	www.rsa.com	CRYPTOGRAPHY 3: RSA in Practice
F	Oct 5		D 59–62	QUADRATIC RECIPROCITY 1: Primitive Roots
Μ	Oct 8	holiday		
W	Oct 10	hwk	D 63–70	QUADRATIC RECIPROCITY 2: The Reciprocity Law
F	Oct 12		D 70–74	QUADRATIC RECIPROCITY 3: The Proof
M	Oct 15			OVERVIEW 2: Midterm Review
W	Oct 17	hwk		Midterm
F	Oct 19		G145-152	COMPUTING 2: Programming in PARI
M	Oct 22		D 78–89	CONTINUED FRACTIONS 1: Introduction, Basic Facts
W	Oct 24	hwk	D 89–93	CONTINUED FRACTIONS 2: Infinite Continued Fractions
F	Oct 26		D 94–104	CONTINUED FRACTIONS 3: Quadratic Irrationals
Μ	Oct 29		D 104–111	CONTINUED FRACTIONS 4: Pell's Equation
W	Oct 31	hwk	D 115–120	QUADRATIC FORMS 1: Sums of Two Squares
F	Nov 2		D 129–133	QUADRATIC FORMS 2: Equivalence of Quadratic Forms
Μ	Nov 5		D 133–138	QUADRATIC FORMS 3: Discriminants
W	Nov 7	hwk	$\mathbf{D}140-145$	QUADRATIC FORMS 4: Reduced Positive Definite Forms
F	Nov 9		$\mathbf{D}159-162$	Elliptic Curves 1: Trivial Notions 1
Μ	Nov 12	holiday		
W	Nov 14	hwk	K 17–20	Elliptic Curves 2: Basic Notions 1
F	Nov 16		$\mathbf{D}162-165, \ \mathbf{K}25-32$	Elliptic Curves 3: Basic Notions 2
M	Nov 19		P21-24, G76-82	Computing 3: Computing with Elliptic Curves using PARI
W	Nov 21	hwk	D165-168	Elliptic Curves 4: Elliptic Curves over Finite Fields
F	Nov 23	holiday		
M	Nov 26			Elliptic Curves 5: Elliptic Curve Factorization 1
W	Nov 28	hwk		Elliptic Curves 6: Elliptic Curve Factorization 2
F	Nov 30		D 168–170	Elliptic Curves 7: Fermat's Last Theorem
Μ	$\mathrm{Dec}\ 3$		K20-24	Elliptic Curves 8: The Congruent Number Problem
W	$\mathrm{Dec}\ 5$	hwk	$\mathbf{W}1-2$	Elliptic Curves 9: The Birch and Swinnerton-Dyer conjecture 1
F	Dec 7		W_{3-5}	ELLIPTIC CURVES 10: The Birch and Swinnerton-Dyer conjecture 2
\mathbf{M}	Dec 10			Computing 4: Empirical Evidence for the BSD Conjecture
W	Dec 12			Overview 3: Final Review

D: Davenport, K: Kato et al., P: PARI tutorial, G: PARI guide, W: Wiles

¹Remember that this plan is only a plan, not a contract.