next up previous
Next: Notation

Lecture 5: Congruences

William Stein


Date: Math 124 $ \quad$ HARVARD UNIVERSITY $ \quad$ Fall 2001



The point of this lecture:
Define the ring $ \mathbb{Z}/n\mathbb{Z}$ of integers modulo $ n$. Prove Fermat's little theorem, which asserts that if $ \gcd(x,n)=1$, then $ x^{\varphi (n)} \equiv 1\pmod{n}$.





William A Stein 2001-09-20