next up previous
Next: Cancellation Up: Lecture 5: Congruences Previous: Notation

Arithmetic Modulo $ N$

Suppose $ a,\,a',b\,b'\in\mathbb{Z}$ and

$\displaystyle a\equiv a'\pmod{n}, \qquad b\equiv b'\pmod{n}.
$

Then

$\displaystyle a + b$ $\displaystyle \equiv a' + b'\pmod{n}$ (1)
$\displaystyle a\times b$ $\displaystyle \equiv a'\times b'\pmod{n}$ (2)

So it makes sense to define $ +$ and $ \times$ by $ [a]+[b]=[a+b]$ and $ [a]\times[b]=[a\times b]$.



Subsections

William A Stein 2001-09-20