Lecture 5: Congruences

William Stein
Math 124 HARVARD UNIVERSITY Fall 2001

The point of this lecture:
Define the ring Z/nZ of integers modulo n. Prove Fermat’s little theorem, which
asserts that if ged(z,n) = 1, then 2% =1 (mod n).

1 Notation

Definition 1.1 (Congruence). Let a,b € Z and n € N. Then
a=b (modn)
ifn|a—b.
That is, there is ¢ € Z such that
nc=a—>b.

One way I think about it: a is congruent to b modulo n, if we can get from b to a
by adding multiples of n.
Congruence modulo n is an equivalence relation. Let

Z/nZ = { the set of equivalence classes }

The set Z/nZ is a ring, the “ring of integers modulo n”. It is the quotient of the
ring Z by the ideal generated by n.

Ezample 1.2.

Z/3%=4{{...,-3,0,3,... 1 {....,=2,1,4,.. . },{...,=1,2,5,...}} = {[0],[1], [2]}
where we let [a] denote the equivalence class of a.

2 Arithmetic Modulo N

Suppose a, a’,bb’ € Z and
a=d (mod n), b=10 (mod n).
Then
a+b=d+b (modn) (1)
axb=d xb (modn) (2)
So it makes sense to define + and x by [a] + [b] = [a + b] and [a] % [b] = [a x b].
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2.1 Cancellation
Proposition 2.1. If ged(c,n) =1 and

ac =bc (mod n)
then a = b (mod n).

Proof. By definition
n | ac —bc = (a — b)c.

Since ged(n, ¢) = 1, it follows that n | a — b, so
a=b (mod n),

as claimed. O

2.2 Rules for Divisibility

Proposition 2.2. A number n € Z 1is divisible by 3 if and only if the sum of the
digits of n 1s divisible by 3.

Proof. Write
n=a+ 100+ 100c+ - -- .

Since 10 =1 (mod 3),
n=a+10b+100c+---=a+b+c+--- (mod 3),

from which the proposition follows. O

Similarly, you can find rules for divisibility by 5, 9 and 11. What about divisibility
by 7?7

3 Linear Congruences

Definition 3.1 (Complete Set of Residues). A complete set of residues modulo n
is a subset R C Z of size n whose reductions modulo n are distinct. In other words,
a complete set of residues is a choice of representive for each equivalence class in

Z/nZ.

Some examples:
R=1{0,1,2,...,n—1}

is a complete set of residues modulo n. When n = 5, a complete set of residues is
R={0,1,-1,2,—2}.

Lemma 3.2. If R is a complete set of residues modulo n and a € Z with ged(a,n) =
1, then aR = {ax : x € R} is also a complete set of residues.



Proof. If ax = ax’ (mod n) with z,z’ € R, then Proposition 2.1 implies that z = '
(mod n). Because R is a complete set of residues, this implies that = z’. Thus the
elements of aR have distinct reductions modulo n. It follows, since #aR = n, that
aR is a complete set of residues modulo n. O

Definition 3.3 (Linear Congruence). A linear congruence is an equation of the
form
ar =b (mod n).

Proposition 3.4. If gcd(a,n) = 1, then the equation
ax =b (mod n)

must have a solution.

Proof. Let R be a complete set of residues modulo n (for example, R = {0,1,...,n—
1}). Then by Lemma 3.2, aR is also a complete set of residues. Thus there is an
element az € aR such that ax = b (mod n), which proves the proposition. O

The point in the proof is that left multiplication by a defines a map Z/nZ —
Z/nZ, which must be surjective because Z/nZ is finite.

Illustration:

2 =3 (mod 7)
Set R = {0,1,2,3,4,5,6}. Then
9OR = {0,2,4,6,8=1,10 = 3,12 = 5},
s02-5=3 (mod 7).

Warning:

Note that the equation az = b (mod n) might have a solution even if ged(a, n) # 1.
To construct such examples, let a be any divisor of n, x any number, and set b = ax.
For example, 2z = 6 (mod 8) has a solution!

4 Fermat’s Little Theorem

Definition 4.1 (Order). Let n € N and z € Z with ged(x,n) = 1. The order of
modulo n is the smallest m € N such that

2™ =1 (mod n).

We must show that this definition makes sense. To do so, we verify that such
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an m exists. Consider x,x2,z?,... modulo n. There are only finitely many residue

classes modulo n, so we must eventually find two integers 4, j with 2 < 7 such that
' =2’ (mod n).

Since ged(z,n) = 1, Proposition 2.1 implies that we can cancel z’s and conclude that

#/7*=1 (mod n).



Definition 4.2 (Euler Phi function). Let
o(n) =#{a € N:a <nand ged(a,n) =1}.
For example,
o(1) =#{1} =1,

o(5) = #{1,2,3,4} = 4,
0(12) = #{1,5,7,11} = 4.

If p is any prime number then
o(p) =#{1,2,...,p—1}=p— 1.
Theorem 4.3 (Fermat’s Little Theorem). If gcd(z,n) =1, then
2™ =1 (mod n).

Proof. Let
P={a:1<a<mnand ged(a,n) =1}.

In the same way that we proved Lemma 3.2, we see that the reductions modulo n
of the elements of P are exactly the same as the reductions of the elements of P.

Thus
H(:m) = H a (mod n),

a€EP a€P

since the products are over exactly the same numbers modulo n. Now cancel the a’s
on both sides to get
z#P =1 (mod n),

as claimed. m

4.1 Group-theoretic Interpretation
The set of invertible elements of Z/nZ is a group
(Z/nZ)* ={[a] € Z/nZ : gcd(a,n) = 1}.

This group has order ¢(n). Theorem 4.3 asserts that the order of an element of
(Z/nZ)* divides the order ¢(n) of (Z/nZ)*. This is a special case of the more
general theorem that if GG is a finite group and g € GG, then the order of g divide #G'.

5 What happened?

Take out a piece of paper and answer the following two questions:

1. What is a central idea that you learned in this lecture?

2. What part of this lecture did you find murky?



