
Modular Forms:

A Computational Approach

William A. Stein

(with an appendix by Paul E. Gunnells)

Department of Mathematics, University of Washington

E-mail address: wstein@math.washington.edu

Department of Mathematics and Statistics, University of

Massachusetts

E-mail address: gunnells@math.umass.edu

1991 Mathematics Subject Classification. Primary 11;
Secondary 11-04

Key words and phrases. abelian varieties, cohomology of arithmetic
groups, computation, elliptic curves, Hecke operators, modular curves,

modular forms, modular symbols, Manin symbols, number theory

Abstract. This is a textbook about algorithms for computing with
modular forms. It is nontraditional in that the primary focus is not
on underlying theory; instead, it answers the question “how do you
explicitly compute spaces of modular forms?”

v

To my grandmother, Annette Maurer.

Contents

Preface xi

Chapter 1. Modular Forms 1

§1.1. Basic Definitions 1

§1.2. Modular Forms of Level 1 3

§1.3. Modular Forms of Any Level 4

§1.4. Remarks on Congruence Subgroups 7

§1.5. Applications of Modular Forms 9

§1.6. Exercises 11

Chapter 2. Modular Forms of Level 1 13

§2.1. Examples of Modular Forms of Level 1 13

§2.2. Structure Theorem for Level 1 Modular Forms 17

§2.3. The Miller Basis 20

§2.4. Hecke Operators 22

§2.5. Computing Hecke Operators 26

§2.6. Fast Computation of Fourier Coefficients 29

§2.7. Fast Computation of Bernoulli Numbers 29

§2.8. Exercises 33

Chapter 3. Modular Forms of Weight 2 35

§3.1. Hecke Operators 36

§3.2. Modular Symbols 39

§3.3. Computing with Modular Symbols 41

vii

viii Contents

§3.4. Hecke Operators 47

§3.5. Computing the Boundary Map 51

§3.6. Computing a Basis for S2(Γ0(N)) 53

§3.7. Computing S2(Γ0(N)) Using Eigenvectors 58

§3.8. Exercises 60

Chapter 4. Dirichlet Characters 63

§4.1. The Definition 64

§4.2. Representing Dirichlet Characters 64

§4.3. Evaluation of Dirichlet Characters 67

§4.4. Conductors of Dirichlet Characters 70

§4.5. The Kronecker Symbol 72

§4.6. Restriction, Extension, and Galois Orbits 75

§4.7. Alternative Representations of Characters 77

§4.8. Dirichlet Characters in SAGE 78

§4.9. Exercises 81

Chapter 5. Eisenstein Series and Bernoulli Numbers 83

§5.1. The Eisenstein Subspace 83

§5.2. Generalized Bernoulli Numbers 83

§5.3. Explicit Basis for the Eisenstein Subspace 88

§5.4. Exercises 90

Chapter 6. Dimension Formulas 91

§6.1. Modular Forms for Γ0(N) 92

§6.2. Modular Forms for Γ1(N) 95

§6.3. Modular Forms with Character 98

§6.4. Exercises 102

Chapter 7. Linear Algebra 103

§7.1. Echelon Forms of Matrices 103

§7.2. Rational Reconstruction 105

§7.3. Echelon Forms over Q 107

§7.4. Echelon Forms via Matrix Multiplication 110

§7.5. Decomposing Spaces under the Action of Matrix 114

§7.6. Exercises 119

Chapter 8. General Modular Symbols 121

Contents ix

§8.1. Modular Symbols 122

§8.2. Manin Symbols 124

§8.3. Hecke Operators 128

§8.4. Cuspidal Modular Symbols 133

§8.5. Pairing Modular Symbols and Modular Forms 137

§8.6. Degeneracy Maps 142

§8.7. Explicitly Computing Mk(Γ0(N)) 144

§8.8. Explicit Examples 147

§8.9. Refined Algorithm for the Presentation 154

§8.10. Applications 155

§8.11. Exercises 156

Chapter 9. Computing with Newforms 159

§9.1. Dirichlet Character Decomposition 159

§9.2. Atkin-Lehner-Li Theory 161

§9.3. Computing Cusp Forms 165

§9.4. Congruences between Newforms 170

§9.5. Exercises 176

Chapter 10. Computing Periods 177

§10.1. The Period Map 178

§10.2. Abelian Varieties Attached to Newforms 178

§10.3. Extended Modular Symbols 179

§10.4. Approximating Period Integrals 180

§10.5. Speeding Convergence Using Atkin-Lehner 183

§10.6. Computing the Period Mapping 185

§10.7. All Elliptic Curves of Given Conductor 187

§10.8. Exercises 190

Chapter 11. Solutions to Selected Exercises 191

§11.1. Chapter 1 191

§11.2. Chapter 2 193

§11.3. Chapter 3 194

§11.4. Chapter 4 196

§11.5. Chapter 5 197

§11.6. Chapter 6 197

§11.7. Chapter 7 198

x Contents

§11.8. Chapter 8 199

§11.9. Chapter 9 201

§11.10. Chapter 10 201

Appendix A. Computing in Higher Rank 203

§A.1. Introduction 203

§A.2. Automorphic Forms and Arithmetic Groups 205

§A.3. Combinatorial Models for Group Cohomology 213

§A.4. Hecke Operators and Modular Symbols 225

§A.5. Other Cohomology Groups 232

§A.6. Complements and Open Problems 244

Bibliography 253

Index 265

Preface

This is a graduate-level textbook about algorithms for computing with mod-
ular forms. It is nontraditional in that the primary focus is not on underly-
ing theory; instead, it answers the question “how do you use a computer to
explicitly compute spaces of modular forms?”

This book emerged from notes for a course the author taught at Harvard
University in 2004, a course at UC San Diego in 2005, and a course at the
University of Washington in 2006.

The author has spent years trying to find good practical ways to compute
with classical modular forms for congruence subgroups of SL2(Z) and has
implemented most of these algorithms several times, first in C++ [Ste99b],
then in MAGMA [BCP97], and as part of the free open source computer
algebra system SAGE (see [Ste06]). Much of this work has involved turning
formulas and constructions buried in obscure research papers into precise
computational recipes then testing these and eliminating inaccuracies.

The author is aware of no other textbooks on computing with modular
forms, the closest work being Cremona’s book [Cre97a], which is about
computing with elliptic curves, and Cohen’s book [Coh93] about algebraic
number theory.

In this book we focus on how to compute in practice the spaces Mk(N, ε)
of modular forms, where k ≥ 2 is an integer and ε is a Dirichlet character
of modulus N (the appendix treats modular forms for higher rank groups).
We spend the most effort explaining the general algorithms that appear so
far to be the best (in practice!) for such computations. We will not dis-
cuss in any detail computing with quaternion algebras, half-integral weight
forms, weight 1 forms, forms for noncongruence subgroups or groups other

xi

xii Preface

than GL2, Hilbert and Siegel modular forms, trace formulas, p-adic modular
forms, and modular abelian varieties, all of which are topics for additional
books. We also rarely analyze the complexity of the algorithms, but instead
settle for occasional remarks about their practical efficiency.

For most of this book we assume the reader has some prior exposure to
modular forms (e.g., [DS05]), though we recall many of the basic defini-
tions. We cite standard books for proofs of the fundamental results about
modular forms that we will use. The reader should also be familiar with
basic algebraic number theory, linear algebra, complex analysis (at the level
of [Ahl78]), and algorithms (e.g., know what an algorithm is and what big
oh notation means). In some of the examples and applications we assume
that the reader knows about elliptic curves at the level of [Sil92].

Chapter 1 is foundational for the rest of this book. It introduces congru-
ence subgroups of SL2(Z) and modular forms as functions on the complex
upper half plane. We discuss q-expansions, which provide an important
computational handle on modular forms. We also study an algorithm for
computing with congruence subgroups. The chapter ends with a list of ap-
plications of modular forms throughout mathematics.

In Chapter 2 we discuss level 1 modular forms in much more detail. In
particular, we introduce Eisenstein series and the cusp form ∆ and describe
their q-expansions and basic properties. Then we prove a structure theorem
for level 1 modular forms and use it to deduce dimension formulas and give
an algorithm for explicitly computing a basis. We next introduce Hecke
operators on level 1 modular forms, prove several results about them, and
deduce multiplicativity of the Ramanujan τ function as an application. We
also discuss explicit computation of Hecke operators. In Section 2.6 we make
some brief remarks on recent work on asymptotically fast computation of
values of τ . Finally, we describe computation of constant terms of Eisenstein
series using an analytic algorithm. We generalize many of the constructions
in this chapter to higher level in subsequent chapters.

In Chapter 3 we turn to modular forms of higher level but restrict for
simplicity to weight 2 since much is clearer in this case. (We remove the
weight restriction later in Chapter 8.) We describe a geometric way of view-
ing cuspidal modular forms as differentials on modular curves, which leads
to modular symbols, which are an explicit way to present a certain homol-
ogy group. This chapter closes with methods for explicitly computing cusp
forms of weight 2 using modular symbols, which we generalize in Chapter 9.

In Chapter 4 we introduce Dirichlet characters, which are important
both in explicit construction of Eisenstein series (in Chapter 5) and in de-
composing spaces of modular forms as direct sums of simpler spaces. The

Preface xiii

main focus of this chapter is a detailed study of how to explicitly represent
and compute with Dirichlet characters.

Chapter 5 is about how to explicitly construct the Eisenstein subspace
of modular forms. First we define generalized Bernoulli numbers attached to
a Dirichlet character and an integer then explain a new analytic algorithm
for computing them (which generalizes the algorithm in Chapter 2). Finally
we give without proof an explicit description of a basis of Eisenstein series,
explain how to compute it, and give some examples.

Chapter 6 records a wide range of dimension formulas for spaces of
modular forms, along with a few remarks about where they come from and
how to compute them.

Chapter 7 is about linear algebra over exact fields, mainly the rational
numbers. This chapter can be read independently of the others and does not
require any background in modular forms. Nonetheless, this chapter occu-
pies a central position in this book, because the algorithms in this chapter
are of crucial importance to any actual implementation of algorithms for
computing with modular forms.

Chapter 8 is the most important chapter in this book; it generalizes
Chapter 3 to higher weight and general level. The modular symbols for-
mulation described here is central to general algorithms for computing with
modular forms.

Chapter 9 applies the algorithms from Chapter 8 to the problem of
computing with modular forms. First we discuss decomposing spaces of
modular forms using Dirichlet characters, and then explain how to compute
a basis of Hecke eigenforms for each subspace using several approaches.
We also discuss congruences between modular forms and bounds needed to
provably generate the Hecke algebra.

Chapter 10 is about computing analytic invariants of modular forms.
It discusses tricks for speeding convergence of certain infinite series and
sketches how to compute every elliptic curve over Q with given conductor.

Chapter 11 contains detailed solutions to most of the exercises in this
book. (Many of these were written by students in a course taught at the
University of Washington.)

Appendix A deals with computational techniques for working with gen-
eralizations of modular forms to more general groups than SL2(Z), such as
SLn(Z) for n ≥ 3. Some of this material requires more prerequisites than
the rest of the book. Nonetheless, seeing a natural generalization of the
material in the rest of this book helps to clarify the key ideas. The topics in
the appendix are directly related to the main themes of this book: modular

xiv Preface

symbols, Manin symbols, cohomology of subgroups of SL2(Z) with various
coefficients, explicit computation of modular forms, etc.

Software. We use SAGE, Software for Algebra and Geometry Experimen-
tation (see [Ste06]), to illustrate how to do many of the examples. SAGE

is completely free and packages together a wide range of open source math-
ematics software for doing much more than just computing with modular
forms. SAGE can be downloaded and run on your computer or can be used
via a web browser over the Internet. The reader is encouraged to experi-
ment with many of the objects in this book using SAGE. We do not describe
the basics of using SAGE in this book; the reader should read the SAGE

tutorial (and other documentation) available at the SAGE website [Ste06].
All examples in this book have been automatically tested and should work
exactly as indicated in SAGE version at least 1.5.

Acknowledgements. David Joyner and Gabor Wiese carefully read the
book and provided a huge number of helpful comments.

John Cremona and Kevin Buzzard both made many helpful remarks that
were important in the development of the algorithms in this book. Much of
the mathematics (and some of the writing) in Chapter 10 is joint work with
Helena Verrill.

Noam Elkies made remarks about Chapters 1 and 2. Sándor Kovács
provided interesting comments on Chapter 1. Allan Steel provided helpful
feedback on Chapter 7. Jordi Quer made useful remarks about Chapter 4
and Chapter 6.

The students in the courses that I taught on this material at Harvard,
San Diego, and Washington provided substantial feedback: in particular,
Abhinav Kumar made numerous observations about computing widths of
cusps (see Section 1.4.1) and Thomas James Barnet-Lamb made helpful re-
marks about how to represent Dirichlet characters. James Merryfield made
helpful remarks about complex analytic issues and about convergence in Stir-
ling’s formula. Robert Bradshaw, Andrew Crites (who wrote Exercise 7.5),
Michael Goff, Dustin Moody, and Koopa Koo wrote most of the solutions
included in Chapter 11 and found numerous typos throughout the book.
Dustin Moody also carefully read through the book and provided feedback.

H. Stark suggested using Stirling’s formula in Section 2.7.1, and Mark
Watkins and Lynn Walling made comments on Chapter 3.

Justin Walker found typos in the first published version of the book.

Preface xv

Parts of Chapter 1 follow Serre’s beautiful introduction to modular forms
[Ser73, Ch. VII] closely, though we adjust the notation, definitions, and
order of presentation to be consistent with the rest of this book.

I would like to acknowledge the partial support of NSF Grant DMS 05-
55776. Gunnells was supported in part by NSF Grants DMS 02-45580 and
DMS 04-01525.

Notation and Conventions. We denote canonical isomorphisms by ∼=
and noncanonical isomorphisms by ≈. If V is a vector space and s denotes
some sort of construction involving V , we let Vs denote the corresponding
subspace and V s the quotient space. E.g., if ι is an involution of V , then
V+ is Ker(ι− 1) and V + = V/Im(ι− 1). If A is a finite abelian group, then
Ator denotes the torsion subgroup and A/tor denotes the quotient A/Ator.
We denote right group actions using exponential notation. Everywhere in
this book, N is a positive integer and k is an integer.

If N is an integer, a divisor t of N is a positive integer such that N/t is
an integer.

Chapter 1

Modular Forms

This chapter introduces modular forms and congruence subgroups, which
are central objects in this book. We first introduce the upper half plane and
the group SL2(Z) then recall some definitions from complex analysis. Next
we define modular forms of level 1 followed by modular forms of general
level. In Section 1.4 we discuss congruence subgroups and explain a simple
way to compute generators for them and determine element membership.
Section 1.5 lists applications of modular forms.

We assume familiarity with basic number theory, group theory, and com-
plex analysis. For a deeper understanding of modular forms, the reader is
urged to consult the standard books in the field, e.g., [Lan95, Ser73, DI95,

Miy89, Shi94, Kob84]. See also [DS05], which is an excellent first intro-
duction to the theoretical foundations of modular forms.

1.1. Basic Definitions

The group

SL2(R) =

{(
a b
c d

)
: ad − bc = 1 and a, b, c, d ∈ R

}

acts on the complex upper half plane

h = {z ∈ C : Im(z) > 0}

by linear fractional transformations, as follows. If γ =
(

a b
c d

)
∈ SL2(R), then

for any z ∈ h we let

(1.1.1) γ(z) =
az + b

cz + d
∈ h.

1

2 1. Modular Forms

Since the determinant of γ is 1, we have
(

d

dz
γ

)
(z) =

1

(cz + d)2
.

Definition 1.1 (Modular Group). The modular group is the group of all
matrices

(
a b
c d

)
with a, b, c, d ∈ Z and ad − bc = 1.

For example, the matrices

(1.1.2) S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)

are both elements of SL2(Z); the matrix S induces the function z 7→ −1/z
on h, and T induces the function z 7→ z + 1.

Theorem 1.2. The group SL2(Z) is generated by S and T .

Proof. See e.g. [Ser73, §VII.1]. ¤

In SAGE we compute the group SL2(Z) and its generators as follows:

sage: G = SL(2,ZZ); G

Modular Group SL(2,Z)

sage: S, T = G.gens()

sage: S

[0 -1]

[1 0]

sage: T

[1 1]

[0 1]

Definition 1.3 (Holomorphic and Meromorphic). Let R be an open subset
of C. A function f : R → C is holomorphic if f is complex differentiable at
every point z ∈ R, i.e., for each z ∈ R the limit

f ′(z) = lim
h→0

f(z + h) − f(z)

h

exists, where h may approach 0 along any path. A function f : R → C∪{∞}
is meromorphic if it is holomorphic except (possibly) at a discrete set S of
points in R, and at each α ∈ S there is a positive integer n such that
(z − α)nf(z) is holomorphic at α.

The function f(z) = ez is a holomorphic function on C; in contrast,
1/(z − i) is meromorphic on C but not holomorphic since it has a pole at i.

The function e−1/z is not even meromorphic on C.

1.2. Modular Forms of Level 1 3

Modular forms are holomorphic functions on h that transform in a par-
ticular way under a certain subgroup of SL2(Z). Before defining general
modular forms, we define modular forms of level 1.

1.2. Modular Forms of Level 1

Definition 1.4 (Weakly Modular Function). A weakly modular function of
weight k ∈ Z is a meromorphic function f on h such that for all γ =

(
a b
c d

)
∈

SL2(Z) and all z ∈ h we have

(1.2.1) f(z) = (cz + d)−kf(γ(z)).

The constant functions are weakly modular of weight 0. There are no
nonzero weakly modular functions of odd weight (see Exercise 1.4), and it
is not obvious that there are any weakly modular functions of even weight
k ≥ 2 (but there are, as we will see!). The product of two weakly modular
functions of weights k1 and k2 is a weakly modular function of weight k1+k2

(see Exercise 1.3).

When k is even, (1.2.1) has a possibly more conceptual interpretation;
namely (1.2.1) is the same as

f(γ(z))(d(γ(z)))k/2 = f(z)(dz)k/2.

Thus (1.2.1) simply says that the weight k “differential form” f(z)(dz)k/2 is
fixed under the action of every element of SL2(Z).

By Theorem 1.2, the group SL2(Z) is generated by the matrices S and
T of (1.1.2), so to show that a meromorphic function f on h is a weakly
modular function, all we have to do is show that for all z ∈ h we have

(1.2.2) f(z + 1) = f(z) and f(−1/z) = zkf(z).

Suppose f is a weakly modular function of weight k. A Fourier expansion
of f , if it exists, is a representation of f as f(z) =

∑∞
n=m ane2πinz, for all

z ∈ h. Let q = q(z) = e2πiz, which we view as a holomorphic function on
C. Let D′ be the open unit disk with the origin removed, and note that
q defines a map h → D′. By (1.2.2) we have f(z + 1) = f(z), so there is
a function F : D′ → C such that F (q(z)) = f(z). This function F is a
complex-valued function on D′, but it may or may not be well behaved at 0.

Suppose that F is well behaved at 0, in the sense that for some m ∈ Z
and all q in a neighborhood of 0 we have the equality

(1.2.3) F (q) =
∞∑

n=m

anqn.

4 1. Modular Forms

If this is the case, we say that f is meromorphic at ∞. If, moreover, m ≥ 0,
we say that f is holomorphic at ∞. We also call (1.2.3) the q-expansion of f
about ∞.

Definition 1.5 (Modular Function). A modular function of weight k is a
weakly modular function of weight k that is meromorphic at ∞.

Definition 1.6 (Modular Form). A modular form of weight k (and level 1)
is a modular function of weight k that is holomorphic on h and at ∞.

If f is a modular form, then there are numbers an such that for all z ∈ h,

(1.2.4) f(z) =
∞∑

n=0

anqn.

Proposition 1.7. The above series converges for all z ∈ h.

Proof. The function f(q) is holomorphic on D, so its Taylor series converges
absolutely in D. ¤

Since e2πiz → 0 as z → i∞, we set f(∞) = a0.

Definition 1.8 (Cusp Form). A cusp form of weight k (and level 1) is a
modular form of weight k such that f(∞) = 0, i.e., a0 = 0.

Let C[[q]] be the ring of all formal power series in q. If k = 2, then

dq = 2πiqdz, so dz = 1
2πi

dq
q . If f(q) is a cusp form of weight 2, then

2πif(z)dz = f(q)
dq

q
=

f(q)

q
dq ∈ C[[q]]dq.

Thus the differential 2πif(z)dz is holomorphic at ∞, since q is a local pa-
rameter at ∞.

1.3. Modular Forms of Any Level

In this section we define spaces of modular forms of arbitrary level.

Definition 1.9 (Congruence Subgroup). A congruence subgroup of SL2(Z)
is any subgroup of SL2(Z) that contains

Γ(N) = Ker(SL2(Z) → SL2(Z/NZ))

for some positive integer N . The smallest such N is the level of Γ.

The most important congruence subgroups in this book are

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
1 ∗
0 1

)
(mod N)

}

1.3. Modular Forms of Any Level 5

and

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
∗ ∗
0 ∗

)
(mod N)

}
,

where ∗ means any element. Both groups have level N (see Exercise 1.6).

Let k be an integer. Define the weight k right action of GL2(Q) on the
set of all functions f : h → C as follows. If γ =

(
a b
c d

)
∈ GL2(Q), let

(1.3.1) (f [γ]k)(z) = det(γ)k−1(cz + d)−kf(γ(z)).

Proposition 1.10. Formula (1.3.1) defines a right action of GL2(Z) on the
set of all functions f : h → C; in particular,

f [γ1γ2]k = (f [γ1]k)[γ2]k .

Proof. See Exercise 1.7. ¤

Definition 1.11 (Weakly Modular Function). A weakly modular function of
weight k for a congruence subgroup Γ is a meromorphic function f : h → C
such that f [γ]k = f for all γ ∈ Γ.

A central object in the theory of modular forms is the set of cusps

P1(Q) = Q ∪ {∞}.
An element γ =

(
a b
c d

)
∈ SL2(Z) acts on P1(Q) by

γ(z) =

{
az+b
cz+d if z 6= ∞,
a
c if z = ∞.

Also, note that if the denominator c or cz + d is 0 above, then

γ(z) = ∞ ∈ P1(Q).

The set of cusps for a congruence subgroup Γ is the set C(Γ) of Γ-orbits
of P1(Q). (We will often identify elements of C(Γ) with a representative
element from the orbit.) For example, the lemma below asserts that if
Γ = SL2(Z), then there is exactly one orbit, so C(SL2(Z)) = {[∞]}.
Lemma 1.12. For any cusps α, β ∈ P1(Q) there exists γ ∈ SL2(Z) such
that γ(α) = β.

Proof. This is Exercise 1.8. ¤

Proposition 1.13. For any congruence subgroup Γ, the set C(Γ) of cusps
is finite.

Proof. This is Exercise 1.9. ¤

6 1. Modular Forms

See [DS05, §3.8] and Algorithm 8.12 below for more discussion of cusps
and results relevant to their enumeration.

In order to define modular forms for general congruence subgroups, we
next explain what it means for a function to be holomorphic on the extended
upper half plane

h∗ = h ∪ P1(Q).

See [Shi94, §1.3–1.5] for a detailed description of the correct topology
to consider on h∗. In particular, a basis of neighborhoods for α ∈ Q is given
by the sets {α}∪D, where D is an open disc in h that is tangent to the real
line at α.

Recall from Section 1.2 that a weakly modular function f on SL2(Z) is
holomorphic at ∞ if its q-expansion is of the form

∑∞
n=0 anqn.

In order to make sense of holomorphicity of a weakly modular function f
for an arbitrary congruence subgroup Γ at any α ∈ Q, we first prove a lemma.

Lemma 1.14. If f : h → C is a weakly modular function of weight k for
a congruence subgroup Γ and if δ ∈ SL2(Z), then f [δ]k is a weakly modular
function for δ−1Γδ.

Proof. If s = δ−1γδ ∈ δ−1Γδ, then

(f [δ]k)[s]k = f [δs]k = f [δδ−1γδ]k = f [γδ]k = f [δ]k .

¤

Fix a weakly modular function f of weight k for a congruence subgroup
Γ, and suppose α ∈ Q. In Section 1.2 we constructed the q-expansion of

f by using that f(z) = f(z + 1), which held since T =

(
1 1
0 1

)
∈ SL2(Z).

There are congruence subgroups Γ such that T 6∈ Γ. Moreover, even if we
are interested only in modular forms for Γ1(N), where we have T ∈ Γ1(N)
for all N , we will still have to consider q-expansions at infinity for modular
forms on groups δ−1Γ1(N)δ, and these need not contain T . Fortunately,
TN =

(
1 N
0 1

)
∈ Γ(N), so a congruence subgroup of level N contains TN .

Thus we have f(z + H) = f(H) for some positive integer H, e.g., H = N
always works, but there may be a smaller choice of H. The minimal choice of
H > 0 such that

(
1 H
0 1

)
∈ δ−1Γδ, where δ(∞) = α, is called the width of the

cusp α relative to the group Γ (see Section 1.4.1). When f is meromorphic
at infinity, we obtain a Fourier expansion

(1.3.2) f(z) =
∞∑

n=m

anqn/H

1.4. Remarks on Congruence Subgroups 7

in powers of the function q1/H = e2πiz/H . We say that f is holomorphic at
∞ if in (1.3.2) we have m ≥ 0.

What about the other cusps α ∈ P1(Q)? By Lemma 1.12 there is a
γ ∈ SL2(Z) such that γ(∞) = α. We declare f to be holomorphic at the

cusp α if the weakly modular function f [γ]k is holomorphic at ∞.

Definition 1.15 (Modular Form). A modular form of integer weight k for
a congruence subgroup Γ is a weakly modular function f : h → C that is
holomorphic on h∗. We let Mk(Γ) denote the space of weight k modular
forms of weight k for Γ.

Proposition 1.16. If a weakly modular function f is holomorphic at a set
of representative elements for C(Γ), then it is holomorphic at every element
of P1(Q).

Proof. Let c1, . . . , cn ∈ P1(Q) be representatives for the set of cusps for
Γ. If α ∈ P1(Q), then there is γ ∈ Γ such that α = γ(ci) for some i. By
hypothesis f is holomorphic at ci, so if δ ∈ SL2(Z) is such that δ(∞) = ci,

then f [δ]k is holomorphic at ∞. Since f is a weakly modular function for Γ,

(1.3.3) f [δ]k = (f [γ]k)[δ]k = f [γδ]k .

But γ(δ(∞)) = γ(ci) = α, so (1.3.3) implies that f is holomorphic at α. ¤

1.4. Remarks on Congruence Subgroups

Recall that a congruence subgroup is a subgroup of SL2(Z) that contains
Γ(N) for some N . Any congruence subgroup has finite index in SL2(Z),
since Γ(N) does. What about the converse: is every finite index subgroup
of SL2(Z) a congruence subgroup? This is the congruence subgroup problem.
One can ask about the congruence subgroup problem with SL2(Z) replaced
by many similar groups. If p is a prime, then one can prove that every finite
index subgroup of SL2(Z[1/p]) is a congruence subgroup (i.e., contains the
kernel of reduction modulo some integer coprime to p), and for any n > 2, all
finite index subgroups of SLn(Z) are congruence subgroups (see [Hum80]).
However, there are numerous finite index subgroups of SL2(Z) that are not
congruence subgroups. The paper [Hsu96] contains an algorithm to decide
if certain finite index subgroups are congruence subgroups and gives an
example of a subgroup of index 12 that is not a congruence subgroup.

One can consider modular forms even for noncongruence subgroups. See,
e.g., [Tho89] and the papers it references for work on this topic. We will not
consider such modular forms further in this book. Note that modular sym-
bols (which we define later in this book) are computable for noncongruence
subgroups.

8 1. Modular Forms

Finding coset representatives for Γ0(N), Γ1(N) and Γ(N) in SL2(Z) is
straightforward and will be discussed at length later in this book. To make
the problem more explicit, note that you can quotient out by Γ(N) first.
Then the question amounts to finding coset representatives for a subgroup
of SL2(Z/NZ) (and lifting), which is reasonably straightforward.

Given coset representatives for a finite index subgroup G of SL2(Z), we
can compute generators for G as follows. Let R be a set of coset represen-
tatives for G. Let σ, τ ∈ SL2(Z) be the matrices denoted by S and T in
(1.1.2). Define maps s, t : R → G as follows. If r ∈ R, then there exists a
unique αr ∈ R such that Grσ = Gαr. Let s(r) = rσα−1

r . Likewise, there is
a unique βr such that Grτ = Gβr and we let t(r) = rτβ−1

r . Note that s(r)
and t(r) are in G for all r. Then G is generated by s(R) ∪ t(R).

Proposition 1.17. The above procedure computes generators for G.

Proof. Without loss of generality, assume that I = (1 0
0 1) represents the

coset of G. Let g be an element of G. Since σ and τ generate SL2(Z), it is
possible to write g as a product of powers of σ and τ . There is a procedure,
which we explain below with an example in order to avoid cumbersome
notation, which writes g as a product of elements of s(R) ∪ t(R) times a
right coset representative r ∈ R. For example, if

g = στ2στ,

then g = Iστ2στ = s(I)yτ2στ for some y ∈ R. Continuing,

s(I)yτ2στ = s(I)(yτ)τστ = s(I)(t(y)z)τστ

for some z ∈ R. Again,

s(I)(t(y)z)τστ = s(I)t(y)(zτ)στ = · · · .

The procedure illustrated above (with an example) makes sense for arbitrary
g and, after carrying it out, writes g as a product of elements of s(R)∪ t(R)
times a right coset representative r ∈ R. But g ∈ G and I is the right coset
representative for G, so this right coset representative must be I. ¤

Remark 1.18. We could also apply the proof of Proposition 1.17 to write
any element of G in terms of the given generators. Moreover, we could use
it to write any element γ ∈ SL2(Z) in the form gr, where g ∈ G and r ∈ R,
so we can decide whether or not γ ∈ G.

1.4.1. Computing Widths of Cusps. Let Γ be a congruence subgroup
of level N . Suppose α ∈ C(Γ) is a cusp, and choose γ ∈ SL2(Z) such that
γ(∞) = α. Recall that the minimal h such that

(
1 h
0 1

)
∈ γ−1Γγ is called

the width of the cusp α for the group Γ. In this section we discuss how to
compute h.

1.5. Applications of Modular Forms 9

Algorithm 1.19 (Width of Cusp). Given a congruence subgroup Γ of level
N and a cusp α for Γ, this algorithm computes the width h of α. We assume
that Γ is given by congruence conditions, e.g., Γ = Γ0(N) or Γ1(N).

(1) [Find γ] Use the extended Euclidean algorithm to find γ ∈ SL2(Z)
such that γ(∞) = α, as follows. If α = ∞, set γ = 1; otherwise,
write α = a/b, find c, d such that ad − bc = 1, and set γ =

(
a b
c d

)
.

(2) [Compute Conjugate Matrix] Compute the following element of
Mat2(Z[x]):

δ(x) = γ

(
1 x
0 1

)
γ−1.

Note that the entries of δ(x) are constant or linear in x.

(3) [Solve] The congruence conditions that define Γ give rise to four
linear congruence conditions on x. Use techniques from elementary
number theory (or enumeration) to find the smallest simultaneous
positive solution h to these four equations.

Example 1.20. (1) Suppose α = 0 and Γ = Γ0(N) or Γ1(N). Then
γ =

(
0 −1
1 0

)
has the property that γ(∞) = α. Next, the congruence

condition is

δ(x) = γ

(
1 x
0 1

)
γ−1 =

(
1 0
−x 1

)
≡

(
1 ∗
0 1

)
(mod N).

Thus the smallest positive solution is h = N , so the width of 0
is N .

(2) Suppose N = pq where p, q are distinct primes, and let α = 1/p.
Then γ =

(
1 0
p 1

)
sends ∞ to α. The congruence condition for Γ0(pq)

is

δ(x) = γ

(
1 x
0 1

)
γ−1 =

(
1 − px x
−p2x px + 1

)
≡

(
∗ ∗
0 ∗

)
(mod pq).

Since p2x ≡ 0 (mod pq), we see that x = q is the smallest solution.
Thus 1/p has width q, and symmetrically 1/q has width p.

Remark 1.21. For Γ0(N), once we enforce that the bottom left entry is 0
(mod N) and use that the determinant is 1, the coprimality from the other
two congruences is automatic. So there is one congruence to solve in the
Γ0(N) case. There are two congruences in the Γ1(N) case.

1.5. Applications of Modular Forms

The above definition of modular forms might leave the impression that mod-
ular forms occupy an obscure corner of complex analysis. This is not the
case! Modular forms are highly geometric, arithmetic, and topological ob-
jects that are of extreme interest all over mathematics:

10 1. Modular Forms

(1) Fermat’s last theorem: Wiles’ proof [Wil95] of Fermat’s last
theorem uses modular forms extensively. The work of Wiles et al.
on modularity also massively extends computational methods for
elliptic curves over Q, because many elliptic curve algorithms, e.g.,
for computing L-functions, modular degrees, Heegner points, etc.,
require that the elliptic curve be modular.

(2) Diophantine equations: Wiles’ proof of Fermat’s last theorem
has made available a wide array of new techniques for solving cer-
tain diophantine equations. Such work relies crucially on having
access to tables or software for computing modular forms. See,
e.g., [Dar97, Mer99, Che05, SC03]. (Wiles did not need a com-
puter, because the relevant spaces of modular forms that arise in
his proof have dimension 0!) Also, according to Siksek (personal
communication) the paper [BMS06] would “have been entirely im-
possible to write without [the algorithms described in this book].”

(3) Congruent number problem: This ancient open problem is to
determine which integers are the area of a right triangle with ra-
tional side lengths. There is a potential solution that uses modular
forms (of weight 3/2) extensively (the solution is conditional on
truth of the Birch and Swinnerton-Dyer conjecture, which is not
yet known). See [Kob84].

(4) Topology: Topological modular forms are a major area of current
research.

(5) Construction of Ramanujan graphs: Modular forms can be
used to construct almost optimal expander graphs, which play a
role in communications network theory.

(6) Cryptography and Coding Theory: Point counting on elliptic
curves over finite fields is crucial to the construction of elliptic curve
cryptosystems, and modular forms are relevant to efficient algo-
rithms for point counting (see [Elk98]). Algebraic curves that are
associated to modular forms are useful in constructing and studying
certain error-correcting codes (see [Ebe02]).

(7) The Birch and Swinnerton-Dyer conjecture: This central
open problem in arithmetic geometry relates arithmetic proper-
ties of elliptic curves (and abelian varieties) to special values of
L-functions. Most deep results toward this conjecture use modu-
lar forms extensively (e.g., work of Kolyvagin, Gross-Zagier, and
Kato). Also, modular forms are used to compute and prove results
about special values of these L-functions. See [Wil00].

1.6. Exercises 11

(8) Serre’s Conjecture on modularity of Galois representation:

Let GQ = Gal(Q/Q) be the Galois group of an algebraic closure
of Q. Serre conjectured and many people have (nearly!) proved
that every continuous homomorphism ρ : GQ → GL2(Fq), where
Fq is a finite field and det(ρ(complex conjugation)) = −1, “arises”
from a modular form. More precisely, for almost all primes p the
coefficients ap of a modular (eigen-)form

∑
anqn are congruent to

the traces of elements ρ(Frobp), where Frobp are certain special
elements of GQ called Frobenius elements. See [RS01] and [DS05,
Ch. 9].

(9) Generating functions for partitions: The generating functions
for various kinds of partitions of an integer can often be related to
modular forms. Deep theorems about modular forms then translate
into results about partitions. See work of Ramanujan, Gordon,
Andrews, and Ahlgren and Ono (e.g., [AO01]).

(10) Lattices: If L ⊂ Rn is an even unimodular lattice (the basis matrix
has determinant ±1 and λ · λ ∈ 2Z for all λ ∈ L), then the theta
series

θL(q) =
∑

λ∈L

qλ·λ

is a modular form of weight n/2. The coefficient of qm is the num-
ber of lattice vectors with squared length m. Theorems and com-
putational methods for modular forms translate into theorems and
computational methods for lattices. For example, the 290 theorem
of M. Bharghava and J. Hanke is a theorem about lattices, which
asserts that an integer-valued quadratic form represents all posi-
tive integers if and only if it represents the integers up to 290; it
is proved by doing many calculations with modular forms (both
theoretical and with a computer).

1.6. Exercises

1.1 Suppose γ =
(

a b
c d

)
∈ GL2(R) has positive determinant. Prove that

if z ∈ C is a complex number with positive imaginary part, then
the imaginary part of γ(z) = (az + b)/(cz + d) is also positive.

1.2 Prove that every rational function (quotient of two polynomials) is
a meromorphic function on C.

1.3 Suppose f and g are weakly modular functions for a congruence
subgroup Γ with f 6= 0.
(a) Prove that the product fg is a weakly modular function for Γ.
(b) Prove that 1/f is a weakly modular function for Γ.

12 1. Modular Forms

(c) If f and g are modular functions, show that fg is a modular
function for Γ.

(d) If f and g are modular forms, show that fg is a modular form
for Γ.

1.4 Suppose f is a weakly modular function of odd weight k and level
Γ0(N) for some N . Show that f = 0.

1.5 Prove that SL2(Z) = Γ0(1) = Γ1(1) = Γ(1).

1.6 (a) Prove that Γ1(N) is a group.
(b) Prove that Γ1(N) has finite index in SL2(Z) (Hint: It contains

the kernel of the homomorphism SL2(Z) → SL2(Z/NZ).)
(c) Prove that Γ0(N) has finite index in SL2(Z).
(d) Prove that Γ0(N) and Γ1(N) have level N .

1.7 Let k be an integer, and for any function f : h∗ → C and γ =(
a b
c d

)
∈ GL2(Q), set f [γ]k(z) = det(γ)k−1 · (cz + d)−k · f(γ(z)).

Prove that if γ1, γ2 ∈ GL2(Z), then for all z ∈ h∗ we have

f [γ1γ2]k(z) = ((f [γ1]k)[γ2]k)(z).

1.8 Prove that for any α, β ∈ P1(Q), there exists γ ∈ SL2(Z) such that
γ(α) = β.

1.9 Prove Proposition 1.13, which asserts that the set of cusps C(Γ),
for any congruence subgroup Γ, is finite.

1.10 Use Algorithm 1.19 to give an example of a group Γ and cusp α
with width 2.

Chapter 2

Modular Forms of

Level 1

In this chapter we study in detail the structure of level 1 modular forms,
i.e., modular forms on SL2(Z) = Γ0(1) = Γ1(1). We assume some complex
analysis (e.g., the residue theorem), linear algebra, and that the reader has
read Chapter 1.

2.1. Examples of Modular Forms of Level 1

In this section we will finally see some examples of modular forms of level 1!
We first introduce the Eisenstein series and then define ∆, which is a cusp
form of weight 12. In Section 2.2 we prove the structure theorem, which
says that all modular forms of level 1 are polynomials in Eisenstein series.

For an even integer k ≥ 4, the nonnormalized weight k Eisenstein series
is the function on the extended upper half plane h∗ = h ∪ P1(Q) given by

(2.1.1) Gk(z) =
∗∑

m,n∈Z

1

(mz + n)k
.

The star on top of the sum symbol means that for each z the sum is over
all m, n ∈ Z such that mz + n 6= 0.

Proposition 2.1. The function Gk(z) is a modular form of weight k, i.e.,
Gk ∈ Mk(SL2(Z)).

13

14 2. Modular Forms of Level 1

Proof. See [Ser73, § VII.2.3] for a proof that Gk(z) defines a holomorphic
function on h∗. To see that Gk is modular, observe that

Gk(z + 1) =
∗∑ 1

(m(z + 1) + n)k
=

∗∑ 1

(mz + (n + m))k
=

∗∑ 1

(mz + n)k
,

where for the last equality we use that the map (m, n + m) 7→ (m, n) on
Z × Z is invertible. Also,

Gk(−1/z) =

∗∑ 1

(−m/z + n)k

=
∗∑ zk

(−m + nz)k

= zk
∗∑ 1

(mz + n)k
= zkGk(z),

where we use that (n,−m) 7→ (m, n) is invertible. ¤

Proposition 2.2. Gk(∞) = 2ζ(k), where ζ is the Riemann zeta function.

Proof. As z → ∞ (along the imaginary axis) in (2.1.1), the terms that
involve z with m 6= 0 go to 0. Thus

Gk(∞) =
∗∑

n∈Z

1

nk
.

This sum is twice ζ(k) =
∑

n≥1
1

nk , as claimed. ¤

2.1.1. The Cusp Form ∆. Suppose E = C/Λ is an elliptic curve over C,
viewed as a quotient of C by a lattice Λ = Zω1 + Zω2, with ω1/ω2 ∈ h (see
[DS05, §1.4]). The Weierstrass ℘-function of the lattice Λ is

℘ = ℘Λ(u) =
1

u2
+

∑

k=4,6,8,...

(k − 1)Gk(ω1/ω2)u
k−2,

where the sum is over even integers k ≥ 4. It satisfies the differential equa-
tion

(℘′)2 = 4℘3 − 60G4(ω1/ω2)℘ − 140G6(ω1/ω2).

If we set x = ℘ and y = ℘′, the above is an (affine) equation of the form
y2 = ax3+bx+c for an elliptic curve that is complex analytically isomorphic
to C/Λ (see [Ahl78, pg. 277] for why the cubic has distinct roots).

The discriminant of the cubic

4x3 − 60G4(ω1/ω2)x − 140G6(ω1/ω2)

is 16D(ω1/ω2), where

D(z) = (60G4(z))3 − 27(140G6(z))2.

2.1. Examples of Modular Forms of Level 1 15

Since D(z) is the difference of two modular forms of weight 12 it has weight
12. Moreover,

D(∞) = (60G4(∞))3 − 27 (140G6(∞))2

=

(
60

32 · 5π4

)3

− 27

(
140 · 2
33 · 5 · 7π6

)2

= 0,

so D is a cusp form of weight 12. Let

∆ =
D

(2π)12
.

Lemma 2.3. If z ∈ h, then ∆(z) 6= 0.

Proof. Let ω1 = z and ω2 = 1. Since E = C/(Zω1 + Zω2) is an elliptic
curve, it has nonzero discriminant ∆(z) = ∆(ω1/ω2) 6= 0. ¤

Proposition 2.4. We have ∆ = q · ∏∞
n=1(1 − qn)24.

Proof. See [Ser73, Thm. 6, pg. 95]. ¤

Remark 2.5. SAGE computes the q-expansion of ∆ efficiently to high pre-
cision using the command delta qexp:

sage: delta_qexp(6)

q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6)

2.1.2. Fourier Expansions of Eisenstein Series. Recall from (1.2.4)
that elements f of Mk(SL2(Z)) can be expressed as formal power series in
terms of q(z) = e2πiz and that this expansion is called the Fourier expansion
of f . The following proposition gives the Fourier expansion of the Eisenstein
series Gk(z).

Definition 2.6 (Sigma). For any integer t ≥ 0 and any positive integer n,
the sigma function

σt(n) =
∑

1≤d|n
dt

is the sum of the tth powers of the positive divisors of n. Also, let d(n) =
σ0(n), which is the number of divisors of n, and let σ(n) = σ1(n). For
example, if p is prime, then σt(p) = 1 + pt.

Proposition 2.7. For every even integer k ≥ 4, we have

Gk(z) = 2ζ(k) + 2 · (2πi)k

(k − 1)!
·

∞∑

n=1

σk−1(n)qn.

16 2. Modular Forms of Level 1

Proof. See [Ser73, Section VII.4], which uses clever manipulations of series,
starting with the identity

π cot(πz) =
1

z
+

∞∑

m=1

(
1

z + m
+

1

z − m

)
.

¤

From a computational point of view, the q-expansion of Proposition 2.7
is unsatisfactory because it involves transcendental numbers. To understand
these numbers, we introduce the Bernoulli numbers Bn for n ≥ 0 defined by
the following equality of formal power series:

(2.1.2)
x

ex − 1
=

∞∑

n=0

Bn
xn

n!
.

Expanding the power series, we have

x

ex − 1
= 1 − x

2
+

x2

12
− x4

720
+

x6

30240
− x8

1209600
+ · · · .

As this expansion suggests, the Bernoulli numbers Bn with n > 1 odd are 0
(see Exercise 1.2). Expanding the series further, we obtain the following
table:

B0 = 1, B1 = −1

2
, B2 =

1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
,

B10 =
5

66
, B12 = − 691

2730
, B14 =

7

6
, B16 = −3617

510
, B18 =

43867

798
,

B20 = −174611

330
, B22 =

854513

138
, B24 = −236364091

2730
, B26 =

8553103

6
.

See Section 2.7 for a discussion of fast (analytic) methods for computing
Bernoulli numbers.

We compute some Bernoulli numbers in SAGE:

sage: bernoulli(12)

-691/2730

sage: bernoulli(50)

495057205241079648212477525/66

sage: len(str(bernoulli(10000)))

27706

A key fact is that Bernoulli numbers are rational numbers and they are
connected to values of ζ at positive even integers.

2.2. Structure Theorem for Level 1 Modular Forms 17

Proposition 2.8. If k ≥ 2 is an even integer, then

ζ(k) = −(2πi)k

2 · k!
· Bk.

Proof. This is proved by manipulating a series expansion of z cot(z) (see
[Ser73, Section VII.4]). ¤

Definition 2.9 (Normalized Eisenstein Series). The normalized Eisenstein
series of even weight k ≥ 4 is

Ek =
(k − 1)!

2 · (2πi)k
· Gk.

Combining Propositions 2.7 and 2.8, we see that

(2.1.3) Ek = −Bk

2k
+ q +

∞∑

n=2

σk−1(n)qn.

Warning 2.10. Our series Ek is normalized so that the coefficient of q
is 1, but often in the literature Ek is normalized so that the constant coef-
ficient is 1. We use the normalization with the coefficient of q equal to 1,
because then the eigenvalue of the nth Hecke operator (see Section 2.4) is
the coefficient of qn. Our normalization is also convenient when considering
congruences between cusp forms and Eisenstein series.

2.2. Structure Theorem for Level 1 Modular Forms

In this section we describe a structure theorem for modular forms of level 1.
If f is a nonzero meromorphic function on h and w ∈ h, let ordw(f) be
the largest integer n such that f(z)/(w − z)n is holomorphic at w. If f =∑∞

n=m anqn with am 6= 0, we set ord∞(f) = m. We will use the following
theorem to give a presentation for the vector space of modular forms of
weight k; this presentation yields an algorithm to compute this space.

Let Mk = Mk(SL2(Z)) denote the complex vector space of modular
forms of weight k for SL2(Z). The standard fundamental domain F for

SL2(Z) is the set of z ∈ h with |z| ≥ 1 and |Re(z)| ≤ 1/2. Let ρ = e2πi/3.

Theorem 2.11 (Valence Formula). Let k be any integer and suppose f ∈
Mk(SL2(Z)) is nonzero. Then

ord∞(f) +
1

2
ordi(f) +

1

3
ordρ(f) +

∗∑

w∈F
ordw(f) =

k

12
,

where
∗∑

w∈F
is the sum over elements of F other than i and ρ.

18 2. Modular Forms of Level 1

Proof. The proof in [Ser73, §VII.3] uses the residue theorem. ¤

Let Sk = Sk(SL2(Z)) denote the subspace of weight k cusp forms for
SL2(Z). We have an exact sequence

0 → Sk → Mk
ι∞−−→ C

that sends f ∈ Mk to f(∞). When k ≥ 4 is even, the space Mk contains
the Eisenstein series Gk, and Gk(∞) = 2ζ(k) 6= 0, so the map Mk → C is
surjective. This proves the following lemma.

Lemma 2.12. If k ≥ 4 is even, then Mk = Sk ⊕ CGk and the following
sequence is exact:

0 → Sk → Mk
ι∞−−→ C → 0.

Proposition 2.13. For k < 0 and k = 2, we have Mk = 0.

Proof. Suppose f ∈ Mk is nonzero yet k = 2 or k < 0. By Theorem 2.11,

ord∞(f) +
1

2
ordi(f) +

1

3
ordρ(f) +

∗∑

w∈D

ordw(f) =
k

12
≤ 1

6
.

This is not possible because each quantity on the left is nonnegative so
whatever the sum is, it is too big (or 0, in which case k = 0). ¤

Theorem 2.14. Multiplication by ∆ defines an isomorphism Mk−12 → Sk.

Proof. By Lemma 2.3, ∆ is not identically 0, so because ∆ is holomorphic,
multiplication by ∆ defines an injective map Mk−12 →֒ Sk. To see that this
map is surjective, we show that if f ∈ Sk, then f/∆ ∈ Mk−12. Since ∆ has
weight 12 and ord∞(∆) ≥ 1, Theorem 2.11 implies that ∆ has a simple zero
at ∞ and does not vanish on h. Thus if f ∈ Sk and if we let g = f/∆,
then g is holomorphic and satisfies the appropriate transformation formula,
so g ∈ Mk−12. ¤

Corollary 2.15. For k = 0, 4, 6, 8, 10, 14, the space Mk has dimension 1,
with basis 1, G4, G6, G8, G10, and G14, respectively, and Sk = 0.

Proof. Combining Proposition 2.13 with Theorem 2.14, we see that the
spaces Mk for k ≤ 10 cannot have dimension greater than 1, since otherwise
Mk′ 6= 0 for some k′ < 0. Also M14 has dimension at most 1, since M2

has dimension 0. Each of the indicated spaces of weight ≥ 4 contains the
indicated Eisenstein series and so has dimension 1, as claimed. ¤

Corollary 2.16. dimMk =





0 if k is odd or negative,

⌊k/12⌋ if k ≡ 2 (mod 12),

⌊k/12⌋ + 1 if k 6≡ 2 (mod 12).

Here ⌊x⌋ is the biggest integer ≤ x.

2.2. Structure Theorem for Level 1 Modular Forms 19

Proof. As we have already seen above, the formula is true when k ≤ 12. By
Theorem 2.14, the dimension increases by 1 when k is replaced by k+12. ¤

Theorem 2.17. The space Mk has as basis the modular forms Ga
4G

b
6, where

a, b run over all pairs of nonnegative integers such that 4a + 6b = k.

Proof. Fix an even integer k. We first prove by induction that the modular
forms Ga

4G
b
6 generate Mk; the cases k ≤ 10 and k = 14 follow from the

above arguments (e.g., when k = 0, we have a = b = 0 and basis 1). Choose
some pair of nonnegative integers a, b such that 4a + 6b = k. The form
g = Ga

4G
b
6 is not a cusp form, since it is nonzero at ∞. Now suppose f ∈ Mk

is arbitrary. Since g(∞) 6= 0, there exists α ∈ C such that f − αg ∈ Sk.
Then by Theorem 2.14, there is h ∈ Mk−12 such that f − αg = ∆ · h. By
induction, h is a polynomial in G4 and G6 of the required type, and so is ∆,
so f is as well. Thus

{Ga
4G

b
6 | a ≥ 0, b ≥ 0, 4a + 6b = k}

spans Mk.

Suppose there is a nontrivial linear relation between the Ga
4G

b
6 for a

given k. By multiplying the linear relation by a suitable power of G4 and G6,
we may assume that we have such a nontrivial relation with k ≡ 0 (mod 12).

Now divide the linear relation by the weight k form G
k/6
6 to see that G3

4/G2
6

satisfies a polynomial with coefficients in C (see Exercise 2.4). Hence G3
4/G2

6

is a root of a polynomial, hence a constant, which is a contradiction since
the q-expansion of G3

4/G2
6 is not constant. ¤

Algorithm 2.18 (Basis for Mk). Given integers n and k, this algorithm
computes a basis of q-expansions for the complex vector space Mk mod qn.
The q-expansions output by this algorithm have coefficients in Q.

(1) [Simple Case] If k = 0, output the basis with just 1 in it and
terminate; otherwise if k < 4 or k is odd, output the empty basis
and terminate.

(2) [Power Series] Compute E4 and E6 mod qn using the formula from
(2.1.3) and Section 2.7.

(3) [Initialize] Set b = 0.

(4) [Enumerate Basis] For each integer b between 0 and ⌊k/6⌋, compute
a = (k − 6b)/4. If a is an integer, compute and output the basis
element Ea

4Eb
6 mod qn. When computing Ea

4 , find Em
4 (mod qn)

for each m ≤ a, and save these intermediate powers, so they can
be reused later, and likewise for powers of E6.

20 2. Modular Forms of Level 1

Proof. This is simply a translation of Theorem 2.17 into an algorithm,
since Ek is a nonzero scalar multiple of Gk. That the q-expansions have
coefficients in Q follows from (2.1.3). ¤

Example 2.19. We compute a basis for M24, which is the space with small-
est weight whose dimension is greater than 1. It has as basis E6

4 , E3
4E2

6 , and
E4

6 , whose explicit expansions are

E6
4 =

1

191102976000000
+

1

132710400000
q +

203

44236800000
q2 + · · · ,

E3
4E2

6 =
1

3511517184000
− 1

12192768000
q − 377

4064256000
q2 + · · · ,

E4
6 =

1

64524128256
− 1

32006016
q +

241

10668672
q2 + · · · .

We compute this basis in SAGE as follows:

sage: E4 = eisenstein_series_qexp(4, 3)

sage: E6 = eisenstein_series_qexp(6, 3)

sage: E4^6

1/191102976000000 + 1/132710400000*q

+ 203/44236800000*q^2 + O(q^3)

sage: E4^3*E6^2

1/3511517184000 - 1/12192768000*q

- 377/4064256000*q^2 + O(q^3)

sage: E6^4

1/64524128256 - 1/32006016*q + 241/10668672*q^2 + O(q^3)

In Section 2.3, we will discuss the reduced echelon form basis for Mk.

2.3. The Miller Basis

Lemma 2.20 (V. Miller). The space Sk has a basis f1, . . . , fd such that if
ai(fj) is the ith coefficient of fj, then ai(fj) = δi,j for i = 1, . . . , d. Moreover
the fj all lie in Z[[q]]. We call this basis the Miller basis for Sk.

This is a straightforward construction involving E4, E6 and ∆. The
following proof very closely follows [Lan95, Ch. X, Thm. 4.4], which in turn
follows the first lemma of V. Miller’s thesis.

Proof. Let d = dimSk. Since B4 = −1/30 and B6 = 1/42, we note that

F4 = − 8

B4
· E4 = 1 + 240q + 2160q2 + 6720q3 + 17520q4 + · · ·

2.3. The Miller Basis 21

and

F6 = − 12

B6
· E6 = 1 − 504q − 16632q2 − 122976q3 − 532728q4 + · · ·

have q-expansions in Z[[q]] with leading coefficient 1. Choose integers a, b ≥
0 such that

4a + 6b ≤ 14 and 4a + 6b ≡ k (mod 12),

with a = b = 0 when k ≡ 0 (mod 12), and let

gj = ∆jF
2(d−j)+b
6 F a

4 =

(
∆

F 2
6

)j

F 2d+b
6 F a

4 , for j = 1, . . . , d.

Then it is elementary to check that gj has weight k

aj(gj) = 1 and ai(gj) = 0 when i < j.

Hence the gj are linearly independent over C, so form a basis for Sk. Since
F4, F6, and ∆ are all in Z[[q]], so are the gj . The fi may then be constructed
from the gj by Gauss elimination. The coefficients of the resulting power
series lie in Z because each time we clear a column we use the power series
gj whose leading coefficient is 1 (so no denominators are introduced). ¤

Remark 2.21. The basis coming from Miller’s lemma is “canonical”, since
it is just the reduced row echelon form of any basis. Also the set of all
integral linear combinations of the elements of the Miller basis are precisely
the modular forms of level 1 with integral q-expansion.

We extend the Miller basis to all Mk by taking a multiple of Gk with
constant term 1 and subtracting off the fi from the Miller basis so that the
coefficients of q, q2, . . . qd of the resulting expansion are 0. We call the extra
basis element f0.

Example 2.22. If k = 24, then d = 2. Choose a = b = 0, since k ≡ 0
(mod 12). Then

g1 = ∆F 2
6 = q − 1032q2 + 245196q3 + 10965568q4 + 60177390q5 − · · ·

and

g2 = ∆2 = q2 − 48q3 + 1080q4 − 15040q5 + · · · .

We let f2 = g2 and

f1 = g1 + 1032g2 = q + 195660q3 + 12080128q4 + 44656110q5 − · · · .

22 2. Modular Forms of Level 1

Example 2.23. When k = 36, the Miller basis including f0 is

f0 = 1 + 6218175600q4 + 15281788354560q5 + · · · ,

f1 = q + 57093088q4 + 37927345230q5 + · · · ,

f2 = q2 + 194184q4 + 7442432q5 + · · · ,

f3 = q3 − 72q4 + 2484q5 + · · · .

Example 2.24. The SAGE command victor miller basis computes the
Miller basis to any desired precision for a given k.

sage: victor_miller_basis(28,5)

[

1 + 15590400*q^3 + 36957286800*q^4 + O(q^5),

q + 151740*q^3 + 61032448*q^4 + O(q^5),

q^2 + 192*q^3 - 8280*q^4 + O(q^5)

]

Remark 2.25. To write f ∈ Mk as a polynomial in E4 and E6, it is wasteful
to compute the Miller basis. Instead, use the upper triangular (but not

echelon!) basis ∆jF
2(d−j)+a
6 F b

4 , and match coefficients from q0 to qd.

2.4. Hecke Operators

In this section we define Hecke operators on level 1 modular forms and derive
their basic properties. We will not give proofs of the analogous properties for
Hecke operators on higher level modular forms, since the proofs are clearest
in the level 1 case, and the general case is similar (see, e.g., [Lan95]).

For any positive integer n, let

Xn =

{(
a b
0 d

)
∈ Mat2(Z) : a ≥ 1, ad = n, and 0 ≤ b < d

}
.

Note that the set Xn is in bijection with the set of subgroups of Z2 of
index n, where

(
a b
c d

)
corresponds to L = Z · (a, b) + Z · (0, d), as one can see

using Hermite normal form, which is the analogue over Z of echelon form
(see Exercise 7.5).

Recall from (1.3.1) that if γ =
(

a b
c d

)
∈ GL2(Q), then

f [γ]k = det(γ)k−1(cz + d)−kf(γ(z)).

Definition 2.26 (Hecke Operator Tn,k). The nth Hecke operator Tn,k of
weight k is the operator on the set of functions on h defined by

Tn,k(f) =
∑

γ∈Xn

f [γ]k .

2.4. Hecke Operators 23

Remark 2.27. It would make more sense to write Tn,k on the right, e.g.,
f |Tn,k, since Tn,k is defined using a right group action. However, if n, m
are integers, then the action of Tn,k and Tm,k on weakly modular functions
commutes (by Proposition 2.29 below), so it makes no difference whether
we view the Hecke operators of given weight k as acting on the right or left.

Proposition 2.28. If f is a weakly modular function of weight k, then so
is Tn,k(f); if f is a modular function, then so is Tn,k(f).

Proof. Suppose γ ∈ SL2(Z). Since γ induces an automorphism of Z2,

Xn · γ = {δγ : δ ∈ Xn}
is also in bijection with the subgroups of Z2 of index n. For each element
δγ ∈ Xn · γ, there is σ ∈ SL2(Z) such that σδγ ∈ Xn (the element σ
transforms δγ to Hermite normal form), and the set of elements σδγ is thus
equal to Xn. Thus

Tn,k(f) =
∑

σδγ∈Xn

f [σδγ]k =
∑

δ∈Xn

f [δγ]k = Tn,k(f)[γ]k .

A finite sum of meromorphic function is meromorphic, so Tn,k(f) is weakly

modular. If f is holomorphic on h, then each f [δ]k is holomorphic on h for
δ ∈ Xn. A finite sum of holomorphic functions is holomorphic, so Tn,k(f) is
holomorphic.

¤

We will frequently drop k from the notation in Tn,k, since the weight k
is implicit in the modular function to which we apply the Hecke operator.
Henceforth we make the convention that if we write Tn(f) and if f is mod-
ular, then we mean Tn,k(f), where k is the weight of f .

Proposition 2.29. On weight k modular functions we have

(2.4.1) Tmn = TmTn if (m, n) = 1,

and

(2.4.2) Tpn = Tpn−1Tp − pk−1Tpn−2 if p is prime.

Proof. Let L be a subgroup of index mn. The quotient Z2/L is an abelian
group of order mn, and (m, n) = 1, so Z2/L decomposes uniquely as a
direct sum of a subgroup of order m with a subgroup of order n. Thus there
exists a unique subgroup L′ such that L ⊂ L′ ⊂ Z2, and L′ has index m
in Z2. The subgroup L′ corresponds to an element of Xm, and the index n
subgroup L ⊂ L′ corresponds to multiplying that element on the right by
some uniquely determined element of Xn. We thus have

SL2(Z) · Xm · Xn = SL2(Z) · Xmn,

24 2. Modular Forms of Level 1

i.e., the set products of elements in Xm with elements of Xn equal the
elements of Xmn, up to SL2(Z)-equivalence. Thus for any f , we have
Tmn(f) = Tn(Tm(f)). Applying this formula with m and n swapped yields
the equality Tmn = TmTn.

We will show that Tpn + pk−1Tpn−2 = TpTpn−1 . Suppose f is a weight k

weakly modular function. Using that f
[
“

p 0
0 p

”
]k = (p2)k−1p−kf = pk−2f , we

have ∑

x∈Xpn

f [x]k + pk−1
∑

x∈X
pn−2

f [x]k =
∑

x∈Xpn

f [x]k + p
∑

x∈pX
pn−2

f [x]k .

Also
TpTpn−1(f) =

∑

y∈Xp

∑

x∈X
pn−1

(f [x]k)[y]k =
∑

x∈X
pn−1 ·Xp

f [x]k .

Thus it suffices to show that Xpn disjoint union p copies of pXpn−2 is equal
to Xpn−1 ·Xp, where we consider elements with multiplicities and up to left
SL2(Z)-equivalence (i.e., the left action of SL2(Z)).

Suppose L is a subgroup of Z2 of index pn, so L corresponds to an
element of Xpn . First suppose L is not contained in pZ2. Then the image
of L in Z2/pZ2 = (Z/pZ)2 is of order p, so if L′ = pZ2 +L, then [Z2 : L′] = p
and [L : L′] = pn−1, and L′ is the only subgroup with this property. Second,
suppose that L ⊂ pZ2 if of index pn and that x ∈ Xpn corresponds to L.
Then every one of the p + 1 subgroups L′ ⊂ Z2 of index p contains L. Thus
there are p + 1 chains L ⊂ L′ ⊂ Z2 with [Z2 : L′] = p.

The chains L ⊂ L′ ⊂ Z2 with [Z2 : L′] = p and [Z2 : L] = pn−1 are in
bijection with the elements of Xpn−1 · Xp. On the other hand the union of
Xpn with p copies of pXpn−2 corresponds to the subgroups L of index pn,

but with those that contain pZ2 counted p + 1 times. The structure of the
set of chains L ⊂ L′ ⊂ Z2 that we derived in the previous paragraph gives
the result. ¤

Corollary 2.30. The Hecke operator Tpn, for prime p, is a polynomial in
Tp with integer coefficients, i.e., Tpn ∈ Z[Tp]. If n, m are any integers, then
TnTm = TmTn.

Proof. The first statement follows from (2.4.2) of Proposition 2.29. It then
follows that TnTm = TmTn when m and n are both powers of a single prime p.
Combining this with (2.4.1) gives the second statement in general. ¤

Proposition 2.31. Let f =
∑

n∈Z anqn be a modular function of weight k.
Then

Tn(f) =
∑

m∈Z


 ∑

1≤d | gcd(n,m)

dk−1amn/d2


 qm.

2.4. Hecke Operators 25

In particular, if n = p is prime, then

Tp(f) =
∑

m∈Z

(
amp + pk−1am/p

)
qm,

where am/p = 0 if m/p 6∈ Z.

Proof. This is proved in [Ser73, §VII.5.3] by writing out Tn(f) explicitly

and using that
∑

0≤b<d e2πibm/d is d if d | m and 0 otherwise. ¤

Corollary 2.32. The Hecke operators preserve Mk and Sk.

Remark 2.33. Alternatively, for Mk the above corollary is Proposition 2.28,
and for Sk we see from the definitions that if f(∞) = 0, then Tnf also
vanishes at ∞.

Example 2.34. Recall from (2.1.3) that

E4 =
1

240
+ q + 9q2 + 28q3 + 73q4 + 126q5 + 252q6 + 344q7 + · · · .

Using the formula of Proposition 2.31, we see that

T2(E4) = (1/240 + 23 · (1/240)) + 9q + (73 + 23 · 1)q2 + · · · .

Since M4 has dimension 1 and since we have proved that T2 preserves M4,
we know that T2 acts as a scalar. Thus we know just from the constant
coefficient of T2(E4) that

T2(E4) = 9E4.

More generally, for p prime we see by inspection of the constant coefficient
of Tp(E4) that

Tp(E4) = (1 + p3)E4.

In fact Tn(Ek) = σk−1(n)Ek, for any integer n ≥ 1 and even weight k ≥ 4.

Example 2.35. By Corollary 2.32, the Hecke operators Tn also preserve
the subspace Sk of Mk. Since S12 has dimension 1 (spanned by ∆), we
see that ∆ is an eigenvector for every Tn. Since the coefficient of q in the
q-expansion of ∆ is 1, the eigenvalue of Tn on ∆ is the nth coefficient of ∆.
Since Tnm = TnTm for gcd(n, m) = 1, we have proved the nonobvious fact
that the Ramanujan function τ(n) that gives the nth coefficient of ∆ is a
multiplicative function, i.e., if gcd(n, m) = 1, then τ(nm) = τ(n)τ(m).

Remark 2.36. The Hecke operators respect the decomposition Mk = Sk ⊕
CEk, i.e., for all k the series Ek are eigenvectors for all Tn.

26 2. Modular Forms of Level 1

2.5. Computing Hecke Operators

This section is about how to compute matrices of Hecke operators on Mk.

Algorithm 2.37 (Hecke Operator). This algorithm computes the matrix of
the Hecke operator Tn on the Miller basis for Mk.

(1) [Dimension] Compute d = dim(Mk) − 1 using Corollary 2.16.

(2) [Basis] Using Lemma 2.20, compute the echelon basis f0, . . . , fd for
Mk (mod qdn+1).

(3) [Hecke operator] Using Proposition 2.31, compute for each i the
image Tn(fi) (mod qd+1) .

(4) [Write in terms of basis] The elements Tn(fi) (mod qd+1) determine
linear combinations of

f0, f1, . . . , fd (mod qd).

These linear combinations are easy to find once we compute Tn(fi)
(mod qd+1), since our basis of fi is in echelon form. The linear
combinations are just the coefficients of the power series Tn(fi) up
to and including qd.

(5) [Write down matrix] The matrix of Tn acting from the right rela-
tive to the basis f0, . . . , fd is the matrix whose rows are the linear
combinations found in the previous step, i.e., whose rows are the
coefficients of Tn(fi).

Proof. By Proposition 2.31, the dth coefficient of Tn(f) involves only adn

and smaller-indexed coefficients of f . We need only compute a modular
form f modulo qdn+1 in order to compute Tn(f) modulo qd+1. Uniqueness
in step (4) follows from Lemma 2.20 above. ¤

Example 2.38. We compute the Hecke operator T2 on M12 using the above
algorithm.

(1) [Compute dimension] We have d = 2 − 1 = 1.

(2) [Compute basis] Compute up to (but not including) the coefficient
of qdn+1 = q1·2+1 = q3. As given in the proof of Lemma 2.20, we
have

F4 = 1 + 240q + 2160q2 + · · · and F6 = 1 − 504q − 16632q2 + · · · .

Thus M12 has basis

F 3
4 = 1+720q+179280q2+· · · and ∆ = (F 3

4 −F 2
6)/1728 = q−24q2+· · · .

Subtracting 720∆ from F 3
4 yields the echelon basis, which is

f0 = 1 + 196560q2 + · · · and f1 = q − 24q2 + · · · .

SAGE does the arithmetic in the above calculation as follows:

2.5. Computing Hecke Operators 27

sage: R.<q> = QQ[[’q’]]

sage: F4 = 240 * eisenstein_series_qexp(4,3)

sage: F6 = -504 * eisenstein_series_qexp(6,3)

sage: F4^3

1 + 720*q + 179280*q^2 + O(q^3)

sage: Delta = (F4^3 - F6^2)/1728; Delta

q - 24*q^2 + O(q^3)

sage: F4^3 - 720*Delta

1 + 196560*q^2 + O(q^3)

(3) [Compute Hecke operator] In each case letting an denote the nth
coefficient of f0 or f1, respectively, we have

T2(f0) = T2(1 + 196560q2 + · · ·)
= (a0 + 211a0)q

0 + (a2 + 211a1/2)q
1 + · · ·

= 2049 + 196560q + · · · ,

and

T2(f1) = T2(q − 24q2 + · · ·)
= (a0 + 211a0)q

0 + (a2 + 211a1/2)q
1 + · · ·

= 0 − 24q + · · · .

(Note that a1/2 = 0.)

(4) [Write in terms of basis] We read off at once that

T2(f0) = 2049f0 + 196560f1 and T2(f1) = 0f0 + (−24)f1.

(5) [Write down matrix] Thus the matrix of T2, acting from the right
on the basis f0, f1, is

T2 =

(
2049 196560

0 −24

)
.

As a check note that the characteristic polynomial of T2 is (x−2049)(x+24)
and that 2049 = 1 + 211 is the sum of the 11th powers of the divisors of 2.

Example 2.39. The Hecke operator T2 on M36 with respect to the echelon
basis is 



34359738369 0 6218175600 9026867482214400
0 0 34416831456 5681332472832
0 1 194184 −197264484
0 0 −72 −54528


 .

It has characteristic polynomial

(x − 34359738369) · (x3 − 139656x2 − 59208339456x − 1467625047588864),

28 2. Modular Forms of Level 1

where the cubic factor is irreducible.

The echelon form() command creates the space of modular forms but
with basis in echelon form (which is not the default).

sage: M = ModularForms(1,36, prec=6).echelon_form()

sage: M.basis()

[

1 + 6218175600*q^4 + 15281788354560*q^5 + O(q^6),

q + 57093088*q^4 + 37927345230*q^5 + O(q^6),

q^2 + 194184*q^4 + 7442432*q^5 + O(q^6),

q^3 - 72*q^4 + 2484*q^5 + O(q^6)

]

Next we compute the matrix of the Hecke operator T2.

sage: T2 = M.hecke_matrix(2); T2

[34359738369 0 6218175600 9026867482214400]

[0 0 34416831456 5681332472832]

[0 1 194184 -197264484]

[0 0 -72 -54528]

Finally we compute and factor its characteristic polynomial.

sage: T2.charpoly().factor()

(x - 34359738369) *

(x^3 - 139656*x^2 - 59208339456*x - 1467625047588864)

The following is a famous open problem about Hecke operators on mod-
ular forms of level 1. It generalizes our above observation that the charac-
teristic polynomial of T2 on Mk, for k = 12, 36, factors as a product of a
linear factor and an irreducible factor.

Conjecture 2.40 (Maeda). The characteristic polynomial of T2 on Sk is
irreducible for any k.

Kevin Buzzard observed that in several specific cases the Galois group of
the characteristic polynomial of T2 is the full symmetric group (see [Buz96]).
See also [FJ02] for more evidence for the following conjecture:

Conjecture 2.41. For all primes p and all even k ≥ 2 the characteristic
polynomial of Tp,k acting on Sk is irreducible.

2.7. Fast Computation of Bernoulli Numbers 29

2.6. Fast Computation of Fourier Coefficients

How difficult is it to compute prime-indexed coefficients of

∆ =
∞∑

n=1

τ(n)qn = q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 + · · ·?

Theorem 2.42 (Bosman, Couveignes, Edixhoven, de Jong, Merkl). Let p
be a prime. There is a probabilistic algorithm to compute τ(p), for prime p,
that has expected running time polynomial in log(p).

Proof. See [ECdJ+06]. ¤

More generally, if f =
∑

anqn is an eigenform in some space Mk(Γ1(N)),
where k ≥ 2, then one expects that there is an algorithm to compute ap

in time polynomial in log(p). Bas Edixhoven, Jean-Marc Couveignes and
Robin de Jong have proved that τ(p) can be computed in polynomial time;
their approach involves sophisticated techniques from arithmetic geometry
(e.g., étale cohomology, motives, Arakelov theory). The ideas they use are
inspired by the ones introduced by Schoof, Elkies and Atkin for quickly
counting points on elliptic curves over finite fields (see [Sch95]).

Edixhoven describes (in an email to the author) the strategy as follows:

(1) We compute the mod ℓ Galois representation ρ associated to ∆.
In particular, we produce a polynomial f such that Q[x]/(f) is the
fixed field of ker(ρ). This is then used to obtain τ(p) (mod ℓ) and
to do a Schoof-like algorithm for computing τ(p).

(2) We compute the field of definition of suitable points of order ℓ on
the modular Jacobian J1(ℓ) to do part (1) (see [DS05, Ch. 6] for
the definition of J1(ℓ)).

(3) The method is to approximate the polynomial f in some sense (e.g.,
over the complex numbers or modulo many small primes r) and to
use an estimate from Arakelov theory to determine a precision that
will suffice.

2.7. Fast Computation of Bernoulli Numbers

This section, which was written jointly with Kevin McGown, is about com-
puting the Bernoulli numbers Bn, for n ≥ 0, defined in Section 2.1.2 by

(2.7.1)
x

ex − 1
=

∞∑

n=0

Bn
xn

n!
.

30 2. Modular Forms of Level 1

One way to compute Bn is to multiply both sides of (2.7.1) by ex − 1
and equate coefficients of xn+1 to obtain the recurrence

B0 = 1, Bn = − 1

n + 1
·

n−1∑

k=0

(
n + 1

k

)
Bk.

This recurrence provides a straightforward and easy-to-implement method
for calculating Bn if one is interested in computing Bn for all n up to some
bound. For example,

B1 = −1

2
·
((

2

0

)
B0

)
= −1

2

and

B2 = −1

3
·
((

3

0

)
B0 +

(
3

1

)
B1

)
= −1

3
·
(

1 − 3

2

)
=

1

6
.

However, computing Bn via the recurrence is slow; it requires summing over
many large terms, it requires storing the numbers B0, . . . , Bn−1, and it takes
only limited advantage of asymptotically fast arithmetic algorithms. There
is also an inductive procedure to compute Bernoulli numbers that resembles
Pascal’s triangle called the Akiyama-Tanigawa algorithm (see [Kan00]).

Another approach to computing Bn is to use Newton iteration and
asymptotically fast polynomial arithmetic to approximate 1/(ex − 1). This
method yields a very fast algorithm to compute B0, B2, . . . , Bp−3 modulo
p. See [BCS92] for an application of this method modulo a prime p to the
verification of Fermat’s last theorem for irregular primes up to one million.

Example 2.43. David Harvey implemented the algorithm of [BCS92] in
SAGE as the command bernoulli mod p:

sage: bernoulli_mod_p(23)

[1, 4, 13, 17, 13, 6, 10, 5, 10, 9, 15]

A third way to compute Bn uses an algorithm based on Proposition 2.8,
which we explain below (Algorithm 2.45). This algorithm appears to have
been independently invented by several people: by Bernd C. Kellner (see
[Kel06]); by Bill Dayl; and by H. Cohen and K. Belabas.

We compute Bn as an exact rational number by approximating ζ(n) to
very high precision using Proposition 2.8, the Euler product

ζ(s) =

∞∑

m=1

m−s =
∏

p prime

(1 − p−s)−1,

and the following theorem:

2.7. Fast Computation of Bernoulli Numbers 31

Theorem 2.44 (Clausen, von Staudt). For even n ≥ 2,

denom(Bn) =
∏

p−1 |n
p.

Proof. See [Lan95, Ch. X, Thm. 2.1]. ¤

2.7.1. The Number of Digits of Bn. The following is a new quick way
to compute the number of digits of the numerator of Bn. For example, using
it we can compute the number of digits of B1050 in less than a second.

By Theorem 2.44 we have dn = denom(Bn) =
∏

p−1|n p. The number of

digits of the numerator is thus

⌈log10(dn · |Bn|)⌉.
But

log(|Bn|) = log

(
2 · n!

(2π)n
ζ(n)

)

= log(2) + log(n!) − n log(2) − n log(π) + log(ζ(n)),

and ζ(n) ∼ 1 so log(ζ(n)) ∼ 0. Finally, Stirling’s formula (see [Ahl78,
pg. 198–206]) gives a fast way to compute log(n!) = log(Γ(n + 1)):
(2.7.2)

log(Γ(z))“ = ”
log(2π)

2
+

(
z − 1

2

)
log(z) − z +

∞∑

m=1

B2m

2m(2m − 1)z2m−1
.

We put quotes around the equality sign because log(Γ(z)) does not converge
to its Laurent series. Indeed, note that for any fixed value of z the summands
on the right side go to ∞ as m → ∞! Nonetheless, we can use this formula
to very efficiently compute log(Γ(z)), since if we truncate the sum, then the
error is smaller than the next term in the infinite sum.

2.7.2. Computing Bn Exactly. We return to the problem of computing
Bn. Let

K =
2 · n!

(2π)n

so that |Bn| = Kζ(n). Write

Bn =
a

d
,

with a, d ∈ Z, d ≥ 1, and gcd(a, d) = 1. It is elementary to show that

a = (−1)n/2+1 |a| for even n ≥ 2. Suppose that using the Euler product we
approximate ζ(n) from below by a number z such that

0 ≤ ζ(m) − z <
1

Kd
.

32 2. Modular Forms of Level 1

Then 0 ≤ |Bn| − zK < d−1; hence 0 ≤ |a| − zKd < 1. It follows that

|a| = ⌈zKd⌉ and hence a = (−1)n/2+1 ⌈zKd⌉.
It remains to compute z. Consider the following problem: given s > 1

and ε > 0, find M ∈ Z+ so that

z =
∏

p≤M

(1 − p−s)−1

satisfies 0 ≤ ζ(s) − z < ε. We always have 0 ≤ ζ(s) − z. Also,
∑

n≤M

n−s ≤
∏

p≤M

(1 − p−s)−1,

so

ζ(s) − z ≤
∞∑

n=M+1

n−s ≤
∫ ∞

M
x−s dx =

1

(s − 1)M s−1
.

Thus if M > ε−1/(s−1), then

1

(s − 1)M s−1
≤ 1

M s−1
< ε ,

so ζ(s) − z < ε, as required. For our purposes, we have s = n and ε =

(Kd)−1, so it suffices to take M > (Kd)1/(n−1).

Algorithm 2.45 (Bernoulli Number Bn). Given an integer n ≥ 0, this
algorithm computes the Bernoulli number Bn as an exact rational number.

(1) [Special cases] If n = 0, return 1; if n = 1, return −1/2; if n ≥ 3 is
odd, return 0.

(2) [Factorial factor] Compute K =
2 · n!

(2π)n
to sufficiently many digits

of precision so the ceiling in step (6) is uniquely determined (this
precision can be determined using Section 2.7.1).

(3) [Denominator] Compute d =
∏

p−1|n
p.

(4) [Bound] Compute M =
⌈
(Kd)1/(n−1)

⌉
.

(5) [Approximate ζ(n)] Compute z =
∏

p≤M

(1 − p−n)−1.

(6) [Numerator] Compute a = (−1)n/2+1 ⌈dKz⌉.
(7) [Output Bn] Return

a

d
.

In step (5) use a sieve to compute all primes p ≤ M efficiently (which
is fast, since M is so small). In step (4) we may replace M by any integer
greater than the one specified by the formula, so we do not have to compute
(Kd)1/(n−1) to very high precision.

In Section 5.2.2 below we will generalize the above algorithm.

2.8. Exercises 33

Example 2.46. We illustrate Algorithm 2.45 by computing B50. Using 135
binary digits of precision, we compute

K = 7500866746076957704747736.71552473164563479.

The divisors of n are 1, 2, 5, 10, 25, 50, so

d = 2 · 3 · 11 = 66.

We find M = 4 and compute

z = 1.00000000000000088817842109308159029835012.

Finally we compute

dKz = 495057205241079648212477524.999999994425778,

so

B50 =
495057205241079648212477525

66
.

2.8. Exercises

2.1 Using Proposition 2.8 and the table on page 16, compute
∑∞

n=1
1

n26

explicitly.

2.2 Prove that if n > 1 is odd, then the Bernoulli number Bn is 0.

2.3 Use (2.1.3) to write down the coefficients of 1, q, q2, and q3 of the
Eisenstein series E8.

2.4 Suppose k is a positive integer with k ≡ 0 (mod 12). Suppose
a, b ≥ 0 are integers with 4a + 6b = k.
(a) Prove 3 | a.

(b) Show that Ga
4 · Gb

6 / G
k
6
6 =

(
G3

4/G2
6

)a
3 .

2.5 Compute the Miller basis for M28(SL2(Z)) with precision O(q8).
Your answer will look like Example 2.23.

2.6 Consider the cusp form f = q2+192q3−8280q4+· · · in S28(SL2(Z)).
Write f as a polynomial in E4 and E6 (see Remark 2.25).

2.7 Let Gk be the weight k Eisenstein series from equation (2.1.1).
Let c be the complex number so that the constant coefficient of
the q-expansion of g = c · Gk is 1. Is it always the case that the
q-expansion of g lies in Z[[q]]?

2.8 Compute the matrix of the Hecke operator T2 on the Miller basis
for M32(SL2(Z)). Then compute its characteristic polynomial and
verify it factors as a product of two irreducible polynomials.

What Next? Much of the rest of this book is about methods for computing
subspaces of Mk(Γ1(N)) for general N and k. These general methods are

34 2. Modular Forms of Level 1

more complicated than the methods presented in this chapter, since there
are many more modular forms of small weight and it can be difficult to
obtain them. Forms of level N > 1 have subtle connections with elliptic
curves, abelian varieties, and motives. Read on for more!

Chapter 3

Modular Forms of

Weight 2

We saw in Chapter 2 (especially Section 2.2) that we can compute each
space Mk(SL2(Z)) explicitly. This involves computing Eisenstein series E4

and E6 to some precision, then forming the basis {Ea
4Eb

6 : 4a + 6b = k, 0 ≤
a, b ∈ Z} for Mk(SL2(Z)). In this chapter we consider the more general
problem of computing S2(Γ0(N)), for any positive integer N . Again we
have a decomposition

M2(Γ0(N)) = S2(Γ0(N)) ⊕ E2(Γ0(N)),

where E2(Γ0(N)) is spanned by generalized Eisenstein series and S2(Γ0(N))
is the space of cusp forms, i.e., elements of M2(Γ0(N)) that vanish at all
cusps.

In Chapter 5 we compute the space E2(Γ0(N)) in a similar way to how
we computed Mk(SL2(Z)). On the other hand, elements of S2(Γ0(N)) often
cannot be written as sums or products of generalized Eisenstein series. In
fact, the structure of M2(Γ0(N)) is, in general, much more complicated
than that of Mk(SL2(Z)). For example, when p is a prime, E2(Γ0(p)) has
dimension 1, whereas S2(Γ0(p)) has dimension about p/12.

Fortunately an idea of Birch, which he called modular symbols, provides
a method for computing S2(Γ0(N)) and indeed for much more that is rele-
vant to understanding special values of L-functions. Modular symbols are
also a powerful theoretical tool. In this chapter, we explain how S2(Γ0(N))
is related to modular symbols and how to use this relationship to explicitly

35

36 3. Modular Forms of Weight 2

compute a basis for S2(Γ0(N)). In Chapter 8 we will introduce more gen-
eral modular symbols and explain how to use them to compute Sk(Γ0(N)),
Sk(Γ1(N)) and Sk(N, ε) for any integers k ≥ 2 and N and character ε.

Section 3.1 contains a very brief summary of basic facts about modular
forms of weight 2, modular curves, Hecke operators, and integral homology.
Section 3.2 introduces modular symbols and describes how to compute with
them. In Section 3.5 we talk about how to cut out the subspace of modular
symbols corresponding to cusp forms using the boundary map. Section 3.6
is about a straightforward method to compute a basis for S2(Γ0(N)) using
modular symbols, and Section 3.7 outlines a more sophisticated algorithm
for computing newforms that uses Atkin-Lehner theory.

Before reading this chapter, you should have read Chapter 1 and Chap-
ter 2. We also assume familiarity with algebraic curves, Riemann surfaces,
and homology groups of compact Riemann surfaces.

3.1. Hecke Operators

Recall from Chapter 1 that the group Γ0(N) acts on h∗ = h∪P1(Q) by linear
fractional transformations. The quotient Γ0(N)\h∗ is a Riemann surface,
which we denote by X0(N). See [DS05, Ch. 2] for a detailed description of
the topology on X0(N). The Riemann surface X0(N) also has a canonical
structure of algebraic curve over Q, as is explained in [DS05, Ch. 7] (see
also [Shi94, §6.7]).

Recall from Section 1.3 that a cusp form of weight 2 for Γ0(N) is a func-
tion f on h such that f(z)dz defines a holomorphic differential on X0(N).
Equivalently, a cusp form is a holomorphic function f on h such that

(a) the expression f(z)dz is invariant under replacing z by γ(z) for
each γ ∈ Γ0(N) and

(b) f(z) vanishes at every cusp for Γ0(N).

The space S2(Γ0(N)) of weight 2 cusp forms on Γ0(N) is a finite-dimensional
complex vector space, of dimension equal to the genus g of X0(N). The space
X0(N)(C) is a compact oriented Riemann surface, so it is a 2-dimensional
oriented real manifold, i.e., X0(N)(C) is a g-holed torus (see Figure 3.1.1 on
page 38).

Condition (b) in the definition of f means that f has a Fourier expansion
about each element of P1(Q). Thus, at ∞ we have

f(z) = a1e
2πiz + a2e

2πi2z + a3e
2πi3z + · · ·

= a1q + a2q
2 + a3q

3 + · · · ,

where, for brevity, we write q = q(z) = e2πiz.

3.1. Hecke Operators 37

Example 3.1. Let E be the elliptic curve defined by the equation y2+xy =
x3 + x2 − 4x − 5. Let ap = p + 1 − #Ẽ(Fp), where Ẽ is the reduction of E
mod p (note that for the primes that divide the conductor of E we have
a3 = −1, a13 = 1). For n composite, define an using the relations at the end
of Section 3.7. Then the Shimura-Taniyama conjecture asserts that

f = q + a2q
2 + a3q

3 + a4q
4 + a5q

5 + · · ·
= q + q2 − q3 − q4 + 2q5 + · · ·

is the q-expansion of an element of S2(Γ0(39)). This conjecture, which is
now a theorem (see [BCDT01]), asserts that any q-expansion constructed
as above from an elliptic curve over Q is a modular form. This conjecture
was mostly proved first by Wiles [Wil95] as a key step in the proof of
Fermat’s last theorem.

Just as is the case for level 1 modular forms (see Section 2.4) there are
commuting Hecke operators T1, T2, T3, . . . that act on S2(Γ0(N)). To define
them conceptually, we introduce an interpretation of the modular curve
X0(N) as an object whose points parameterize elliptic curves with extra
structure.

Proposition 3.2. The complex points of Y0(N) = Γ0(N)\h are in natural
bijection with isomorphism classes of pairs (E, C), where E is an elliptic
curve over C and C is a cyclic subgroup of E(C) of order N . The class of
the point λ ∈ h corresponds to the pair

(
C/(Z + Zλ),

(
1

N
Z + Zλ

)
/(Z + Zλ)

)
.

Proof. See Exercise 3.1. ¤

Suppose n and N are coprime positive integers. There are two natural
maps π1 and π2 from Y0(n · N) to Y0(N); the first, π1, sends (E, C) ∈
Y0(n · N)(C) to (E, C ′), where C ′ is the unique cyclic subgroup of C of
order N , and the second, π2, sends (E, C) to (E/D, C/D), where D is the
unique cyclic subgroup of C of order n. These maps extend in a unique way
to algebraic maps from X0(n · N) to X0(N):

(3.1.1) X0(n · N)
π2

xxrrrrrrrrrr
π1

&&LLLLLLLLLL

X0(N) X0(N).

The nth Hecke operator Tn is π1∗◦π∗
2, where π∗

2 and π1∗ denote pullback and
pushforward of differentials, respectively. (There is a similar definition of Tn

when gcd(n, N) 6= 1.) Using our interpretation of S2(Γ0(N)) as differentials

38 3. Modular Forms of Weight 2

on X0(N), this gives an action of Hecke operators on S2(Γ0(N)). One can
show that these induce the maps of Proposition 2.31 on q-expansions.

Example 3.3. There is a basis of S2(39) so that

T2 =




1 1 0
−2 −3 −2

0 0 1


 and T5 =



−4 −2 −6

4 4 4
0 0 2


 .

Notice that these matrices commute. Also, the characteristic polynomial of
T2 is (x − 1) · (x2 + 2x − 1).

3.1.1. Homology. The first homology group H1(X0(N), Z) is the group
of closed 1-cycles modulo boundaries of 2-cycles (formal sums of images of
2-simplexes). Topologically X0(N) is a g-holed torus, where g is the genus
of X0(N). Thus H1(X0(N), Z) is a free abelian group of rank 2g (see, e.g.,
[GH81, Ex. 19.30] and [DS05, §6.1]), with two generators corresponding
to each hole, as illustrated in the case N = 39 in Figure 3.1.1.

H1(X0(39), Z) ∼= Z × Z × Z × Z × Z × Z

Figure 3.1.1. The homology of X0(39).

The homology of X0(N) is closely related to modular forms, since the
Hecke operators Tn also act on H1(X0(N), Z). The action is by pullback of
homology classes by π2 followed by taking the image under π1, where π1 and
π2 are as in (3.1.1).

Integration defines a pairing

(3.1.2) 〈 , 〉 : S2(Γ0(N)) × H1(X0(N), Z) → C.

Explicitly, for a path x,

〈f, x〉 = 2πi ·
∫

x
f(z)dz.

Theorem 3.4. The pairing (3.1.2) is nondegenerate and Hecke equivariant
in the sense that for every Hecke operator Tn, we have 〈fTn, x〉 = 〈f, Tnx〉.
Moreover, it induces a perfect pairing

(3.1.3) 〈 , 〉 : S2(Γ0(N)) × H1(X0(N), R) → C.

3.2. Modular Symbols 39

This is a special case of the results in Section 8.5.

As we will see, modular symbols allow us to make explicit the action
of the Hecke operators on H1(X0(N), Z); the above pairing then translates
this into a wealth of information about cusp forms.

We will also consider the relative homology group H1(X0(N), Z; {cusps})
of X0(N) relative to the cusps; it is the same as usual homology, but in
addition we allow paths with endpoints in the cusps instead of restricting
to closed loops. Modular symbols provide a “combinatorial” presentation of
H1(X0(N), Z) in terms of paths between elements of P1(Q).

3.2. Modular Symbols

Let M2 be the free abelian group with basis the set of symbols {α, β} with
α, β ∈ P1(Q) modulo the 3-term relations

{α, β} + {β, γ} + {γ, α} = 0

above and modulo any torsion. Since M2 is torsion-free, we have

{α, α} = 0 and {α, β} = −{β, α}.
Remark 3.5 (Warning). The symbols {α, β} satisfy the relations {α, β} =
−{β, α}, so order matters. The notation {α, β} looks like the set containing
two elements, which strongly (and incorrectly) suggests that the order does
not matter. This is the standard notation in the literature.

Figure 3.2.1. The modular symbols {α, β} and {0,∞}.

As illustrated in Figure 3.2.1, we “think of” this modular symbol as the
homology class, relative to the cusps, of a path from α to β in h∗.

40 3. Modular Forms of Weight 2

Define a left action of GL2(Q) on M2 by letting g ∈ GL2(Q) act by

g{α, β} = {g(α), g(β)},
and g acts on α and β via the corresponding linear fractional transformation.
The space M2(Γ0(N)) of modular symbols for Γ0(N) is the quotient of M2

by the submodule generated by the infinitely many elements of the form
x − g(x), for x in M2 and g in Γ0(N), and modulo any torsion. A modular
symbol for Γ0(N) is an element of this space. We frequently denote the
equivalence class of a modular symbol by giving a representative element.

Example 3.6. Some modular symbols are 0 no matter what the level N is!
For example, since γ = (1 1

0 1) ∈ Γ0(N), we have

{∞, 0} = {γ(∞), γ(0)} = {∞, 1},
so

0 = {∞, 1} − {∞, 0} = {∞, 1} + {0,∞} = {0,∞} + {∞, 1} = {0, 1}.
See Exercise 3.2 for a generalization of this observation.

There is a natural homomorphism

(3.2.1) ϕ : M2(Γ0(N)) → H1(X0(N), {cusps}, Z)

that sends a formal linear combination of geodesic paths in the upper half
plane to their image as paths on X0(N). In [Man72] Manin proved that
(3.2.1) is an isomorphism (this is a fairly involved topological argument).

Manin identified the subspace of M2(Γ0(N)) that is sent isomorphically
onto H1(X0(N), Z). Let B2(Γ0(N)) denote the free abelian group whose
basis is the finite set C(Γ0(N)) = Γ0(N)\P1(Q) of cusps for Γ0(N). The
boundary map

δ : M2(Γ0(N)) → B2(Γ0(N))

sends {α, β} to {β}−{α}, where {β} denotes the basis element of B2(Γ0(N))
corresponding to β ∈ P1(Q). The kernel S2(Γ0(N)) of δ is the subspace of
cuspidal modular symbols. Thus an element of S2(Γ0(N)) can be thought of
as a linear combination of paths in h∗ whose endpoints are cusps and whose
images in X0(N) are homologous to a Z-linear combination of closed paths.

Theorem 3.7 (Manin). The map ϕ above induces a canonical isomorphism

S2(Γ0(N)) ∼= H1(X0(N), Z).

Proof. This is [Man72, Thm. 1.9]. ¤

For any (commutative) ring R let

M2(Γ0(N), R) = M2(Γ0(N)) ⊗Z R

3.3. Computing with Modular Symbols 41

and

S2(Γ0(N), R) = S2(Γ0(N)) ⊗Z R.

Proposition 3.8. We have

dimC S2(Γ0(N), C) = 2 dimC S2(Γ0(N)).

Proof. We have

dimC S2(Γ0(N), C) = rankZ S2(Γ0(N)) = rankZ H1(X0(N), Z) = 2g.

¤

Example 3.9. We illustrate modular symbols in the case when N = 11.
Using SAGE (below), which implements the algorithm that we describe below
over Q, we find that M2(Γ0(11); Q) has basis {∞, 0}, {−1/8, 0}, {−1/9, 0}.
A basis for the integral homology H1(X0(11), Z) is the subgroup generated
by {−1/8, 0} and {−1/9, 0}.

sage: set_modsym_print_mode (’modular’)

sage: M = ModularSymbols(11, 2)

sage: M.basis()

({Infinity,0}, {-1/8,0}, {-1/9,0})

sage: S = M.cuspidal_submodule()

sage: S.integral_basis() # basis over ZZ.

({-1/8,0}, {-1/9,0})

sage: set_modsym_print_mode (’manin’) # set it back

3.3. Computing with Modular Symbols

3.3.1. Manin’s Trick. In this section, we describe a trick of Manin that
we will use to prove that spaces of modular symbols are computable.

By Exercise 1.6 the group Γ0(N) has finite index in SL2(Z). Fix right
coset representatives r0, r1, . . . , rm for Γ0(N) in SL2(Z), so that

SL2(Z) = Γ0(N)r0 ∪ Γ0(N)r1 ∪ · · · ∪ Γ0(N)rm,

where the union is disjoint. For example, when N is prime, a list of coset
representatives is

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 0
2 1

)
,

(
1 0
3 1

)
, . . . ,

(
1 0

N − 1 1

)
,

(
0 −1
1 0

)
.

Let

(3.3.1) P1(Z/NZ) = {(a : b) : a, b ∈ Z/NZ, gcd(a, b, N) = 1 }/ ∼
where (a : b) ∼ (a′ : b′) if there is u ∈ (Z/NZ)∗ such that a = ua′, b = ub′.

42 3. Modular Forms of Weight 2

Proposition 3.10. There is a bijection between P1(Z/NZ) and the right
cosets of Γ0(N) in SL2(Z), which sends a coset representative

(
a b
c d

)
to the

class of (c : d) in P1(Z/NZ).

Proof. See Exercise 3.3. ¤

See Proposition 8.6 for the analogous statement for Γ1(N).

We now describe an observation of Manin (see [Man72, §1.5]) that is
crucial to making M2(Γ0(N)) computable. It allows us to write any modular
symbol {α, β} as a Z-linear combination of symbols of the form ri{0,∞},
where the ri ∈ SL2(Z) are coset representatives as above. In particular, the
finitely many symbols r0{0,∞}, . . . , rm{0,∞} generate M2(Γ0(N)).

Proposition 3.11 (Manin). Let N be a positive integer and r0, . . . , rm

a set of right coset representatives for Γ0(N) in SL2(Z). Every {α, β} ∈
M2(Γ0(N)) is a Z-linear combination of r0{0,∞}, . . . , rm{0,∞}.

We give two proofs of the proposition. The first is useful for computation
(see [Cre97a, §2.1.6]); the second (see [MTT86, §2]) is easier to understand
conceptually since it does not require any knowledge of continued fractions.

Continued Fractions Proof of Proposition 3.11. Since

{α, β} = {0, β} − {0, α},
it suffices to consider modular symbols of the form {0, b/a}, where the ra-
tional number b/a is in lowest terms. Expand b/a as a continued fraction
and consider the successive convergents in lowest terms:

b−2

a−2
=

0

1
,

b−1

a−1
=

1

0
,

b0

a0
=

b0

1
, . . . ,

bn−1

an−1
,

bn

an
=

b

a

where the first two are included formally. Then

bkak−1 − bk−1ak = (−1)k−1,

so that

gk =

(
bk (−1)k−1bk−1

ak (−1)k−1ak−1

)
∈ SL2(Z).

Hence {
bk−1

ak−1
,
bk

ak

}
= gk{0,∞} = ri{0,∞},

for some i, is of the required special form. Since

{0, b/a} = {0,∞} + {∞, b0} +

{
b0

1
,
b1

a1

}
+ · · · +

{
bn−1

an−1
,
bn

an

}
,

this completes the proof. ¤

3.3. Computing with Modular Symbols 43

Inductive Proof of Proposition 3.11. As in the first proof it suffices to
prove the proposition for any symbol {0, b/a}, where b/a is in lowest terms.
We will induct on a ∈ Z≥0. If a = 0, then the symbol is {0,∞}, which
corresponds to the identity coset, so assume that a > 0. Find a′ ∈ Z such
that

ba′ ≡ 1 (mod a);

then b′ = (ba′ − 1)/a ∈ Z so the matrix

δ =

(
b b′

a a′

)

is an element of SL2(Z). Thus δ = γ · rj for some right coset representative
rj and γ ∈ Γ0(N). Then

{0, b/a} − {0, b′/a′} = {b′/a′, b/a} =

(
b b′

a a′

)
· {0,∞} = rj{0,∞},

as elements of M2(Γ0(N)). By induction, {0, b′/a′} is a linear combination
of symbols of the form rk{0,∞}, which completes the proof. ¤

Example 3.12. Let N = 11, and consider the modular symbol {0, 4/7}.
We have

4

7
= 0 +

1

1 + 1
1+ 1

3

,

so the partial convergents are

b−2

a−2
=

0

1
,

b−1

a−1
=

1

0
,

b0

a0
=

0

1
,

b1

a1
=

1

1
,

b2

a2
=

1

2
,

b3

a3
=

4

7
.

Thus, noting as in Example 3.6 that {0, 1} = 0, we have

{0, 4/7} = {0,∞} + {∞, 0} + {0, 1} + {1, 1/2} + {1/2, 4/7}

=

(
1 −1
2 −1

)
{0,∞} +

(
4 1
7 2

)
{0,∞}

=

(
1 0
9 1

)
{0,∞} +

(
1 0
9 1

)
{0,∞}

= 2 ·
[(

1 0
9 1

)
{0,∞}

]
.

We compute the convergents of 4/7 in SAGE as follows (note that 0 and ∞
are excluded):

sage: convergents(4/7)

[0, 1, 1/2, 4/7]

44 3. Modular Forms of Weight 2

3.3.2. Manin Symbols. As above, fix coset representatives r0, . . . , rm for
Γ0(N) in SL2(Z). Consider formal symbols [ri]

′ for i = 0, . . . , m. Let [ri]
be the modular symbol ri{0,∞} = {ri(0), ri(∞)}. We equip the symbols
[r0]

′, . . . , [rm]′ with a right action of SL2(Z), which is given by [ri]
′.g = [rj]

′,
where Γ0(N)rj = Γ0(N)rig. We extend the notation by writing [γ]′ =
[Γ0(N)γ]′ = [ri]

′, where γ ∈ Γ0(N)ri. Then the right action of Γ0(N) is
simply [γ]′.g = [γg]′.

Theorem 1.2 implies that SL2(Z) is generated by the two matrices σ =(
0 −1
1 0

)
and τ =

(
1 −1
1 0

)
. Note that σ = S from Theorem 1.2 and τ = TS, so

T = τσ ∈ 〈σ, τ〉.
The following theorem provides us with a finite presentation for the

space M2(Γ0(N)) of modular symbols.

Theorem 3.13 (Manin). Consider the quotient M of the free abelian group
on Manin symbols [r0]

′, . . . , [rm]′ by the subgroup generated by the elements
(for all i):

[ri]
′ + [ri]

′σ and [ri]
′ + [ri]

′τ + [ri]
′τ2,

and modulo any torsion. Then there is an isomorphism

Ψ : M
∼−→ M2(Γ0(N))

given by [ri]
′ 7→ [ri] = ri{0,∞}.

Proof. We will only prove that Ψ is surjective; the proof that Ψ is injective
requires much more work and will be omitted from this book (see [Man72,
§1.7] for a complete proof).

Proposition 3.11 implies that Ψ is surjective, assuming that Ψ is well
defined. We next verify that Ψ is well defined, i.e., that the listed 2-term
and 3-term relations hold in the image. To see that the first relation holds,
note that

[ri] + [ri]σ = {ri(0), ri(∞)} + {riσ(0), riσ(∞)}
= {ri(0), ri(∞)} + {ri(∞), ri(0)}
= 0.

For the second relation we have

[ri] + [ri]τ + [ri]τ
2 = {ri(0), ri(∞)} + {riτ(0), riτ(∞)} + {riτ

2(0), riτ
2(∞)}

= {ri(0), ri(∞)} + {ri(∞), ri(1)} + {ri(1), ri(0)}
= 0.

¤

3.3. Computing with Modular Symbols 45

Example 3.14. By default SAGE computes modular symbols spaces over
Q, i.e., M2(Γ0(N); Q) ∼= M2(Γ0(N))⊗Q. SAGE represents (weight 2) Manin
symbols as pairs (c, d). Here c, d are integers that satisfy 0 ≤ c, d < N ; they
define a point (c : d) ∈ P1(Z/NZ), hence a right coset of Γ0(N) in SL2(Z)
(see Proposition 3.10).

Create M2(Γ0(N); Q) in SAGE by typing ModularSymbols(N, 2). We
then use the SAGE command manin generators to enumerate a list of gener-
ators [r0], . . . , [rn] as in Theorem 3.13 for several spaces of modular symbols.

sage: M = ModularSymbols(2,2)

sage: M

Modular Symbols space of dimension 1 for Gamma_0(2)

of weight 2 with sign 0 over Rational Field

sage: M.manin_generators()

[(0,1), (1,0), (1,1)]

sage: M = ModularSymbols(3,2)

sage: M.manin_generators()

[(0,1), (1,0), (1,1), (1,2)]

sage: M = ModularSymbols(6,2)

sage: M.manin_generators()

[(0,1), (1,0), (1,1), (1,2), (1,3), (1,4), (1,5), (2,1),

(2,3), (2,5), (3,1), (3,2)]

Given x=(c,d), the command x.lift to sl2z(N) computes an element
of SL2(Z) whose lower two entries are congruent to (c, d) modulo N .

sage: M = ModularSymbols(2,2)

sage: [x.lift_to_sl2z(2) for x in M.manin_generators()]

[[1, 0, 0, 1], [0, -1, 1, 0], [0, -1, 1, 1]]

sage: M = ModularSymbols(6,2)

sage: x = M.manin_generators()[9]

sage: x

(2,5)

sage: x.lift_to_sl2z(6)

[1, 2, 2, 5]

The manin basis command returns a list of indices into the Manin gen-
erator list such that the corresponding symbols form a basis for the quotient

46 3. Modular Forms of Weight 2

of the Q-vector space spanned by Manin symbols modulo the 2-term and
3-term relations of Theorem 3.13.

sage: M = ModularSymbols(2,2)

sage: M.manin_basis()

[1]

sage: [M.manin_generators()[i] for i in M.manin_basis()]

[(1,0)]

sage: M = ModularSymbols(6,2)

sage: M.manin_basis()

[1, 10, 11]

sage: [M.manin_generators()[i] for i in M.manin_basis()]

[(1,0), (3,1), (3,2)]

Thus, e.g., every element of M2(Γ0(6)) is a Q-linear combination of the
three symbols [(1, 0)], [(3, 1)], and [(3, 2)]. We can write each of these as a
modular symbol using the modular symbol rep function.

sage: M.basis()

((1,0), (3,1), (3,2))

sage: [x.modular_symbol_rep() for x in M.basis()]

[{Infinity,0}, {0,1/3}, {-1/2,-1/3}]

The manin gens to basis function returns a matrix whose rows express
each Manin symbol generator in terms of the subset of Manin symbols that
forms a basis (as returned by manin basis).

sage: M = ModularSymbols(2,2)

sage: M.manin_gens_to_basis()

[-1]

[1]

[0]

Since the basis is (1, 0), this means that in M2(Γ0(2); Q), we have [(0, 1)] =
−[(1, 0)] and [(1, 1)] = 0. (Since no denominators are involved, we have in
fact computed a presentation of M2(Γ0(2); Z).)

To convert a Manin symbol x = (c, d) to an element of a modular symbols
space M , use M(x):

3.4. Hecke Operators 47

sage: M = ModularSymbols(2,2)

sage: x = (1,0); M(x)

(1,0)

Next consider M2(Γ0(6); Q):

sage: M = ModularSymbols(6,2)

sage: M.manin_gens_to_basis()

[-1 0 0]

[1 0 0]

[0 0 0]

[0 -1 1]

[0 -1 0]

[0 -1 1]

[0 0 0]

[0 1 -1]

[0 0 -1]

[0 1 -1]

[0 1 0]

[0 0 1]

Recall that our choice of basis for M2(Γ0(6); Q) is [(1, 0)], [(3, 1)], [(3, 2)].
Thus, e.g., the first row of this matrix says that [(0, 1)] = −[(1, 0)], and the
fourth row asserts that [(1, 2)] = −[(3, 1)] + [(3, 2)].

sage: M = ModularSymbols(6,2)

sage: M((0,1))

-(1,0)

sage: M((1,2))

-(3,1) + (3,2)

3.4. Hecke Operators

3.4.1. Hecke Operators on Modular Symbols. When p is a prime not
dividing N , define

Tp({α, β}) =

(
p 0
0 1

)
{α, β} +

∑

r mod p

(
1 r
0 p

)
{α, β}.

The Hecke operators are compatible with the integration pairing 〈 , 〉 of
Section 3.1, in the sense that 〈fTp, x〉 = 〈f, Tpx〉. When p | N , the definition

48 3. Modular Forms of Weight 2

is the same, except that the matrix
(

p 0
0 1

)
is not included in the sum (see

Theorem 8.23). There is a similar definition of Tn for n composite (see
Section 8.3.1).

Example 3.15. For example, when N = 11, we have

T2{0, 1/5} = {0, 2/5} + {0, 1/10} + {1/2, 3/5}
= −2{0, 1/5}.

See Figure 3.4.1.

Figure 3.4.1. Image of {0, 1/5} under T2

3.4.2. Hecke Operators on Manin Symbols. In [Mer94], L. Merel
gives a description of the action of Tp directly on Manin symbols [ri] (see
Section 8.3.2 for details). For example, when p = 2 and N is odd, we have

(3.4.1) T2([ri]) = [ri]

(
1 0
0 2

)
+ [ri]

(
2 0
0 1

)
+ [ri]

(
2 1
0 1

)
+ [ri]

(
1 0
1 2

)
.

For any prime, let Cp be the set of matrices constructed using the fol-
lowing algorithm (see [Cre97a, §2.4]):

Algorithm 3.16 (Cremona’s Heilbronn Matrices). Given a prime p, this
algorithm outputs a list of 2 × 2 matrices of determinant p that can be used
to compute the Hecke operator Tp.

(1) Output

(
1 0
0 p

)
.

(2) For r =
⌈
−p

2

⌉
, . . . ,

⌊p

2

⌋
:

(a) Let x1 = p, x2 = −r, y1 = 0, y2 = 1, a = −p, b = r.

(b) Output

(
x1 x2

y1 y2

)
.

(c) As long as b 6= 0, do the following:
(i) Let q be the integer closest to a/b (if a/b is a half integer,

round away from 0).

(ii) Let c = a − bq, a = −b, b = c.

3.4. Hecke Operators 49

(iii) Set x3 = qx2 − x1, x1 = x2, x2 = x3, and
y3 = qy2 − y1, y1 = y2, y2 = y3.

(iv) Output

(
x1 x2

y1 y2

)
.

Proposition 3.17 (Cremona, Merel). Let Cp be as above. Then for p ∤ N
and [x] ∈ M2(Γ0(N)) a Manin symbol, we have

Tp([x]) =
∑

g∈Cp

[xg].

Proof. See Proposition 2.4.1 of [Cre97a]. ¤

There are other lists of matrices, due to Merel, that work even when
p | N (see Section 8.3.2).

The command HeilbronnCremonaList(p), for p prime, outputs the list
of matrices from Algorithm 3.16.

sage: HeilbronnCremonaList(2)

[[1, 0, 0, 2], [2, 0, 0, 1], [2, 1, 0, 1], [1, 0, 1, 2]]

sage: HeilbronnCremonaList(3)

[[1, 0, 0, 3], [3, 1, 0, 1], [1, 0, 1, 3], [3, 0, 0, 1],

[3, -1, 0, 1], [-1, 0, 1, -3]]

sage: HeilbronnCremonaList(5)

[[1, 0, 0, 5], [5, 2, 0, 1], [2, 1, 1, 3], [1, 0, 3, 5],

[5, 1, 0, 1], [1, 0, 1, 5], [5, 0, 0, 1], [5, -1, 0, 1],

[-1, 0, 1, -5], [5, -2, 0, 1], [-2, 1, 1, -3],

[1, 0, -3, 5]]

sage: len(HeilbronnCremonaList(37))

128

sage: len(HeilbronnCremonaList(389))

1892

sage: len(HeilbronnCremonaList(2003))

11662

Example 3.18. We compute the matrix of T2 on M2(Γ0(2)):

sage: M = ModularSymbols(2,2)

sage: M.T(2).matrix()

[1]

Example 3.19. We compute some Hecke operators on M2(Γ0(6)):

50 3. Modular Forms of Weight 2

sage: M = ModularSymbols(6, 2)

sage: M.T(2).matrix()

[2 1 -1]

[-1 0 1]

[-1 -1 2]

sage: M.T(3).matrix()

[3 2 0]

[0 1 0]

[2 2 1]

sage: M.T(3).fcp() # factored characteristic polynomial

(x - 3) * (x - 1)^2

For p ≥ 5 we have Tp = p + 1, since M2(Γ0(6)) is spanned by generalized
Eisenstein series (see Chapter 5).

Example 3.20. We compute the Hecke operators on M2(Γ0(39)):

sage: M = ModularSymbols(39, 2)

sage: T2 = M.T(2)

sage: T2.matrix()

[3 0 -1 0 0 1 1 -1 0]

[0 0 2 0 -1 1 0 1 -1]

[0 1 0 -1 1 1 0 1 -1]

[0 0 1 0 0 1 0 1 -1]

[0 -1 2 0 0 1 0 1 -1]

[0 0 1 1 0 1 1 -1 0]

[0 0 0 -1 0 1 1 2 0]

[0 0 0 1 0 0 2 0 1]

[0 0 -1 0 0 0 1 0 2]

sage: T2.fcp() # factored characteristic polynomial

(x - 3)^3 * (x - 1)^2 * (x^2 + 2*x - 1)^2

The Hecke operators commute, so their eigenspace structures are related.

sage: T2 = M.T(2).matrix()

sage: T5 = M.T(5).matrix()

sage: T2*T5 - T5*T2 == 0

True

sage: T5.charpoly().factor()

(x^2 - 8)^2 * (x - 6)^3 * (x - 2)^2

3.5. Computing the Boundary Map 51

The decomposition of T2 is a list of the kernels of (fe)(T2), where f runs
through the irreducible factors of the characteristic polynomial of T2 and fe

exactly divides this characteristic polynomial. Using SAGE, we find them:

sage: M = ModularSymbols(39, 2)

sage: M.T(2).decomposition()

[

Modular Symbols subspace of dimension 3 of Modular

Symbols space of dimension 9 for Gamma_0(39) of weight

2 with sign 0 over Rational Field,

Modular Symbols subspace of dimension 2 of Modular

Symbols space of dimension 9 for Gamma_0(39) of weight

2 with sign 0 over Rational Field,

Modular Symbols subspace of dimension 4 of Modular

Symbols space of dimension 9 for Gamma_0(39) of weight

2 with sign 0 over Rational Field

]

3.5. Computing the Boundary Map

In Section 3.2 we defined a map δ : M2(Γ0(N)) → B2(Γ0(N)). The kernel of
this map is the space S2(Γ0(N)) of cuspidal modular symbols. This kernel
will be important in computing cusp forms in Section 3.7 below.

To compute the boundary map on [γ], note that [γ] = {γ(0), γ(∞)}, so
if γ =

(
a b
c d

)
, then

δ([γ]) = {γ(∞)} − {γ(0)} = {a/c} − {b/d}.

Computing this boundary map would appear to first require an algo-
rithm to compute the set C(Γ0(N)) = Γ0(N)\P1(Q) of cusps for Γ0(N). In
fact, there is a trick that computes the set of cusps in the course of running
the algorithm. First, give an algorithm for deciding whether or not two
elements of P1(Q) are equivalent modulo the action of Γ0(N). Then simply
construct C(Γ0(N)) in the course of computing the boundary map, i.e., keep
a list of cusps found so far, and whenever a new cusp class is discovered,
add it to the list. The following proposition, which is proved in [Cre97a,
Prop. 2.2.3], explains how to determine whether two cusps are equivalent.

Proposition 3.21 (Cremona). Let (ci, di), i = 1, 2, be pairs of integers
with gcd(ci, di) = 1 and possibly di = 0. There is g ∈ Γ0(N) such that
g(c1/d1) = c2/d2 in P1(Q) if and only if

s1d2 ≡ s2d1 (mod gcd(d1d2, N))

52 3. Modular Forms of Weight 2

where sj satisfies cjsj ≡ 1 (mod dj).

In SAGE the command boundary map() computes the boundary map
from M2(Γ0(N)) to B2(Γ0(N)), and the cuspidal submodule() command
computes its kernel. For example, for level 2 the boundary map is given by
the matrix [1 − 1], and its kernel is the 0 space:

sage: M = ModularSymbols(2, 2)

sage: M.boundary_map()

Hecke module morphism boundary map defined by the matrix

[1 -1]

Domain: Modular Symbols space of dimension 1 for

Gamma_0(2) of weight ...

Codomain: Space of Boundary Modular Symbols for

Congruence Subgroup Gamma0(2) ...

sage: M.cuspidal_submodule()

Modular Symbols subspace of dimension 0 of Modular

Symbols space of dimension 1 for Gamma_0(2) of weight

2 with sign 0 over Rational Field

The smallest level for which the boundary map has nontrivial kernel,
i.e., for which S2(Γ0(N)) 6= 0, is N = 11.

sage: M = ModularSymbols(11, 2)

sage: M.boundary_map().matrix()

[1 -1]

[0 0]

[0 0]

sage: M.cuspidal_submodule()

Modular Symbols subspace of dimension 2 of Modular

Symbols space of dimension 3 for Gamma_0(11) of weight

2 with sign 0 over Rational Field

sage: S = M.cuspidal_submodule(); S

Modular Symbols subspace of dimension 2 of Modular

Symbols space of dimension 3 for Gamma_0(11) of weight

2 with sign 0 over Rational Field

sage: S.basis()

((1,8), (1,9))

The following illustrates that the Hecke operators preserve S2(Γ0(N)):

3.6. Computing a Basis for S2(Γ0(N)) 53

sage: S.T(2).matrix()

[-2 0]

[0 -2]

sage: S.T(3).matrix()

[-1 0]

[0 -1]

sage: S.T(5).matrix()

[1 0]

[0 1]

A nontrivial fact is that for p prime the eigenvalue of each of these
matrices is p + 1−#E(Fp), where E is the elliptic curve X0(11) defined by
the (affine) equation y2 + y = x3 − x2 − 10x − 20. For example, we have

sage: E = EllipticCurve([0,-1,1,-10,-20])

sage: 2 + 1 - E.Np(2)

-2

sage: 3 + 1 - E.Np(3)

-1

sage: 5 + 1 - E.Np(5)

1

sage: 7 + 1 - E.Np(7)

-2

The same numbers appear as the eigenvalues of Hecke operators:

sage: [S.T(p).matrix()[0,0] for p in [2,3,5,7]]

[-2, -1, 1, -2]

In fact, something similar happens for every elliptic curve over Q. The book
[DS05] (especially Chapter 8) is about this striking numerical relationship
between the number of points on elliptic curves modulo p and coefficients of
modular forms.

3.6. Computing a Basis for S2(Γ0(N))

This section is about a method for using modular symbols to compute a
basis for S2(Γ0(N)). It is not the most efficient for certain applications, but
it is easy to explain and understand. See Section 3.7 for a method that takes
advantage of additional structure of S2(Γ0(N)).

54 3. Modular Forms of Weight 2

Let M2(Γ0(N); Q) and S2(Γ0(N); Q) be the spaces of modular symbols
and cuspidal modular symbols over Q. Before we begin, we describe a simple
but crucial fact about the relation between cusp forms and Hecke operators.

If f =
∑

bnqn ∈ C[[q]] is a power series, let an(f) = bn be the n coeffi-
cient of f . Notice that an is a C-linear map C[[q]] → C.

As explained in [DS05, Prop. 5.3.1] and [Lan95, §VII.3] (recall also
Proposition 2.31), the Hecke operators Tn act on elements of M2(Γ0(N)) as
follows (where k = 2 below):

(3.6.1) Tn

(∞∑

m=0

amqm

)
=

∞∑

m=0


 ∑

1≤d | gcd(n,m)

ε(d) · dk−1 · amn/d2


 qm,

where ε(d) = 1 if gcd(d, N) = 1 and ε(d) = 0 if gcd(d, N) 6= 1. (Note: More
generally, if f ∈ Mk(Γ1(N)) is a modular form with Dirichlet character ε,
then the above formula holds; above we are considering this formula in the
special case when ε is the trivial character and k = 2.)

Lemma 3.22. Suppose f ∈ C[[q]] and n is a positive integer. Let Tn be the
operator on q-expansions (formal power series) defined by (3.6.1). Then

a1(Tn(f)) = an(f).

Proof. The coefficient of q in (3.6.1) is ε(1) · 1 · a1·n/12 = an. ¤

The Hecke algebra T is the ring generated by all Hecke operators Tn

acting on Mk(Γ1(N)). Let T′ denote the image of the Hecke algebra in
End(S2(Γ0(N))), and let T′

C = T′⊗ZC be the C-span of the Hecke operators.

Let T̃C denote the subring of End(C[[q]]) generated over C by all Hecke
operators acting on formal power series via definition (3.6.1).

Proposition 3.23. There is a bilinear pairing of complex vector spaces

C[[q]] × T̃C → C

given by

〈f, t〉 = a1(t(f)).

If f is such that 〈f, t〉 = 0 for all t ∈ T̃C, then f = 0.

Proof. The pairing is bilinear since both t and a1 are linear.

Suppose f ∈ C[[q]] is such that 〈f, t〉 = 0 for all t ∈ T̃C. Then 〈f, Tn〉 = 0
for each positive integer n. But by Lemma 3.22 we have

an(f) = a1(Tn(f)) = 0

for all n; thus f = 0. ¤

3.6. Computing a Basis for S2(Γ0(N)) 55

Proposition 3.24. There is a perfect bilinear pairing of complex vector
spaces

S2(Γ0(N)) × T′
C → C

given by
〈f, t〉 = a1(t(f)).

Proof. The pairing has 0 kernel on the left by Proposition 3.23. Suppose
that t ∈ T′

C is such that 〈f, t〉 = 0 for all f ∈ S2(Γ0(N)). Then a1(t(f)) = 0
for all f . For any n, the image Tn(f) is also a cusp form, so a1(t(Tn(f))) = 0
for all n and f . Finally the fact that T′ is commutative and Lemma 3.22
together imply that for all n and f ,

0 = a1(t(Tn(f))) = a1(Tn(t(f))) = an(t(f)),

so t(f) = 0 for all f . Thus t is the 0 operator.

Since S2(Γ0(N)) has finite dimension and the kernel on each side of the
pairing is 0, it follows that the pairing is perfect, i.e., defines an isomorphism

T′
C
∼= HomC(S2(Γ0(N)); C).

¤

By Proposition 3.24 there is an isomorphism of vector spaces

(3.6.2) Ψ : S2(Γ0(N))
∼=−−→ Hom(T′

C, C)

that sends f ∈ S2(Γ0(N)) to the homomorphism

t 7→ a1(t(f)).

For any C-linear map ϕ : T′
C → C, let

fϕ =
∞∑

n=1

ϕ(Tn)qn ∈ C[[q]].

Lemma 3.25. The series fϕ is the q-expansion of Ψ−1(ϕ) ∈ S2(Γ0(N)).

Proof. Note that it is not even a priori obvious that fϕ is the q-expansion of
a modular form. Let g = Ψ−1(ϕ), which is by definition the unique element
of S2(Γ0(N)) such that 〈g, Tn〉 = ϕ(Tn) for all n. By Lemma 3.22, we have

〈fϕ, Tn〉 = a1(Tn(fϕ)) = an(fϕ) = ϕ(Tn),

so 〈fϕ − g, Tn〉 = 0 for all n. Proposition 3.23 implies that fϕ − g = 0, so
fϕ = g = Ψ−1(ϕ), as claimed. ¤

Conclusion: The cusp forms fϕ, as ϕ varies through a basis of Hom(T′
C, C),

form a basis for S2(Γ0(N)). In particular, we can compute S2(Γ0(N)) by
computing Hom(T′

C, C), where we compute T′ in any way we want, e.g.,
using a space that contains an isomorphic copy of S2(Γ0(N)).

56 3. Modular Forms of Weight 2

Algorithm 3.26 (Basis of Cusp Forms). Given positive integers N and B,
this algorithm computes a basis for S2(Γ0(N)) to precision O(qB).

(1) Compute M2(Γ0(N); Q) via the presentation of Section 3.3.2.

(2) Compute the subspace S2(Γ0(N); Q) of cuspidal modular symbols
as in Section 3.5.

(3) Let d = 1
2 ·dim S2(Γ0(N); Q). By Proposition 3.8, d is the dimension

of S2(Γ0(N)).

(4) Let [Tn] denote the matrix of Tn acting on a basis of S2(Γ0(N); Q).
For a matrix A, let aij(A) denote the ijth entry of A. For various
integers i, j with 0 ≤ i, j ≤ d − 1, compute formal q-expansions

fij(q) =
B−1∑

n=1

aij([Tn])qn + O(qB) ∈ Q[[q]]

until we find enough to span a space of dimension d (or exhaust all
of them). These fij are a basis for S2(Γ0(N)) to precision O(qB).

3.6.1. Examples. We use SAGE to demonstrate Algorithm 3.26.

Example 3.27. The smallest N with S2(Γ0(N)) 6= 0 is N = 11.

sage: M = ModularSymbols(11); M.basis()

((1,0), (1,8), (1,9))

sage: S = M.cuspidal_submodule(); S

Modular Symbols subspace of dimension 2 of Modular

Symbols space of dimension 3 for Gamma_0(11) of weight

2 with sign 0 over Rational Field

We compute a few Hecke operators, and then read off a nonzero cusp
form, which forms a basis for S2(Γ0(11)):

sage: S.T(2).matrix()

[-2 0]

[0 -2]

sage: S.T(3).matrix()

[-1 0]

[0 -1]

Thus

f0,0 = q − 2q2 − q3 + · · · ∈ S2(Γ0(11))

forms a basis for S2(Γ0(11)).

Example 3.28. We compute a basis for S2(Γ0(33)) to precision O(q6).

3.6. Computing a Basis for S2(Γ0(N)) 57

sage: M = ModularSymbols(33)

sage: S = M.cuspidal_submodule(); S

Modular Symbols subspace of dimension 6 of Modular

Symbols space of dimension 9 for Gamma_0(33) of weight

2 with sign 0 over Rational Field

Thus dimS2(Γ0(33)) = 3.

sage: R.<q> = PowerSeriesRing(QQ)

sage: v = [S.T(n).matrix()[0,0] for n in range(1,6)]

sage: f00 = sum(v[n-1]*q^n for n in range(1,6)) + O(q^6)

sage: f00

q - q^2 - q^3 + q^4 + O(q^6)

This gives us one basis element of S2(Γ0(33)). It remains to find two
others. We find

sage: v = [S.T(n).matrix()[0,1] for n in range(1,6)]

sage: f01 = sum(v[n-1]*q^n for n in range(1,6)) + O(q^6)

sage: f01

-2*q^3 + O(q^6)

and

sage: v = [S.T(n).matrix()[1,0] for n in range(1,6)]

sage: f10 = sum(v[n-1]*q^n for n in range(1,6)) + O(q^6)

sage: f10

q^3 + O(q^6)

This third one is (to our precision) a scalar multiple of the second, so
we look further.

sage: v = [S.T(n).matrix()[1,1] for n in range(1,6)]

sage: f11 = sum(v[n-1]*q^n for n in range(1,6)) + O(q^6)

sage: f11

q - 2*q^2 + 2*q^4 + q^5 + O(q^6)

This latter form is clearly not in the span of the first two. Thus we have the
following basis for S2(Γ0(33)) (to precision O(q6)):

f00 = q − q2 − q3 + q4 + · · · ,

f11 = q − 2q2 + 2q4 + q5 + · · · ,

f10 = q3 + · · · .

58 3. Modular Forms of Weight 2

Example 3.29. Next consider N = 23, where we have

d = dimS2(Γ0(23)) = 2.

The command q expansion cuspforms computes matrices Tn and returns a
function f such that f(i, j) is the q-expansion of fi,j to some precision. (For
efficiency reasons, f(i, j) in SAGE actually computes matrices of Tn acting
on a basis for the linear dual of S2(Γ0(N)).)

sage: M = ModularSymbols(23)

sage: S = M.cuspidal_submodule()

sage: S

Modular Symbols subspace of dimension 4 of Modular

Symbols space of dimension 5 for Gamma_0(23) of weight

2 with sign 0 over Rational Field

sage: f = S.q_expansion_cuspforms(6)

sage: f(0,0)

q - 2/3*q^2 + 1/3*q^3 - 1/3*q^4 - 4/3*q^5 + O(q^6)

sage: f(0,1)

O(q^6)

sage: f(1,0)

-1/3*q^2 + 2/3*q^3 + 1/3*q^4 - 2/3*q^5 + O(q^6)

Thus a basis for S2(Γ0(23)) is

f0,0 = q − 2

3
q2 +

1

3
q3 − 1

3
q4 − 4

3
q5 + · · · ,

f1,0 = −1

3
q2 +

2

3
q3 +

1

3
q4 − 2

3
q5 + · · · .

Or, in echelon form,

q − q3 − q4 + · · ·
q2 − 2q3 − q4 + 2q5 + · · ·

which we computed using

sage: S.q_expansion_basis(6)

[

q - q^3 - q^4 + O(q^6),

q^2 - 2*q^3 - q^4 + 2*q^5 + O(q^6)

]

3.7. Computing S2(Γ0(N)) Using Eigenvectors

In this section we describe how to use modular symbols to construct a basis
of S2(Γ0(N)) consisting of modular forms that are eigenvectors for every

3.7. Computing S2(Γ0(N)) Using Eigenvectors 59

element of the ring T(N) generated by the Hecke operator Tp, with p ∤ N .
Such eigenvectors are called eigenforms.

Suppose M is a positive integer that divides N . As explained in [Lan95,
VIII.1–2], for each divisor d of N/M there is a natural degeneracy map αM,d :

S2(Γ0(M)) → S2(Γ0(N)) given by αM,d(f(q)) = f(qd). The new subspace
of S2(Γ0(N)), denoted S2(Γ0(N))new, is the complementary T-submodule
of the T-module generated by the images of all maps αM,d, with M and d
as above. It is a nontrivial fact that this complement is well defined; one
possible proof uses the Petersson inner product (see [Lan95, §VII.5]).

The theory of Atkin and Lehner [AL70] (see Theorem 9.4 below) asserts

that, as a T(N)-module, S2(Γ0(N)) decomposes as follows:

S2(Γ0(N)) =
⊕

M |N, d|N/M

βM,d(S2(Γ0(M))new).

To compute S2(Γ0(N)) it suffices to compute S2(Γ0(M))new for each M | N .

We now turn to the problem of computing S2(Γ0(N))new. Atkin and
Lehner [AL70] proved that S2(Γ0(N))new is spanned by eigenforms for all
Tp with p ∤ N and that the common eigenspaces of all the Tp with p ∤ N
each have dimension 1. Moreover, if f ∈ S2(Γ0(N))new is an eigenform then
the coefficient of q in the q-expansion of f is nonzero, so it is possible to
normalize f so the coefficient of q is 1 (such a normalized eigenform in the
new subspace is called a newform). With f so normalized, if Tp(f) = apf ,
then the pth Fourier coefficient of f is ap. If f =

∑∞
n=1 anqn is a normalized

eigenvector for all Tp, then the an, with n composite, are determined by the
ap, with p prime, by the following formulas: anm = anam when n and m are
relatively prime and apr = apr−1ap − papr−2 for p ∤ N prime. When p | N ,
apr = ar

p. We conclude that in order to compute S2(Γ0(N))new, it suffices
to compute all systems of eigenvalues {a2, a3, a5, . . .} of the prime-indexed
Hecke operators T2, T3, T5, . . . acting on S2(Γ0(N))new. Given a system of
eigenvalues, the corresponding eigenform is f =

∑∞
n=1 anqn, where the an,

for n composite, are determined by the recurrence given above.

In light of the pairing 〈 , 〉 introduced in Section 3.1, computing the above
systems of eigenvalues {a2, a3, a5, . . .} amounts to computing the systems of
eigenvalues of the Hecke operators Tp on the subspace V of S2(Γ0(N)) that
corresponds to the new subspace of S2(Γ0(N)). For each proper divisor M
of N and each divisor d of N/M , let φM,d : S2(Γ0(N)) → S2(Γ0(M)) be the
map sending x to

(
d 0
0 1

)
x. Then V is the intersection of the kernels of all

maps φM,d.

Computing the systems of eigenvalues of a collection of commuting di-
agonalizable endomorphisms is a problem in linear algebra (see Chapter 7).

60 3. Modular Forms of Weight 2

Example 3.30. All forms in S2(Γ0(39)) are new. Up to Galois conjugacy,
the eigenvalues of the Hecke operators T2, T3, T5, and T7 on S2(Γ0(39)) are
{1,−1, 2,−4} and {a, 1,−2a − 2, 2a + 2}, where a2 + 2a − 1 = 0. Each of
these eigenvalues occur in S2(Γ0(39)) with multiplicity two; for example, the
characteristic polynomial of T2 on S2(Γ0(39)) is (x − 1)2 · (x2 + 2x − 1)2.
Thus S2(Γ0(39)) is spanned by

f1 = q + q2 − q3 − q4 + 2q5 − q6 − 4q7 + · · · ,

f2 = q + aq2 + q3 + (−2a − 1)q4 + (−2a − 2)q5 + aq6 + (2a + 2)q7 + · · · ,

f3 = q + σ(a)q2 + q3 + (−2σ(a) − 1)q4 + (−2σ(a) − 2)q5 + σ(a)q6 + · · · ,

where σ(a) is the other Gal(Q/Q)-conjugate of a.

3.7.1. Summary. To compute the q-expansion of a basis for S2(Γ0(N)),
we use the degeneracy maps so that we only have to solve the problem
for S2(Γ0(M))new, for all integers M | N . Using modular symbols, we
compute all systems of eigenvalues {a2, a3, a5, . . .}, and then write down the
corresponding eigenforms

∑
anqn.

3.8. Exercises

3.1 Suppose that λ, λ′ ∈ h are in the same orbit for the action of Γ0(N),
i.e., that there exists g ∈ Γ0(N) such that g(λ) = λ′. Let Λ =
Z+Zλ and Λ′ = Z+Zλ′. Prove that the pairs (C/Λ, (1

N Z+Λ)/Λ)

and (C/Λ′, (1
N Z + Λ′)/Λ′) are isomorphic. (By an isomorphism

(E, C) → (F, D) of pairs, we mean an isomorphism φ : E → F
of elliptic curves that sends C to D. You may use the fact that
an isomorphism of elliptic curves over C is a C-linear map C → C
that sends the lattice corresponding to one curve onto the lattice
corresponding to the other.)

3.2 Let n, m be integers and N a positive integer. Prove that the
modular symbol {n, m} is 0 as an element of M2(Γ0(N)). [Hint:
See Example 3.6.]

3.3 Let p be a prime.
(a) List representative elements of P1(Z/pZ).
(b) What is the cardinality of P1(Z/pZ) as a function of p?
(c) Prove that there is a bijection between the right cosets of Γ0(p)

in SL2(Z) and the elements of P1(Z/pZ) that sends
(

a b
c d

)
to

(c : d). (As mentioned in this chapter, the analogous statement
is also true when the level is composite; see [Cre97a, §2.2] for
complete details.)

3.4 Use the inductive proof of Proposition 3.11 to write {0, 4/7} in
terms of Manin symbols for Γ0(7).

3.8. Exercises 61

3.5 Show that the Hecke operator T2 acts as multiplication by 3 on the
space M2(Γ0(3)) as follows:
(a) Write down right coset representatives for Γ0(3) in SL2(Z).
(b) List all eight relations coming from Theorem 3.13.
(c) Find a single Manin symbols [ri] so that the three other Manin

symbols are a nonzero multiple of [ri] modulo the relations
found in the previous step.

(d) Use formula (3.4.1) to compute T2([ri]). You will obtain a sum
of four symbols. Using the relations above, write this sum as
a multiple of [ri]. (The multiple must be 3 or you made a
mistake.)

Chapter 4

Dirichlet Characters

In this chapter we develop a theory for computing with Dirichlet characters,
which are extremely important to computations with modular forms for (at
least) two reasons:

(1) To compute the Eisenstein subspace Ek(Γ1(N)) of Mk(Γ1(N)), we
write down Eisenstein series attached to pairs of Dirichlet charac-
ters (the space Ek(Γ1(N)) will be defined in Chapter 5).

(2) To compute Sk(Γ1(N)), we instead compute a decomposition

Mk(Γ1(N)) =
⊕

Mk(Γ1(N), ε)

and then compute each factor (see Section 9.1). Here the sum is
over all Dirichlet characters ε of modulus N .

Dirichlet characters appear frequently in many other areas of number
theory. For example, by the Kronecker-Weber theorem, Dirichlet characters
correspond to the 1-dimensional representations of Gal(Q/Q).

After defining Dirichlet characters in Section 4.1, in Section 4.2 we de-
scribe a good way to represent Dirichlet characters using a computer. Sec-
tion 4.3 is about how to evaluate Dirichlet characters and leads naturally
to a discussion of the baby-step giant-step algorithm for solving the discrete
log problem and methods for efficiently computing the Kronecker symbol.
In Section 4.4 we explain how to factor Dirichlet characters into their prime
power constituents and apply this to the computations of conductors. We
describe how to carry out a number of standard operations with Dirichlet
characters in Section 4.6 and discuss alternative ways to represent them in
Section 4.7. Finally, in Section 4.8 we give a very short tutorial about how
to compute with Dirichlet characters using SAGE.

63

64 4. Dirichlet Characters

4.1. The Definition

Fix an integral domain R and a root ζ of unity in R.

Definition 4.1 (Dirichlet Character). A Dirichlet character of modulus N
over R is a map ε : Z → R such that there is a homomorphism f :
(Z/NZ)∗ → 〈ζ〉 for which

ε(a) =

{
0 if gcd(a, N) > 1,

f (a mod N) if gcd(a, N) = 1.

We denote the group of such Dirichlet characters by D(N, R). Note that
elements of D(N, R) are in bijection with homomorphisms (Z/NZ)∗ → 〈ζ〉.

A familiar Dirichlet character is the Legendre symbol
(

a
p

)
, with p an

odd prime, that appears in quadratic reciprocity theory. It is a Dirichlet
character of modulus p that takes the value 1 on integers that are congruent
to a nonzero square modulo p, the value −1 on integers that are congruent
to a nonzero nonsquare modulo p, and 0 on integers divisible by p.

4.2. Representing Dirichlet Characters

Lemma 4.2. The groups (Z/NZ)∗ and D(N, C) are isomorphic.

Proof. We prove the more general fact that for any finite abelian group G,
we have that G ≈ Hom(G, C∗). To deduce this latter isomorphism, first
reduce to the case when G is cyclic by writing G as a product of cyclic
groups. The cyclic case follows because if G is cyclic of order n, then C∗

contains an nth root of unity, so Hom(G, C∗) is also cyclic of order n. Any
two cyclic groups of the same order are isomorphic, so G and Hom(G, C∗)
are isomorphic. ¤

Corollary 4.3. We have #D(N, R) | ϕ(N), with equality if and only if
the order of our choice of ζ ∈ R is a multiple of the exponent of the group
(Z/NZ)∗.

Proof. This is because #(Z/NZ)∗ = ϕ(N). ¤

Fix a positive integer N . To find the set of “canonical” generators for
the group (Z/NZ)∗, write N =

∏n
i=0 pei

i where p0 < p1 < · · · < pn are
the prime divisors of N . By Exercise 4.2, each factor (Z/pei

i Z)∗ is a cyclic
group Ci = 〈gi〉, except if p0 = 2 and e0 ≥ 3, in which case (Z/pe0

0 Z)∗

is a product of the cyclic subgroup C0 = 〈−1〉 of order 2 with the cyclic
subgroup C1 = 〈5〉. In all cases we have

(Z/NZ)∗ ∼=
∏

0≤i≤n

Ci =
∏

0≤i≤n

〈gi〉.

4.2. Representing Dirichlet Characters 65

For i such that pi > 2, choose the generator gi of Ci to be the element of
{2, 3, . . . , pei

i − 1} that is smallest and generates. Finally, use the Chinese
Remainder Theorem (see [Coh93, §1.3.3]) to lift each gi to an element in
(Z/NZ)∗, also denoted gi, that is 1 modulo each p

ej

j for j 6= i.

Algorithm 4.4 (Minimal Generator for (Z/prZ)∗). Given a prime power pr

with p odd, this algorithm computes the minimal generator of (Z/prZ)∗.

(1) [Factor Group Order] Factor n = φ(pr) = pr−1 · 2 · ((p − 1)/2) as a
product

∏
pei

i of primes. This is equivalent in difficulty to factoring
(p − 1)/2. (See, e.g., [Coh93, Ch.8, Ch. 10] for an excellent dis-
cussion of factorization algorithms, though of course much progress
has been made since then.)

(2) [Initialize] Set g = 2.

(3) [Generator?] Using the binary powering algorithm (see [Coh93,

§1.2]), compute gn/pi (mod pr), for each prime divisor pi of n. If
any of these powers are 1, then g is not a generator, so set g = g+1
and go to step (2). If no powers are 1, output g and terminate.

See Exercise 4.3 for a proof that this algorithm is correct.

Example 4.5. A minimal generator for (Z/49Z)∗ is 3. We have n = ϕ(49) =
42 = 2 · 3 · 7 and

2n/2 ≡ 1, 2n/3 ≡ 18, 2n/7 ≡ 15 (mod 49),

so 2 is not a generator for (Z/49Z)∗. (We see this just from 2n/2 ≡ 1
(mod 49).) However 3 is a generator since

3n/2 ≡ 48, 3n/3 ≡ 30, 3n/7 ≡ 43 (mod 49).

Example 4.6. In this example we compute minimal generators for N = 25,
100, and 200:

(1) The minimal generator for (Z/25Z)∗ is 2.

(2) The minimal generators for (Z/100Z)∗, lifted to numbers modulo
100, are g0 = 51 and g1 = 77. Notice that g0 ≡ −1 (mod 4)
and g0 ≡ 1 (mod 25) and that g1 ≡ 2 (mod 25) is the minimal
generator modulo 25.

(3) The minimal generators for (Z/200Z)∗, lifted to numbers modulo
200, are g0 = 151, g1 = 101, and g2 = 177. Note that g0 ≡ −1
(mod 4), that g1 ≡ 5 (mod 8) and g2 ≡ 2 (mod 25).

In SAGE, the command Integers(N) creates Z/NZ.

66 4. Dirichlet Characters

sage: R = Integers(49)

sage: R

Ring of integers modulo 49

The unit gens command computes the minimal generators for (Z/NZ)∗,
as defined above.

sage: R.unit_gens()

[3]

sage: Integers(25).unit_gens()

[2]

sage: Integers(100).unit_gens()

[51, 77]

sage: Integers(200).unit_gens()

[151, 101, 177]

sage: Integers(2005).unit_gens()

[402, 1206]

sage: Integers(200000000).unit_gens()

[174218751, 51562501, 187109377]

Fix an element ζ of finite multiplicative order in a ring R, and let
D(N, R) denote the group of Dirichlet characters of modulus N over R,
with image in 〈ζ〉 ∪ {0}. In most of this chapter, we specify an element
ε ∈ D(N, R) by giving the list

(4.2.1) [ε(g0), ε(g1), . . . , ε(gn)]

of images of the generators of (Z/NZ)∗. (Note that if N is even, the number
of elements of the list (4.2.1) does depend on whether or not 8 | N—there are
two factors corresponding to 2 if 8 | N , but only one if 8 ∤ N .) This represen-
tation completely determines ε and is convenient for arithmetic operations.
It is analogous to representing a linear transformation by a matrix.

Remark 4.7. In any actual implementation (e.g., the one in SAGE), it is
better to represent the ε(gi) by recording an integer j such that ε(gi) = ζj ,
where ζ ∈ R is a fixed root of unity. Then (4.2.1) is internally represented as
an element of (Z/mZ)n+1, where m is the multiplicative order of ζ. When
the representation of (4.2.1) is needed for an algorithm, it can be quickly
computed on the fly using a table of the powers of ζ. See Section 4.7 for
further discussion about ways to represent characters.

Example 4.8. The group D(5, C) has elements {[1], [i], [−1], [−i]}, so it is
cyclic of order ϕ(5) = 4. In contrast, the group D(5, Q) has only the two

4.3. Evaluation of Dirichlet Characters 67

elements [1] and [−1] and order 2. The command DirichletGroup(N) with
no second argument creates the group of Dirichlet characters with values in
the cyclotomic field Q(ζn), where n is the exponent of the group (Z/NZ)∗.
Every element in D(N, C) takes values in Q(ζn), so D(N, Q(ζn)) ≈ D(N, C).

sage: list(DirichletGroup(5))

[[1], [zeta4], [-1], [-zeta4]]

sage: list(DirichletGroup(5, QQ))

[[1], [-1]]

4.3. Evaluation of Dirichlet Characters

This section is about how to compute ε(n), where ε is a Dirichlet character
and n is an integer. We begin with an example.

Example 4.9. If N = 200, then g0 = 151, g1 = 101 and g2 = 177, as we
saw in Example 4.6. The exponent of (Z/200Z)∗ is 20, since that is the least
common multiple of the exponents of 4 = #(Z/8Z)∗ and 20 = #(Z/25Z)∗.
The orders of g0, g1, and g2 are 2, 2, and 20. Let ζ = ζ20 be a primitive
20th root of unity in C. Then the following are generators for D(200, C):

ε0 = [−1, 1, 1], ε1 = [1,−1, 1], ε2 = [1, 1, ζ],

and ε = [1,−1, ζ5] is an example element of order 4. To evaluate ε(3), we
write 3 in terms of g0, g1, and g2. First, reducing 3 modulo 8, we see that
3 ≡ g0 ·g1 (mod 8). Next reducing 3 modulo 25 and trying powers of g2 = 2,
we find that e ≡ g7

2 (mod 25). Thus

ε(3) = ε(g0 · g1 · g7
2)

= ε(g0)ε(g1)ε(g2)
7

= 1 · (−1) · (ζ5)7

= −ζ35 = −ζ15.

We next illustrate the above computation of ε(3) in SAGE. First we make
the group D(200, Q(ζ8)) and list its generators.

68 4. Dirichlet Characters

sage: G = DirichletGroup(200)

sage: G

Group of Dirichlet characters of modulus 200 over

Cyclotomic Field of order 20 and degree 8

sage: G.exponent()

20

sage: G.gens()

([-1, 1, 1], [1, -1, 1], [1, 1, zeta20])

We construct ε.

sage: K = G.base_ring()

sage: zeta = K.0

sage: eps = G([1,-1,zeta^5])

sage: eps

[1, -1, zeta20^5]

Finally, we evaluate ε at 3.

sage: eps(3)

zeta20^5

sage: -zeta^15

zeta20^5

Example 4.9 illustrates that if ε is represented using a list as described
above, evaluation of ε is inefficient without extra information; it requires
solving the discrete log problem in (Z/NZ)∗.

Remark 4.10. For a general character ε, is calculation of ε at least as
hard as finding discrete logarithms? Quadratic characters are easier—see
Algorithm 4.23.

Algorithm 4.11 (Evaluate ε). Given a Dirichlet character ε of modulus N ,
represented by a list [ε(g0), ε(g1), . . . , ε(gn)], and an integer a, this algorithm
computes ε(a).

(1) [GCD] Compute g = gcd(a, N). If g > 1, output 0 and terminate.

(2) [Discrete Log] For each i, write a (mod pei

i) as a power mi of gi

using some algorithm for solving the discrete log problem (see be-
low). If pi = 2, write a (mod pei

i) as (−1)m0 · 5m1 . (This step is
analogous to writing a vector in terms of a basis.)

4.3. Evaluation of Dirichlet Characters 69

(3) [Multiply] Output
∏

ε(gi)
mi as an element of R, and terminate.

(This is analogous to multiplying a matrix times a vector.)

4.3.1. The Discrete Log Problem. Exercise 4.4 gives an isomorphism
of groups

(1 + pn−1(Z/pnZ), ×) ∼= (Z/pZ, +),

so one sees by induction that step (2) is “about as difficult” as finding a
discrete log in (Z/pZ)∗. There is an algorithm called “baby-step giant-

step”, which solves the discrete log problem in (Z/pZ)∗ in time O(
√

ℓ),
where ℓ is the largest prime factor of p − 1 = #(Z/pZ)∗ (note that the
discrete log problem in (Z/pZ)∗ reduces to a series of discrete log problems
in each prime-order cyclic factor). This is unfortunately still exponential in

the number of digits of ℓ; it also uses O(
√

ℓ) memory. We now describe this
algorithm without any specific optimizations.

Algorithm 4.12 (Baby-step Giant-step Discrete Log). Given a prime p, a
generator g of (Z/pZ)∗, and an element a ∈ (Z/pZ)∗, this algorithm finds
an n such that gn = a. (Note that this algorithm works in any cyclic group,
not just (Z/pZ)∗.)

(1) [Make Lists] Let m = ⌈√p⌉ be the ceiling of
√

p, and construct two
lists

1, gm, . . . , g(m−1)m (giant steps)

and

a, ag, ag2, . . . , agm−1 (baby steps).

(2) [Find Match] Sort the two lists and find a match gim = agj . Then
a = gim−j .

Proof. We prove that there will always be a match. Since we know that
a = gk for some k with 0 ≤ k ≤ p − 1 and any such k can be written in the
form im − j for 0 ≤ i, j ≤ m − 1, we will find such a match. ¤

Algorithm 4.12 uses nothing special about (Z/pZ)∗, so it works in a
generic group. It is a theorem that there is no faster algorithm to find
discrete logs in a “generic group” (see [Sho97, Nec94]). There are much
better subexponential algorithms for solving the discrete log problem in
(Z/pZ)∗, which use the special structure of this group. They use the number
field sieve (see, e.g., [Gor93]), which is also the best-known algorithm for
factoring integers. This class of algorithms has been very well studied by
cryptographers; though sub-exponential, solving discrete log problems when
p is large is still extremely difficult. For a more in-depth survey see [Gor04].
For computing Dirichlet characters in our context, p is not too large, so
Algorithm 4.12 works well.

70 4. Dirichlet Characters

4.3.2. Enumeration of All Values. For many applications of Dirichlet
characters to computing modular forms, N is fairly small, e.g., N < 106, and
we evaluate ε on a huge number of random elements, inside inner loops of
algorithms. Thus for such purposes it will often be better to make a table of
all values of ε, so that evaluation of ε is extremely fast. The following algo-
rithm computes a table of all values of ε, and it does not require computing
any discrete logs since we are computing all values.

Algorithm 4.13 (Values of ε). Given a Dirichlet character ε represented
by the list of values of ε on the minimal generators gi of (Z/NZ)∗, this
algorithm creates a list of all the values of ε.

(1) [Initialize] For each minimal generator gi, set ai = 0. Let n =
∏

gai

i ,
and set z = 1. Create a list v of N values, all initially set equal to 0.
When this algorithm terminates, the list v will have the property
that

v [x (mod N)] = ε(x).

Notice that we index v starting at 0.

(2) [Add Value to Table] Set v[n] = z.

(3) [Finished?] If each ai is one less than the order of gi, output v and
terminate.

(4) [Increment] Set a0 = a0 + 1, n = n · g0 (mod N), and z = z · ε(g0).
If a0 ≥ ord(g0), set a0 → 0, and then set a1 = a1 + 1, n = n · g1

(mod N), and z = z · ε(g1). If a1 ≥ ord(g1), do what you just did
with a0 but with all subscripts replaced by 1. Etc. (Imagine a car
odometer.) Go to step (2).

4.4. Conductors of Dirichlet Characters

The following algorithm for computing the order of ε reduces the problem
to computing the orders of powers of ζ in R.

Algorithm 4.14 (Order of Character). This algorithm computes the order
of a Dirichlet character ε ∈ D(N, R).

(1) Compute the order ri of each ε(gi), for each minimal generator gi

of (Z/NZ)∗. The order of ε(gi) is a divisor of n = #(Z/pei

i Z)∗ so
we can compute its order by considering the divisors of n.

(2) Compute and output the least common multiple of the integers ri.

Remark 4.15. Computing the order of ε(gi) ∈ R is potentially difficult.
Simultaneously using a different representation of Dirichlet characters avoids
having to compute the order of elements of R (see Section 4.7).

The next algorithm factors ε as a product of “local” characters, one for
each prime divisor of N . It is useful for other algorithms, e.g., for explicit

4.4. Conductors of Dirichlet Characters 71

computations with trace formulas (see [Hij74]). This factorization is easy
to compute because of how we represent ε.

Algorithm 4.16 (Factorization of Character). Given a Dirichlet character
ε ∈ D(N, R), with N =

∏
pei

i , this algorithm finds Dirichlet characters εi

modulo pei

i , such that for all a ∈ (Z/NZ)∗, we have ε(a) =
∏

εi(a(mod pei

i)).
If 2 | N , the steps are as follows:

(1) Let gi be the minimal generators of (Z/NZ)∗, so ε is given by a list

[ε(g0), . . . , ε(gn)].

(2) For i = 2, . . . , n, let εi be the element of D(pei

i , R) defined by the
singleton list [ε(gi)].

(3) Let ε1 be the element of D(2e1 , R) defined by the list [ε(g0), ε(g1)]
of length 2. Output the εi and terminate.

If 2 ∤ N , then omit step (3), and include all i in step (2).

The factorization of Algorithm 4.16 is unique since each εi is determined
by the image of the canonical map (Z/pei

i Z)∗ in (Z/NZ)∗, which sends a

(mod pei

i) to the element of (Z/NZ)∗ that is a (mod pei

i) and 1 (mod p
ej

j)
for j 6= i.

Example 4.17. If ε = [1,−1, ζ5] ∈ D(200, C), then ε1 = [1,−1] ∈ D(8, C)
and ε2 = [ζ5] ∈ D(25, C).

Definition 4.18 (Conductor). The conductor of a Dirichlet character ε ∈
D(N, R) is the smallest positive divisor c | N such that there is a character
ε′ ∈ D(c, R) for which ε(a) = ε′(a) for all a ∈ Z with (a, N) = 1. A
Dirichlet character is primitive if its modulus equals its conductor. The
character ε′ associated to ε with modulus equal to the conductor of ε is
called the primitive character associated to ε.

We will be interested in conductors later, when computing new subspaces
of spaces of modular forms with character. Also certain formulas for special
values of L functions are only valid for primitive characters.

Algorithm 4.19 (Conductor). This algorithm computes the conductor of a
Dirichlet character ε ∈ D(N, R).

(1) [Factor Character] Using Algorithm 4.16, find characters εi whose
product is ε.

(2) [Compute Orders] Using Algorithm 4.14, compute the orders ri of
each εi.

(3) [Conductors of Factors] For each i, either set ci → 1 if εi is the

trivial character (i.e., of order 1) or set ci = p
ordpi

(ri)+1
i , where

ordp(n) is the largest power of p that divides n.

72 4. Dirichlet Characters

(4) [Adjust at 2?] If p1 = 2 and ε1(5) 6= 1, set c1 = 2c1.

(5) [Finished] Output c =
∏

ci and terminate.

Proof. Let εi be the local factors of ε, as in step (1). We first show that the
product of the conductors fi of the εi is the conductor f of ε. Since εi factors
through (Z/fiZ)∗, the product ε of the εi factors through (Z/

∏
fiZ)∗, so

the conductor of ε divides
∏

fi. Conversely, if ordpi
(f) < ordpi

(fi) for
some i, then we could factor ε as a product of local (prime power) characters
differently, which contradicts that this factorization is unique.

It remains to prove that if ε is a nontrivial character of modulus pn,
where p is a prime, and if r is the order of ε, then the conductor of ε is
pordp(r)+1, except possibly if 8 | pn. Since the order and conductor of ε and
of the associated primitive character ε′ are the same, we may assume ε is
primitive, i.e., that pn is the conductor of ε; note that n > 0, since ε is
nontrivial.

First suppose p is odd. Then the abelian group D(pn, R) splits as a direct
sum D(p, R) ⊕ D(pn, R)′, where D(pn, R)′ is the p-power torsion subgroup
of D(pn, R). Also ε has order u · pm, where u, which is coprime to p, is
the order of the image of ε in D(p, R) and pm is the order of the image
in D(pn, R)′. If m = 0, then the order of ε is coprime to p, so ε is in
D(p, R), which means that n = 1, so n = m+1, as required. If m > 0, then
ζ ∈ R must have order divisible by p, so R has characteristic not equal to p.
The conductor of ε does not change if we adjoin roots of unity to R, so in
light of Lemma 4.2 we may assume that D(N, R) ≈ (Z/NZ)∗. It follows

that for each n′ ≤ n, the p-power subgroup D(pn′

, R)′ of D(pn′

, R) is the

pn′−1-torsion subgroup of D(pn, R)′. Thus m = n − 1, since D(pn, R)′ is by
assumption the smallest such group that contains the projection of ε. This
proves the formula of step (3). We leave the argument when p = 2 as an
exercise (see Exercise 4.5). ¤

Example 4.20. If ε = [1,−1, ζ5] ∈ D(200, C), then as in Example 4.17, ε
is the product of ε1 = [1,−1] and ε2 = [ζ5]. Because ε1(5) = −1, the
conductor of ε1 is 8. The order of ε2 is 4 (since ζ is a 20th root of unity),
so the conductor of ε2 is 5. Thus the conductor of ε is 40 = 8 · 5.

4.5. The Kronecker Symbol

In this section all characters have values in C.

Frequently quadratic characters are described in terms of the Kronecker
symbol

(
a
n

)
, which we define for any integer a and positive integer n as

4.5. The Kronecker Symbol 73

follows. First, if n = p is an odd prime, then for any integer a,

(
a

p

)
=





0 if gcd(a, p) 6= 1,

1 if a is a square mod p,

−1 if a is not a square mod p.

If p = 2, then

(a

2

)
=





0 if a is even,

1 if a ≡ ±1 (mod 8),

−1 if a ≡ ±3 (mod 8).

More generally, if n =
∏

pei

i with the pi prime, then

(a

n

)
=

∏ (
a

pi

)ei

.

Remark 4.21. One can also extend
(

a
n

)
to n < 0, but we will not need

this. The extension is to set
(

a
−1

)
= −1 and

(
a
1

)
= 1, for a 6= 0, and to

extend multiplicatively (in the denominator). Note that the map
(

•
−1

)
is

not a Dirichlet character (see Exercise 4.1).

Let M be the product of the primes p such that ordp(n) is odd. If M is
odd, let N = M ; otherwise, let N = 8M .

Lemma 4.22. The function

ε(a) =

{(
a
n

)
if gcd(a, N) = 1,

0 otherwise

is a Dirichlet character of modulus N . The function

ε(a) =

{(−1
a

)
if a is odd,

0 if a is even

is a Dirichlet character of modulus N .

Proof. When restricted to (Z/NZ)∗, each map
(
•
p

)
, for p prime, is a homo-

morphism, so ε a product of homomorphisms. The second statement follows
from the definition and the fact that −1 is a square modulo an odd prime p
if and only if p ≡ 1 (mod 4). ¤

This section is about going between representing quadratic characters
as row matrices and via Kronecker symbols. This is valuable because the
algorithms in [Coh93, §1.1.4] for computing Kronecker symbols run in time

74 4. Dirichlet Characters

quadratic in the number of digits of the input. They do not require comput-

ing discrete logarithms; instead, they use, e.g., that
(

a
p

)
≡ a(p−1)/2 (mod p),

when p is an odd prime.

Algorithm 4.23 (Kronecker Symbol as Dirichlet Character). Given n > 0,
this algorithm computes a representation of the Kronecker symbol

(•
n

)
as a

Dirichlet character.

(1) [Modulus] Compute N as in Lemma 4.22.

(2) [Minimal Generators] Compute minimal generators gi of (Z/NZ)∗

using Algorithm 4.4.

(3) [Images] Compute
(gi

N

)
for each gi using one of the algorithms of

[Coh93, §1.1.4].

Example 4.24. We compute the Dirichlet character associated to
(•

200

)
.

Using SAGE, we compute the
(gi

200

)
, for i = 0, 1, 2, where the gi are as in

Example 4.9:

sage: kronecker(151,200)

1

sage: kronecker(101,200)

-1

sage: kronecker(177,200)

1

Thus the corresponding character is defined by [1,−1, 1].

Example 4.25. We compute the character associated to
(•

420

)
. We have

420 = 4 · 3 · 5 · 7, and minimal generators are

g0 = 211, g1 = 1, g2 = 281, g3 = 337, g4 = 241.

We have g0 ≡ −1 (mod 4), g2 ≡ 2 (mod 3), g3 ≡ 2 (mod 5) and g4 ≡ 3
(mod 7). We find

(g0

420

)
=

(g1

420

)
= 1 and

(g2

420

)
=

(g3

420

)
=

(g4

420

)
= −1. The

corresponding character is [1, 1,−1,−1,−1].

Using the following algorithm, we can go in the other direction, i.e.,
write any quadratic Dirichlet character as a Kronecker symbol.

Algorithm 4.26 (Dirichlet Character as Kronecker Symbol). Given ε of
order 2 with modulus N , this algorithm writes ε as a Kronecker symbol.

(1) [Conductor] Use Algorithm 4.19 to compute the conductor f of ε.

(2) [Odd] If f is odd, output
(

•
f

)
.

(3) [Even] If ε(−1) = 1, output
(

•
f

)
; if ε(−1) = −1, output

(
•
f

)
·
(−1

•
)
.

4.6. Restriction, Extension, and Galois Orbits 75

Proof. Since f is the conductor of a quadratic Dirichlet character, it is
a square-free product g of odd primes times either 4 or 8, so the group
(Z/fZ)∗ does not inject into (Z/gZ)∗ for any proper divisor g of f (see
this by reducing to the prime power case). Since g is odd and square-free,

the character
(
•
g

)
has conductor g. For each odd prime p, by step (3) of

Algorithm 4.19 the factor at p of both ε and
(
•
g

)
is a quadratic character

with modulus p. By Exercise 4.2 and Lemma 4.2 the group D(p, C) is cyclic,

so it has a unique element of order 2, so the factors of ε and
(
•
g

)
at p are

equal.

The quadratic characters with conductor a power of 2 are [−1], [1,−1],
and [−1,−1]. The character [1,−1] is

(•
2

)
and the character [−1] is

(−1
•

)
. ¤

Example 4.27. Consider ε = [−1,−1,−1,−1,−1] with modulus 840 = 8·3·
5·7. It has conductor 840, and ε(−1) = −1, so for all a with gcd(a, 840) = 1,
we have ε(a) =

(
a

840

)
·
(−1

a

)
.

4.6. Restriction, Extension, and Galois Orbits

The following two algorithms restrict and extend characters to a compatible
modulus. Using them, it is easy to define multiplication of two characters
ε ∈ D(N, R) and ε′ ∈ D(N ′, R′), as long as R and R′ are subrings of a
common ring. To carry out the multiplication, extend both characters to a
common base ring, and then extend them to characters modulo lcm(N, N ′)
and multiply.

Algorithm 4.28 (Restriction of Character). Given a Dirichlet character
ε ∈ D(N, R) and a divisor N ′ of N that is a multiple of the conductor of ε,
this algorithm finds a characters ε′ ∈ D(N ′, R), such that ε′(a) = ε(a), for
all a ∈ Z with (a, N) = 1.

(1) [Conductor] Compute the conductor of ε using Algorithm 4.19, and
verify that N ′ is divisible by the conductor and divides N .

(2) [Minimal Generators] Compute minimal generators gi for (Z/N ′Z)∗.
(3) [Values of Restriction] For each i, compute ε′(gi) as follows. Find

a multiple aN ′ of N ′ such that (gi + aN ′, N) = 1; then ε′(gi) =
ε(gi + aN ′).

(4) [Output Character] Output the Dirichlet character of modulus N ′

defined by [ε′(g0), . . . , ε
′(gn)].

Proof. The only part that is not clear is that in step (3) there is an a such
that (gi + aN ′, N) = 1. If we write N = N1 · N2, with (N1, N2) = 1 and N1

divisible by all primes that divide N ′, then (gi, N1) = 1 since (gi, N
′) = 1.

By the Chinese Remainder Theorem, there is an x ∈ Z such that x ≡ gi

76 4. Dirichlet Characters

(mod N1) and x ≡ 1 (mod N2). Then x = gi + bN1 = gi + (bN1/N
′) · N ′

and (x, N) = 1, which completes the proof. ¤

Algorithm 4.29 (Extension of Character). Given a Dirichlet character
ε ∈ D(N, R) and a multiple N ′ of N , this algorithm finds a character ε′ ∈
D(N ′, R), such that ε′(a) = ε(a), for all a ∈ Z with (a, N ′) = 1.

(1) [Minimal Generators] Compute minimal generators gi for (Z/N ′Z)∗.
(2) [Evaluate] Compute ε(gi) for each i. Since (gi, N

′) = 1, we also
have (gi, N) = 1.

(3) [Output Character] Output the character [ε(g0), . . . , ε(gn)].

Let F be the prime subfield of R, and assume that R ⊂ F , where
F is a separable closure of F . If σ ∈ Gal(F/F) and ε ∈ D(N, R), let
(σε)(n) = σ(ε(n)); this defines an action of Gal(F/F) on D(N, R). Our
next algorithm computes the orbits for the action of Gal(F/F) on D(N, R).
This algorithm can provide huge savings for modular forms computations
because the spaces Mk(N, ε) and Mk(N, ε′) are canonically isomorphic if ε
and ε′ are conjugate.

Algorithm 4.30 (Galois Orbit). Given a Dirichlet character ε ∈ D(N, R),
this algorithm computes the orbit of ε under the action of G = Gal(F/F),
where F is the prime subfield of Frac(R), so F = Fp or Q.

(1) [Order of ζ] Let n be the order of the chosen root ζ ∈ R.

(2) [Nontrivial Automorphisms] If char(R) = 0, let

A = {a : 2 ≤ a < n and (a, n) = 1}.
If char(R) = p > 0, compute the multiplicative order r of p(mod n),
and let

A = {pm : 1 ≤ m < r}.
(3) [Compute Orbit] Compute and output the set of unique elements

εa for each a ∈ A (there could be repeats, so we output unique
elements only).

Proof. We prove that the nontrivial automorphisms of 〈ζ〉 in character-
istic p are as in step (2). It is well known that every automorphism in
characteristic p on ζ ∈ Fp is of the form x 7→ xps

, for some s. The images of
ζ under such automorphisms are

ζ, ζp, ζp2
,

Suppose r > 0 is minimal such that ζ = ζpr
. Then the orbit of ζ is

ζ, . . . , ζpr−1
. Also pr ≡ 1 (mod n), where n is the multiplicative order of ζ,

so r is the multiplicative order of p modulo n, which completes the proof. ¤

4.7. Alternative Representations of Characters 77

Example 4.31. The Galois orbits of characters in D(20, C∗) are as follows:

G0 = {[1, 1, 1]},
G1 = {[−1, 1, 1]},
G2 = {[1, 1, ζ4], [1, 1,−ζ4]}
G3 = {[−1, 1, ζ4], [−1, 1,−ζ4]}
G4 = {[1, 1,−1]},
G5 = {[−1, 1,−1]}.

The conductors of the characters in orbit G0 are 1, in orbit G1 they are 4,
in orbit G2 they are 5, in G3 they are 20, in G4 the conductor is 5, and in
G5 the conductor is 20. (You should verify this.)

SAGE computes Galois orbits as follows:

sage: G = DirichletGroup(20)

sage: G.galois_orbits()

[

[[1, 1]],

[[1, zeta4], [1, -zeta4]],

[[1, -1]],

[[-1, 1]],

[[-1, zeta4], [-1, -zeta4]],

[[-1, -1]]

]

4.7. Alternative Representations of Characters

Let N be a positive integer and R an integral domain, with fixed root of
unity ζ of order n, and let D(N, R) = D(N, R, ζ). As in the rest of this
chapter, write N =

∏
pei

i , and let Ci = 〈gi〉 be the corresponding cyclic fac-
tors of (Z/NZ)∗. In this section we discuss other ways to represent elements
ε ∈ D(N, R). Each representation has advantages and disadvantages, and
no single representation is best. It is easy to convert between them, and
some algorithms are much easier using one representation than when using
another. In this section we present two other representations, each having
advantages and disadvantages. There is no reason to restrict to only one
representation; for example, SAGE internally uses both.

We could represent ε by giving a list [b0, . . . , br], where each bi ∈ Z/nZ
and ε(gi) = ζbi . Then arithmetic in D(N, R) is arithmetic in (Z/nZ)r+1,
which is very efficient. A drawback to this approach (in practice) is that it
is easy to accidentally consider sequences that do not actually correspond to

78 4. Dirichlet Characters

elements of D(N, R). Also the choice of ζ is less clear, which can cause con-
fusion. Finally, the orders of the local factors is more opaque, e.g., compare
[−1, ζ40] with [20, 1]. Overall this representation is not too bad and is more
like representing a linear transformation by a matrix. It has the advantage
over the representation discussed earlier in this chapter that arithmetic in
D(N, R) is very efficient and does not require any operations in the ring R.

Another way to represent ε would be to give a list [b0, . . . , br] of integers,
but this time with bi ∈ Z/ gcd(si, n)Z, where si is the order of gi. Then

ε(gi) = ζbi·n/(gcd(si,n)),

which is already pretty complicated. With this representation we set up an
identification

D(N, R) ∼=
⊕

i

Z/ gcd(si, n)Z,

and arithmetic is efficient. This approach is seductive because every se-
quence of integers determines a character, and the sizes of the integers in
the sequence nicely indicate the local orders of the character. However,
giving analogues of many of the algorithms discussed in this chapter that
operate on characters represented this way is tricky. For example, the repre-
sentation depends very much on the order of ζ, so it is difficult to correctly
compute natural maps D(N, R) → D(N, S), for R ⊂ S rings.

4.8. Dirichlet Characters in SAGE

To create a Dirichlet character in SAGE, first create the group D(N, R) of
Dirichlet characters then construct elements of that group. First we make
D(11, Q):

sage: G = DirichletGroup(11, QQ); G

Group of Dirichlet characters of modulus 11 over

Rational Field

A Dirichlet character prints as a matrix that gives the values of the
character on canonical generators of (Z/NZ)∗ (as discussed below).

sage: list(G)

[[1], [-1]]

sage: eps = G.0 # 0th generator for Dirichlet group

sage: eps

[-1]

The character ε takes the value −1 on the unit generator.

4.8. Dirichlet Characters in SAGE 79

sage: G.unit_gens()

[2]

sage: eps(2)

-1

sage: eps(3)

1

It is 0 on any integer not coprime to 11:

sage: [eps(11*n) for n in range(10)]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

We can also create groups of Dirichlet characters taking values in other
rings or fields. For example, we create the cyclotomic field Q(ζ4).

sage: R = CyclotomicField(4)

sage: CyclotomicField(4)

Cyclotomic Field of order 4 and degree 2

Then we define G = D(15, Q(ζ4)).

sage: G = DirichletGroup(15, R)

sage: G

Group of Dirichlet characters of modulus 15 over

Cyclotomic Field of order 4 and degree 2

Next we list each of its elements.

sage: list(G)

[[1, 1], [-1, 1], [1, zeta4], [-1, zeta4], [1, -1],

[-1, -1], [1, -zeta4], [-1, -zeta4]]

Now we evaluate the second generator of G on various integers:

80 4. Dirichlet Characters

sage: e = G.1

sage: e(4)

-1

sage: e(-1)

-1

sage: e(5)

0

Finally we list all the values of e.

sage: [e(n) for n in range(15)]

[0, 1, zeta4, 0, -1, 0, 0, zeta4, -zeta4,

0, 0, 1, 0, -zeta4, -1]

We can also compute with groups of Dirichlet characters with values in
a finite field.

sage: G = DirichletGroup(15, GF(5)); G

Group of Dirichlet characters of modulus 15

over Finite Field of size 5

We list all the elements of G, again represented by lists that give the
images of each unit generator, as an element of F5.

sage: list(G)

[[1, 1], [4, 1], [1, 2], [4, 2], [1, 4], [4, 4],

[1, 3], [4, 3]]

We evaluate the second generator of G on several integers.

sage: e = G.1

sage: e(-1)

4

sage: e(2)

2

sage: e(5)

0

sage: print [e(n) for n in range(15)]

[0, 1, 2, 0, 4, 0, 0, 2, 3, 0, 0, 1, 0, 3, 4]

4.9. Exercises 81

4.9. Exercises

4.1 Let f : Z → C be the map given by

f(a) =





0 if a = 0,

−1 if a < 0,

1 if a > 0.

Prove that f is not a Dirichlet character of any modulus N .

4.2 This exercise is about the structure of the units of Z/pnZ.
(a) If p is odd and n is a positive integer, prove that (Z/pnZ)∗ is

cyclic.
(b) For n ≥ 3, prove that (Z/2nZ)∗ is a direct sum of the cyclic

subgroups 〈−1〉 and 〈5〉, of orders 2 and 2n−2, respectively.

4.3 Prove that Algorithm 4.4 works, i.e., that if g ∈ (Z/prZ)∗ and

gn/pi 6= 1 for all pi | n = ϕ(pr), then g is a generator of (Z/prZ)∗.

4.4 (a) Let p be an odd prime and n ≥ 2 an integer, and prove that
(
(1 + pn−1Z/pnZ), ×

) ∼= (Z/pZ, +).

(b) Use the first part to show that solving the discrete log problem
in (Z/pnZ)∗ is “not much harder” than solving the discrete log
problem in (Z/pZ)∗.

4.5 Suppose ε is a nontrivial Dirichlet character of modulus 2n of or-
der r over the complex numbers C. Prove that the conductor of ε
is

c =

{
2ord2(r)+1 if ε(5) = 1,

2ord2(r)+2 if ε(5) 6= 1.

4.6 (a) Find an irreducible quadratic polynomial f over F5.
(b) Then F25 = F5[x]/(f). Find an element with multiplicative

order 4 in F25.
(c) Make a list of all Dirichlet characters in D(25, F25, ζ).
(d) Divide these characters into orbits for the action of Gal(F5/F5).

Chapter 5

Eisenstein Series and

Bernoulli Numbers

We introduce generalized Bernoulli numbers attached to Dirichlet characters
and give an algorithm to enumerate the Eisenstein series in Mk(N, ε).

5.1. The Eisenstein Subspace

Let Mk(Γ1(N)) be the space of modular forms of weight k for Γ1(N), and
let T be the Hecke algebra acting on Mk(Γ1(N)), which is the subring of
End(Mk(Γ1(N))) generated by all Hecke operators. Then there is a T-
module decomposition

Mk(Γ1(N)) = Ek(Γ1(N)) ⊕ Sk(Γ1(N)),

where Sk(Γ1(N)) is the subspace of modular forms that vanish at all cusps
and Ek(Γ1(N)) is the Eisenstein subspace, which is uniquely determined by
this decomposition. The above decomposition induces a decomposition of
Mk(Γ0(N)) and of Mk(N, ε), for any Dirichlet character ε of modulus N .

5.2. Generalized Bernoulli Numbers

Suppose ε is a Dirichlet character of modulus N over C. Leopoldt [Leo58]
defined generalized Bernoulli numbers attached to ε.

Definition 5.1 (Generalized Bernoulli Number). We define the generalized
Bernoulli numbers Bk,ε attached to ε by the following identity of infinite

83

84 5. Eisenstein Series and Bernoulli Numbers

series:

N∑

a=1

ε(a) · x · eax

eNx − 1
=

∞∑

k=0

Bk,ε ·
xk

k!
.

If ε is the trivial character of modulus 1 and Bk are as in Section 2.1,
then Bk,ε = Bk, except when k = 1, in which case B1,ε = −B1 = 1/2 (see
Exercise 5.2).

5.2.1. Algebraically Computing Generalized Bernoulli Numbers.

Let Q(ε) denote the field generated by the image of the character ε; thus
Q(ε) is the cyclotomic extension Q(ζn), where n is the order of ε.

Algorithm 5.2 (Generalized Bernoulli Numbers). Given an integer k ≥ 0
and any Dirichlet character ε with modulus N , this algorithm computes the
generalized Bernoulli numbers Bj,ε, for j ≤ k.

(1) Compute g = x/(eNx−1) ∈ Q[[x]] to precision O(xk+1) by comput-
ing eNx − 1 =

∑
n≥1 Nnxn/n! to precision O(xk+2) and computing

the inverse 1/(eNx − 1), then multiplying by x.

(2) For each a = 1, . . . , N , compute fa = g · eax ∈ Q[[x]], to preci-
sion O(xk+1). This requires computing eax =

∑
n≥0 anxn/n! to

precision O(xk+1). (Omit computation of eNx if N > 1 since then
ε(N) = 0.)

(3) Then for j ≤ k, we have

Bj,ε = j! ·
N∑

a=1

ε(a) · cj(fa),

where cj(fa) is the coefficient of xj in fa.

Note that in steps (1) and (2) we compute the power series doing arith-
metic only in Q[[x]], not in Q(ε)[[x]], which could be much less efficient
if ε has large order. In step (1) if k is huge, we could compute the inverse
1/(eNx − 1) using asymptotically fast arithmetic and Newton iteration.

Example 5.3. The nontrivial character ε with modulus 4 has order 2 and
takes values in Q. The Bernoulli numbers Bk,ε for k even are all 0 and for

5.2. Generalized Bernoulli Numbers 85

k odd they are

B1,ε = −1/2,

B3,ε = 3/2,

B5,ε = −25/2,

B7,ε = 427/2,

B9,ε = −12465/2,

B11,ε = 555731/2,

B13,ε = −35135945/2,

B15,ε = 2990414715/2,

B17,ε = −329655706465/2,

B19,ε = 45692713833379/2.

Example 5.4. The generalized Bernoulli numbers need not be in Q. Sup-
pose ε is the mod 5 character such that ε(2) = i =

√
−1. Then Bk,ε = 0 for

k even and

B1,ε =
−i − 3

5
,

B3,ε =
6i + 12

5
,

B5,ε =
−86i − 148

5
,

B7,ε =
2366i + 3892

5
,

B9,ε =
−108846i − 176868

5
,

B11,ε =
7599526i + 12309572

5
,

B13,ε =
−751182406i − 1215768788

5
,

B15,ε =
99909993486i + 161668772052

5
,

B17,ε =
−17209733596766i − 27846408467908

5
.

Example 5.5. We use SAGE to compute some of the above generalized
Bernoulli numbers. First we define the character and verify that ε(2) = i
(note that in SAGE zeta4 is

√
−1).

86 5. Eisenstein Series and Bernoulli Numbers

sage: G = DirichletGroup(5)

sage: e = G.0

sage: e(2)

zeta4

We compute the Bernoulli number B1,ε.

sage: e.bernoulli(1)

-1/5*zeta4 - 3/5

We compute B9,ε.

sage: e.bernoulli(9)

-108846/5*zeta4 - 176868/5

Proposition 5.6. If ε(−1) 6= (−1)k and k ≥ 2, then Bk,ε = 0.

Proof. See Exercise 5.3. ¤

5.2.2. Computing Generalized Bernoulli Numbers Analytically.

This section, which was written jointly with Kevin McGown, is about
a way to compute generalized Bernoulli numbers, which is similar to the
algorithm in Section 2.7.

Let χ be a primitive Dirichlet character modulo its conductor f . Note
from the definition of Bernoulli numbers that if σ ∈ Gal(Q/Q), then

(5.2.1) σ(Bn,χ) = Bn,σ(χ).

For any character χ, we define the Gauss sum τ(χ) as

τ(χ) =

f−1∑

r=1

χ(r) ζr ,

where ζ = exp(2πi/f) is the principal fth root of unity. The Dirichlet
L-function for χ for Re(s) > 1 is

L(s, χ) =
∞∑

n=1

χ(n)n−s .

In the right half plane {s ∈ C | Re(s) > 1} this function is analytic, and
because χ is multiplicative, we have the Euler product representation

L(s, χ) =
∏

p prime

(
1 − χ(p)p−s

)−1
.(5.2.2)

We note (but will not use) that through analytic continuation L(s, χ) can
be extended to a meromorphic function on the entire complex plane.

5.2. Generalized Bernoulli Numbers 87

If χ is a nonprincipal primitive Dirichlet character of conductor f such
that χ(−1) = (−1)n, then (see, e.g., [Wan82])

L(n, χ) = (−1)n−1 τ(χ)

2

(
2πi

f

)n Bn,χ

n!
.

Solving for the Bernoulli number yields

Bn,χ = (−1)n−1 2n!

τ(χ)

(
f

2πi

)n

L(n, χ) .

This allows us to give decimal approximations for Bn,χ. It remains to com-
pute Bn,χ exactly (i.e., as an algebraic integer). To simplify the above
expression, we define

Kn,χ = (−1)n−1 2n!

(
f

2i

)n

and write

(5.2.3) Bn,χ =
Kn,χ

πn τ(χ)
L(n, χ) .

Note that we can compute Kn,χ exactly in the field Q(i).

The following result identifies the denominator of Bn,χ.

Theorem 5.7. Let n and χ be as above, and define an integer d as follows:

d =





1 if f is divisible by two distinct primes,

2 if f = 4,

1 if f = 2µ, µ > 2,

np if f = p, p > 2,

(1 − χ(1 + p)) if f = pµ, p > 2, µ > 1.

Then dn−1 Bn,χ is integral.

Proof. See [Car59a] for the proof and [Car59b] for further details. ¤

To compute the algebraic integer dn−1Bn,χ, and we compute L(n, χ) to
very high precision using the Euler product (5.2.2) and the formula (5.2.3).
We carry out the same computation for each of the Gal(Q/Q) conjugates of
χ, which by (5.2.1) yields the conjugates of dn−1Bn,χ. We can then write
down the characteristic polynomial of dn−1Bn,χ to very high precision and
recognize the coefficients as rational integers. Finally, we determine which
of the roots of the characteristic polynomial is dn−1Bn,χ by approximating
them all numerically to high precision and seeing which is closest to our
numerical approximation to dn−1Bn,χ. The details are similar to what is
explained in Section 2.7.

88 5. Eisenstein Series and Bernoulli Numbers

5.3. Explicit Basis for the Eisenstein Subspace

Suppose χ and ψ are primitive Dirichlet characters with conductors L and
R, respectively. Let

(5.3.1) Ek,χ,ψ(q) = c0+
∑

m≥1


∑

n|m
ψ(n) · χ(m/n) · nk−1


 qm ∈ Q(χ, ψ)[[q]],

where

c0 =





0 if L > 1,

−Bk,ψ

2k
if L = 1.

Note that when χ = ψ = 1 and k ≥ 4, then Ek,χ,ψ = Ek, where Ek is from
Chapter 1.

Miyake proves statements that imply the following in [Miy89, Ch. 7].

Theorem 5.8. Suppose t is a positive integer and χ, ψ are as above and
that k is a positive integer such that χ(−1)ψ(−1) = (−1)k. Except when
k = 2 and χ = ψ = 1, the power series Ek,χ,ψ(qt) defines an element of
Mk(RLt, χψ). If χ = ψ = 1, k = 2, t > 1, and E2(q) = Ek,χ,ψ(q), then
E2(q) − tE2(q

t) is a modular form in M2(Γ0(t)).

Theorem 5.9. The Eisenstein series in Mk(N, ε) coming from Theorem 5.8
with RLt | N and χψ = ε form a basis for the Eisenstein subspace Ek(N, ε).

Theorem 5.10. The Eisenstein series Ek,χ,ψ(q) ∈ Mk(RL) defined above
are eigenforms (i.e., eigenvectors for all Hecke operators Tn). Also E2(q)−
tE2(q

t), for t > 1, is an eigenform.

Since Ek,χ,ψ(q) is normalized so the coefficient of q is 1, the eigenvalue
of Tm is the coefficient

∑

n|m
ψ(n) · χ(m/n) · nk−1

of qm (see Proposition 9.10). Also for f = E2(q) − tE2(q
t) with t > 1

prime, the coefficient of q is 1, Tm(f) = σ1(m) · f for (m, t) = 1, and
Tt(f) = ((t + 1) − t)f = f .

Algorithm 5.11 (Enumerating Eisenstein Series). Given a weight k and a
Dirichlet character ε of modulus N , this algorithm computes a basis for the
Eisenstein subspace Ek(N, ε) of Mk(N, ε) to precision O(qr).

(1) [Weight 2 Trivial Character?] If k = 2 and ε = 1, output the
Eisenstein series E2(q) − tE2(q

t), for each divisor t | N with t 6= 1,
and then terminate.

5.3. Explicit Basis for the Eisenstein Subspace 89

(2) [Empty Space?] If ε(−1) 6= (−1)k, output the empty list.

(3) [Compute Dirichlet Group] Let G = D(N, Q(ζn)) be the group of
Dirichlet characters with values in Q(ζn), where n is the exponent
of (Z/NZ)∗.

(4) [Compute Conductors] Compute the conductor of every element of
G using Algorithm 4.19.

(5) [List Characters χ] Form a list V of all Dirichlet characters χ ∈ G
such that cond(χ) · cond(χ/ε) divides N .

(6) [Compute Eisenstein Series] For each character χ in V , let ψ = χ/ε
and compute Ek,χ,ψ(qt) (mod qr) for each divisor t of N/(cond(χ) ·
cond(ψ)). Here we compute Ek,χ,ψ(qt) (mod qr) using (5.3.1) and
Algorithm 5.2.

Remark 5.12. Algorithm 5.11 is what is currently used in SAGE. It might
be better to first reduce to the prime power case by writing all characters
as a product of local characters and combine steps (4) and (5) into a single
step that involves orders. However, this might make things more obscure.

Example 5.13. The following is a basis of Eisenstein series for E2(Γ1(13)).

f1 =
1

2
+ q + 3q2 + 4q3 + · · · ,

f2 = − 7

13
ζ2
12 −

11

13
+ q +

(
2ζ2

12 + 1
)
q2 +

(
−3ζ2

12 + 1
)
q3 + · · · ,

f3 = q +
(
ζ2
12 + 2

)
q2 +

(
−ζ2

12 + 3
)
q3 + · · · ,

f4 = −ζ2
12 + q +

(
2ζ2

12 − 1
)
q2 +

(
3ζ2

12 − 2
)
q3 + · · · ,

f5 = q +
(
ζ2
12 + 1

)
q2 +

(
ζ2
12 + 2

)
q3 + · · · ,

f6 = −1 + q + −q2 + 4q3 + · · · ,

f7 = q + q2 + 4q3 + · · · ,

f8 = ζ2
12 − 1 + q +

(
−2ζ2

12 + 1
)
q2 +

(
−3ζ2

12 + 1
)
q3 + · · · ,

f9 = q +
(
−ζ2

12 + 2
)
q2 +

(
−ζ2

12 + 3
)
q3 + · · · ,

f10 =
7

13
ζ2
12 −

18

13
+ q +

(
−2ζ2

12 + 3
)
q2 +

(
3ζ2

12 − 2
)
q3 + · · · ,

f11 = q +
(
−ζ2

12 + 3
)
q2 +

(
ζ2
12 + 2

)
q3 + · · · .

We computed it as follows:

sage: E = EisensteinForms(Gamma1(13),2)

sage: E.eisenstein_series()

90 5. Eisenstein Series and Bernoulli Numbers

We can also compute the parameters χ, ψ, t that define each series:

sage: e = E.eisenstein_series()

sage: for e in E.eisenstein_series():

... print e.parameters()

...

([1], [1], 13)

([1], [zeta6], 1)

([zeta6], [1], 1)

([1], [zeta6 - 1], 1)

([zeta6 - 1], [1], 1)

([1], [-1], 1)

([-1], [1], 1)

([1], [-zeta6], 1)

([-zeta6], [1], 1)

([1], [-zeta6 + 1], 1)

([-zeta6 + 1], [1], 1)

5.4. Exercises

5.1 Suppose A and B are diagonalizable linear transformations of a
finite-dimensional vector space V over an algebraically closed field
K and that AB = BA. Prove there is a basis for V so that the ma-
trices of A and B with respect to that basis are both simultaneously
diagonal.

5.2 If ε is the trivial character of modulus 1 and Bk are as in Section 2.1,
then Bk,ε = Bk, except when k = 1, in which case B1,ε = −B1 =
1/2.

5.3 Prove that for k ≥ 2 if ε(−1) 6= (−1)k, then Bk,ε = 0.

5.4 Show that the dimension of the Eisenstein subspace E3(Γ1(13)) is
12 by finding a basis of series Ek,χ,ψ. You do not have to write
down the q-expansions of the series, but you do have to figure out
which χ, ψ to use.

Chapter 6

Dimension Formulas

When computing with spaces of modular forms, it is helpful to have easy-to-
compute formulas for dimensions of these spaces. Such formulas provide a
check on the output of the algorithms from Chapter 8 that compute explicit
bases for spaces of modular forms. We can also use dimension formulas
to improve the efficiency of some of the algorithms in Chapter 8, since we
can use them to determine the ranks of certain matrices without having to
explicitly compute those matrices. Dimension formulas can also be used in
generating bases of q-expansions; if we know the dimension of Mk(N, ε) and
if we have a process for computing q-expansions of elements of Mk(N, ε),
e.g., multiplying together q-expansions of certain forms of smaller weight,
then we can tell when we are done generating Mk(N, ε).

This chapter contains formulas for dimensions of spaces of modular
forms, along with some remarks about how to evaluate these formulas. In
some cases we give dimension formulas for spaces that we will define in later
chapters. We also give many examples, some of which were computed using
the modular symbols algorithms from Chapter 8.

Many of the dimension formulas and algorithms we give below grew out
of Shimura’s book [Shi94] and a program that Bruce Kaskel wrote (around
1996) in PARI, which Kevin Buzzard extended. That program codified
dimension formulas that Buzzard and Kaskel found or extracted from the
literature (mainly [Shi94, §2.6]). The algorithms for dimensions of spaces
with nontrivial character are from [CO77], with some refinements suggested
by Kevin Buzzard.

For the rest of this chapter, N denotes a positive integer and k ≥ 2 is an
integer. We will give no simple formulas for dimensions of spaces of weight 1
modular forms; in fact, it might not be possible to give such formulas since

91

92 6. Dimension Formulas

the methods used to derive the formulas below do not apply in the case
k = 1. If k = 0, the only modular forms are the constants, and for k < 0
the dimension of Mk(N, ε) is 0.

For a nonzero integer N and a prime p, let vp(N) be the largest integer e
such that pe | N . In the formulas in this chapter, p always denotes a prime
number. Let Mk(N, ε) be the space of modular forms of level N weight k and
character ε, and let Sk(N, ε) and Ek(N, ε) be the cuspidal and Eisenstein
subspaces, respectively.

The dimension formulas below for Sk(Γ0(N)), Sk(Γ1(N)), Ek(Γ0(N))
and Ek(Γ1(N)) can be found in [DS05, Ch. 3], [Shi94, §2.6]1 and [Miy89,
§2.5]. They are derived using the Riemann-Roch Theorem applied to the
covering X0(N) → X0(1) or X1(N) → X1(1) and appropriately chosen
divisors. It would be natural to give a sample argument along these lines
at this point, but we will not since it easy to find such arguments in other
books and survey papers (see, e.g., [DI95]). So you will not learn much
about how to derive dimension formulas from this chapter. What you will
learn is precisely what the dimension formulas are, which is something that
is often hard to extract from obscure references.

In addition to reading this chapter, the reader may wish to consult
[Mar05] for proofs of similar dimension formulas, asymptotic results, and
a nonrecursive formula for dimensions of certain new subspaces.

6.1. Modular Forms for Γ0(N)

For any prime p and any positive integer N , let vp(N) be the power of p
that divides N . Also, let

µ0(N) =
∏

p|N

(
pvp(N) + pvp(N)−1

)
,

µ0,2(N) =

{
0 if 4 | N ,
∏

p|N

(
1 +

(
−4
p

))
otherwise,

µ0,3(N) =

{
0 if 2 | N or 9 | N ,
∏

p|N

(
1 +

(
−3
p

))
otherwise,

c0(N) =
∑

d|N
ϕ(gcd(d, N/d)),

g0(N) = 1 +
µ0(N)

12
− µ0,2(N)

4
− µ0,3(N)

3
− c0(N)

2
.

1The formulas in [Shi94, §2.6] contain some minor mistakes.

6.1. Modular Forms for Γ0(N) 93

Note that µ0(N) is the index of Γ0(N) in SL2(Z) (see Exercise 6.1).

Proposition 6.1. We have dimS2(Γ0(N)) = g0(N), and for k ≥ 4 even,

dimSk(Γ0(N)) = (k − 1) · (g0(N) − 1) +

(
k

2
− 1

)
· c0(N)

+ µ0,2(N) ·
⌊

k

4

⌋
+ µ0,3(N) ·

⌊
k

3

⌋
.

The dimension of the Eisenstein subspace is

dimEk(Γ0(N)) =

{
c0(N) if k 6= 2,

c0(N) − 1 if k = 2.

The following is a table of dimSk(Γ0(N)) for some values of N and k:

N S2(Γ0(N)) S4(Γ0(N)) S6(Γ0(N)) S24(Γ0(N))

1 0 0 0 2
10 0 3 5 33
11 1 2 4 22
100 7 36 66 336
389 32 97 161 747
1000 131 430 730 3430
2007 221 806 1346 6206
100000 14801 44800 74800 344800

Example 6.2. Use the commands dimension cusp forms, dimension eis,
and dimension modular forms to compute the dimensions of the three
spaces Sk(Γ0(N)), Ek(Γ0(N)) and Mk(Γ0(N)), respectively. For example,

sage: dimension_cusp_forms(Gamma0(2007),2)

221

sage: dimension_eis(Gamma0(2007),2)

7

sage: dimension_modular_forms(Gamma0(2007),2)

228

Remark 6.3. Csirik, Wetherell, and Zieve prove in [CWZ01] that a ran-
dom positive integer has probability 0 of being a value of

g0(N) = dimS2(Γ0(N)),

and they give bounds on the size of the set of values of g0(N) below some
given x. For example, they show that 150, 180, 210, 286, 304, 312, . . . are the
first few integers that are not of the form g0(N) for any N . See Figure 6.1.1
for a plot of the very erratic function g0(N). In contrast, the function
k 7→ dim S2k(Γ0(12)) is very well behaved (see Figure 6.1.2).

94 6. Dimension Formulas

Figure 6.1.1. Dimension of S2(Γ0(N)) as a function of N .

Figure 6.1.2. Dimension of S2k(Γ0(12)) as a function of k.

6.2. Modular Forms for Γ1(N) 95

6.1.1. New and Old Subspaces. In this section we assume the reader is
either familiar with newforms or has read Section 9.2.

For any integer R, let

µ(R) =





0 if p3 | R for some p,∏

p||R
−2 otherwise,

where the product is over primes that exactly divide R. Note that µ is not
the Moebius function, but it has a similar flavor.

Proposition 6.4. The dimension of the new subspace is

dim Sk(Γ0(N))new =
∑

M |N
µ(N/M) · dimSk(Γ0(M)),

where the sum is over the positive divisors M of N . As a consequence of
Theorem 9.4, we also have

dimSk(Γ0(N)) =
∑

M |N
σ0(N/M) dim Sk(Γ0(M))new,

where σ0(N/M) is the number of divisors of N/M .

Example 6.5. We compute the dimension of the new subspace of Sk(Γ0(N))
using the SAGE command dimension new cusp forms as follows:

sage: dimension_new_cusp_forms(Gamma0(11),12)

8

sage: dimension_cusp_forms(Gamma0(11),12)

10

sage: dimension_new_cusp_forms(Gamma0(2007),12)

1017

sage: dimension_cusp_forms(Gamma0(2007),12)

2460

6.2. Modular Forms for Γ1(N)

This section follows Section 6.1 closely, but with suitable modifications with
Γ0(N) replaced by Γ1(N).

96 6. Dimension Formulas

Define functions of a positive integer N by the following formulas:

µ1(N) =





µ0(N) if N = 1, 2,
φ(N) · µ0(N)

2
otherwise,

µ1,2(N) =

{
0 if N ≥ 4,

µ0,2(N) otherwise,

µ1,3(N) =

{
0 if N ≥ 4,

µ0,3(N) otherwise,

c1(N) =





c0(N) if N = 1, 2,

3 if N = 4,
∑

d|N

φ(d)φ(N/d)

2
otherwise,

g1(N) = 1 +
µ1(N)

12
− µ1,2(N)

4
− µ1,3(N)

3
− c1(N)

2
.

Note that g1(N) is the genus of the modular curve X1(N) (associated to
Γ1(N)) and c1(N) is the number of cusps of X1(N).

Proposition 6.6. We have dim S2(Γ1(N)) = g1(N). If N ≤ 2, then
Γ0(N) = Γ1(N) so

dimSk(Γ1(N)) = dimSk(Γ0(N)),

where dim Sk(Γ0(N)) is given by the formula of Proposition 6.1. If k ≥ 3,
let

a(N, k) = (k − 1)(g1(N) − 1) +

(
k

2
− 1

)
· c1(N).

Then for N ≥ 3,

dimSk(Γ1(N)) =





a + 1/2 if N = 4 and 2 ∤ k,

a + ⌊k/3⌋ if N = 3,

a otherwise.

The dimension of the Eisenstein subspace is as follows:

dimEk(Γ1(N)) =

{
c1(N) if k 6= 2,

c1(N) − 1 if k = 2.

The dimension of the new subspace of Mk(Γ1(N)) is

dim Sk(Γ1(N))new =
∑

M |N
µ(N/M) · dimSk(Γ1(M)),

where µ is as in the statement of Proposition 6.4.

6.2. Modular Forms for Γ1(N) 97

Remark 6.7. Since Mk = Sk ⊕ Ek, the formulas above for dimSk and
dimEk also yield a formula for the dimension of Mk.

Figure 6.2.1. Dimension of S2(Γ1(N)) as a function of N .

The following table contains the dimension of Sk(Γ1(N)) for some sample
values of N and k:

N S2(Γ1(N)) S3(Γ1(N)) S4(Γ1(N)) S24(Γ1(N))

1 0 0 0 2
10 0 2 5 65
11 1 5 10 110
100 231 530 830 6830
389 6112 12416 18721 144821
1000 28921 58920 88920 688920
2007 147409 296592 445776 3429456
100000 299792001 599792000 899792000 6899792000

Example 6.8. We compute dimensions of spaces of modular forms for
Γ1(N):

98 6. Dimension Formulas

sage: dimension_cusp_forms(Gamma1(2007),2)

147409

sage: dimension_eis(Gamma1(2007),2)

3551

sage: dimension_modular_forms(Gamma1(2007),2)

150960

6.3. Modular Forms with Character

Fix a Dirichlet character ε of modulus N , and let c be the conductor of ε
(we do not assume that ε is primitive). Assume that ε 6= 1, since otherwise
Mk(N, ε) = Mk(Γ0(N)) and the formulas of Section 6.1 apply. Also, assume
that ε(−1) = (−1)k, since otherwise dim Mk(Γ0(N)) = 0. In this section we
discuss formulas for computing each of Mk(N, ε), Sk(N, ε) and Ek(N, ε).

In [CO77], Cohen and Oesterlé assert (without published proof; see Re-
mark 6.11 below) that for any k ∈ Z and N , ε as above,

dimSk(N, ε) − dim M2−k(N, ε)

=
k − 1

12
· µ0(N) − 1

2
·
∏

p|N
λ(p, N, vp(c))

+ γ4(k) ·
∑

x∈A4(N)

ε(x) + γ3(k) ·
∑

x∈A3(N)

ε(x)

where µ0(N) is as in Section 6.1, A4(N) = {x ∈ Z/NZ : x2 + 1 = 0} and
A3(N) = {x ∈ Z/NZ : x2 + x + 1 = 0}, and γ3, γ4 are

γ4(k) =





−1/4 if k ≡ 2 (mod 4),

1/4 if k ≡ 0 (mod 4),

0 if k is odd.

γ3(k) =





−1/3 if k ≡ 2 (mod 3),

1/3 if k ≡ 0 (mod 3),

0 if k ≡ 1 (mod 3).

It remains to define λ. Fix a prime divisor p | N and let r = vp(N). Then

λ(p, N, vp(c)) =





p
r
2 + p

r
2
−1 if 2 · vp(c) ≤ r and 2 | r,

2 · p r−1
2 if 2 · vp(c) ≤ r and 2 ∤ r,

2 · pr−vp(c) if 2 · vp(c) > r.

6.3. Modular Forms with Character 99

This flexible formula can be used to compute the dimension of Mk(N, ε),
Sk(N, ε), and Ek(N, ε) for any N , ε, k 6= 1, by using that

dimSk(N, ε) = 0 if k ≤ 0,

dimMk(N, ε) = 0 if k < 0,

dimM0(N, ε) = 1 if k = 0.

One thing that is not straightforward when implementing an algorithm
to compute the above dimension formulas is how to efficiently compute the
sets A4(N) and A6(N). Kevin Buzzard suggested the following two algo-
rithms. Note that if k is odd, then γ4(k) = 0, so the sum over A4(N) is only
needed when k is even.

Algorithm 6.9 (Sum over A4(N)). Given a positive integer N and an even
Dirichlet character ε of modulus N , this algorithm computes

∑
x∈A4(N) ε(x).

(1) [Factor N] Compute the prime factorization pe1
1 · · · pen

n of N .

(2) [Initialize] Set t = 1 and i = 0.

(3) [Loop Over Prime Divisors] Set i = i + 1. If i > n, return t.
Otherwise set p = pi and e = ei.
(a) If p ≡ 3 (mod 4), return 0.

(b) If p = 2 and e > 1, return 0.

(c) If p = 2 and e = 1, go to step (3).

(d) Compute a generator a ∈ (Z/pZ)∗ using Algorithm 4.4.

(e) Compute ω = a(p−1)/4.

(f) Use the Chinese Remainder Theorem to find x ∈ Z/NZ such
that x ≡ a (mod p) and x ≡ 1 (mod N/pe).

(g) Set x = xpr−1
.

(h) Set s = ε(x).

(i) If s = 1, set t = 2t and go to step (3).

(j) If s = −1, set t = −2t and go to step (3).

Proof. Note that ε(−x) = ε(x), since ε is even. By the Chinese Remainder
Theorem, the set A4(N) is empty if and only if there is no square root of
−1 modulo some prime power divisor of p. If A4(N) is empty, the algo-
rithm correctly detects this fact in steps (3a)–(3b). Thus assume A4(N) is
nonempty. For each prime power pei

i that exactly divides N , let xi ∈ Z/NZ

be such that x2
i = −1 and xi ≡ 1 (mod p

ej

j) for i 6= j. This is the value of x

computed in steps (3d)–(3g) (as one sees using elementary number theory).

The next key observation is that

(6.3.1)
∏

i

(ε(xi) + ε(−xi)) =
∑

x∈A4(N)

ε(x),

100 6. Dimension Formulas

since by the Chinese Remainder Theorem the elements of A4(N) are in
bijection with the choices for a square root of −1 modulo each prime power
divisors of N . The observation (6.3.1) is a huge gain from an efficiency
point of view—if N had r prime factors, then A4(N) would have size 2r,
which could be prohibitive, where the product involves only r factors. To
finish the proof, just note that steps (3h)–(3j) compute the local factors
ε(xi) + ε(−xi) = 2ε(xi), where again we use that ε is even. Note that a
solution of x2 +1 ≡ 0 (mod p) lifts uniquely to a solution mod pn for any n,
because the kernel of the natural homomorphism (Z/pnZ)∗ → (Z/pZ)∗ is a
group of p-power order. ¤

The algorithm for computing the sum over A3(N) is similar.

For k ≥ 2, to compute dimSk(N, ε), use the formula directly and the fact
that dimM2−k(N, ε) = 0, unless ε = 1 and k = 2. To compute dimMk(N, ε)
for k ≥ 2, use the fact that the big formula at the beginning of this section
is valid for any integer k to replace k by 2− k and that dimSk(N, ε) = 0 for
k ≤ 0 to rewrite the formula as

dimMk(N, ε) = −(dim S2−k(N, ε) − dimMk(N, ε))

= −
(1 − k

12
· µ0(N) − 1

2
·
∏

p|N
λ(p, N, vp(c))

+ γ4(2 − k) ·
∑

x∈A4(N)

ε(x) + γ3(2 − k) ·
∑

x∈A3(N)

ε(x)
)
.

Note also that for k = 0, dimEk(N, ε) = 1 if and only if ε is trivial and it
equals 0 otherwise. We then also obtain

dimEk(N, ε) = dimMk(N, ε) − dim Sk(N, ε).

We can also compute dim Ek(N, ε) when k = 1 directly, since

dimS2−1(N, ε) = dimS1(N, ε).

The following table contains the dimension of Sk(N, ε) for some sample
values of N and k. In each case, ε is the product of characters εp of maximal
order corresponding to the prime power factors of N (i.e., the product of
the generators of the group D(N, C∗) of Dirichlet characters of modulus N).

6.3. Modular Forms with Character 101

N dim S2(N, ε) dimS3(N, ε) dimS4(N, ε) dimS24(N, ε)

1 0 0 0 2
10 0 1 0 0
11 0 1 0 0
100 13 0 43 343
389 0 64 0 0
1000 148 0 448 3448
2007 222 0 670 5150

Example 6.10. We compute the last line of the above table. First we create
the character ε.

sage: G = DirichletGroup(2007)

sage: e = prod(G.gens(), G(1))

Next we compute the dimension of the four spaces.

sage: dimension_cusp_forms(e,2)

222

sage: dimension_cusp_forms(e,3)

0

sage: dimension_cusp_forms(e,4)

670

sage: dimension_cusp_forms(e,24)

5150

We can also compute dimensions of the corresponding spaces of Eisen-
stein series.

sage: dimension_eis(e,2)

4

sage: dimension_eis(e,3)

0

sage: dimension_eis(e,4)

4

sage: dimension_eis(e,24)

4

Remark 6.11. Cohen and Oesterlé also give dimension formulas for spaces
of half-integral weight modular forms, which we do not give in this chapter.
Note that [CO77] does not contain any proofs that their claimed formulas
are correct, but instead they say only that “Les formules qui les donnent sont
connues de beaucoup de gens et il existe plusieurs méthodes permettant de
les obtenir (théorème de Riemann-Roch, application des formules de trace

102 6. Dimension Formulas

données par Shimura).”2 Fortunately, in [Que06], Jordi Quer derives the
(integral weight) formulas of [CO77] along with formulas for dimensions of
spaces Sk(G) and Mk(G) for more general congruence subgroups.

Let f be the conductor of a Dirichlet character ε of modulus N . Then
the dimension of the new subspace of Mk(N, ε) is

dimSk(N, ε)new =
∑

M such that f |M |N
µ(N/M) · dimSk(M, ε′),

where µ is as in the statement of Proposition 6.4, and ε′ is the restriction
of ε mod M .

Example 6.12. We compute the dimension of S2(2007, ε)new for ε a qua-
dratic character of modulus 2007.

sage: G = DirichletGroup(2007, QQ)

sage: e = prod(G.gens(), G(1))

sage: dimension_new_cusp_forms(e,2)

76

6.4. Exercises

6.1 Let µ0 and µ1 be as in this chapter.
(a) Prove that µ0(N) = [SL2(Z) : Γ0(N)].
(b) Prove that for N ≥ 3, µ1(N) = [SL2(Z) : Γ1(N)]/2, so µ1(N)

is the index of Γ1(N) · {±1} in PSL2(Z) = SL2(Z)/{±1}.
6.2 Use Proposition 6.4 to find a formula for dimSk(SL2(Z)). Verify

that this formula is the same as the one in Corollary 2.16.

6.3 Suppose either that N = 1 or that N is prime and k = 2. Prove
that Mk(Γ0(N))new = Mk(Γ0(N)).

6.4 Fill in the details of the proof of Algorithm 6.9.

6.5 Implement a computer program to compute dimSk(Γ0(N)) as a
function of k and N .

2The formulas that we give here are well known and there exist many methods to prove them,
e.g., the Riemann-Roch theorem and applications of the trace formula of Shimura.

Chapter 7

Linear Algebra

This chapter is about several algorithms for matrix algebra over the ra-
tional numbers and cyclotomic fields. Algorithms for linear algebra over
exact fields are necessary in order to implement the modular symbols algo-
rithms that we will describe in Chapter 7. This chapter partly overlaps with
[Coh93, Sections 2.1–2.4].

Note: We view all matrices as defining linear transformations by acting on
row vectors from the right.

7.1. Echelon Forms of Matrices

Definition 7.1 (Reduced Row Echelon Form). A matrix is in (reduced row)
echelon form if each row in the matrix has more zeros at the beginning than
the row above it, the first nonzero entry of every row is 1, and the first
nonzero entry of any row is the only nonzero entry in its column.

Given a matrix A, there is another matrix B such that B is obtained
from A by left multiplication by an invertible matrix and B is in reduced row
echelon form. This matrix B is called the echelon form of A. It is unique.

A pivot column of A is a column of A such that the reduced row echelon
form of A contains a leading 1.

Example 7.2. The following matrix is not in reduced row echelon form:




14 2 7 228 −224
0 0 3 78 −70
0 0 0 −405 381


 .

103

104 7. Linear Algebra

The reduced row echelon form of the above matrix is


1 1
7 0 0 −1174

945

0 0 1 0 152
135

0 0 0 1 −127
135


 .

Notice that the entries of the reduced row echelon form can be rationals
with large denominators even though the entries of the original matrix A
are integers. Another example is the simple looking matrix




−9 6 7 3 1 0 0 0
−10 3 8 2 0 1 0 0

3 −6 2 8 0 0 1 0
−8 −6 −8 6 0 0 0 1




whose echelon form is


1 0 0 0 42
1025 − 92

1025
1
25 − 9

205

0 1 0 0 716
3075 − 641

3075 − 2
75 − 7

615

0 0 1 0 − 83
1025

133
1025

1
25 − 23

410

0 0 0 1 184
1025 − 159

1025
2
25

9
410


 .

A basic fact is that two matrices A and B have the same reduced row
echelon form if and only if there is an invertible matrix E such that EA = B.
Also, many standard operations in linear algebra, e.g., computation of the
kernel of a linear map, intersection of subspaces, membership checking, etc.,
can be encoded as a question about computing the echelon form of a matrix.

The following standard algorithm computes the echelon form of a matrix.

Algorithm 7.3 (Gauss Elimination). Given an m×n matrix A over a field,
the algorithm outputs the reduced row echelon form of A. Write ai,j for the
i, j entry of A, where 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1.

(1) [Initialize] Set k = 0.

(2) [Clear Each Column] For each column c = 0, 1, . . . , n− 1, clear the
cth column as follows:
(a) [First Nonzero] Find the smallest r such that ar,c 6= 0, or if

there is no such r, go to the next column.

(b) [Rescale] Replace row r of A by 1
ar,c

times row r.

(c) [Swap] Swap row r with row k.

(d) [Clear] For each i = 0, . . . , m − 1 with i 6= k, if ai,c 6= 0, add
−ai,c times row k of A to row i to clear the leading entry of
the ith row.

(e) [Increment] Set k = k + 1.

This algorithm takes O(mn2) arithmetic operations in the base field,
where A is an m × n matrix. If the base field is Q, the entries can become

7.2. Rational Reconstruction 105

huge and arithmetic operations are then very expensive. See Section 7.3 for
ways to mitigate this problem.

To conclude this section, we mention how to convert a few standard
problems into questions about reduced row echelon forms of matrices. Note
that one can also phrase some of these answers in terms of the echelon form,
which might be easier to compute, or an LUP decomposition (lower triangu-
lar times upper triangular times permutation matrix), which the numerical
analysts use.

(1) Kernel of A: We explain how to compute the kernel of A acting
on column vectors from the right (first transpose to obtain the
kernel of A acting on row vectors). Since passing to the reduced
row echelon form of A is the same as multiplying on the left by an
invertible matrix, the kernel of the reduce row echelon form E of A
is the same as the kernel of A. There is a basis vector of ker(E) that
corresponds to each nonpivot column of E. That vector has a 1 at
the nonpivot column, 0’s at all other nonpivot columns, and for
each pivot column, the negative of the entry of A at the nonpivot
column in the row with that pivot element.

(2) Intersection of Subspaces: Suppose W1 and W2 are subspace
of a finite-dimensional vector space V . Let A1 and A2 be matrices
whose columns form a basis for W1 and W2, respectively. Let A =
[A1|A2] be the augmented matrix formed from A1 and A2. Let
K be the kernel of the linear transformation defined by A. Then
K is isomorphic to the desired intersection. To write down the
intersection explicitly, suppose that dim(W1) ≤ dim(W2) and do
the following: For each b in a basis for K, write down the linear
combination of a basis for W1 obtained by taking the first dim(W1)
entries of the vector b. The fact that b is in Ker(A) implies that the
vector we just wrote down is also in W2. This is because a linear
relation ∑

aiw1,i +
∑

bjw2,j = 0,

i.e., an element of that kernel, is the same as
∑

aiw1,i =
∑

−bjw2,j .

For more details, see [Coh93, Alg. 2.3.9].

7.2. Rational Reconstruction

Rational reconstruction is a process that allows one to sometimes lift an
integer modulo m uniquely to a bounded rational number.

106 7. Linear Algebra

Algorithm 7.4 (Rational Reconstruction). Given an integer a ≥ 0 and an
integer m > 1, this algorithm computes the numerator n and denominator
d of the unique rational number n/d, if it exists, with

(7.2.1) |n|, d ≤
√

m

2
and n ≡ ad (mod m),

or it reports that there is no such number.

(1) [Reduce mod m] Replace a with the least integer between 0 and
m − 1 that is congruent to a modulo m.

(2) [Trivial Cases] If a = 0 or a = 1, return a.

(3) [Initialize] Let b =
√

m/2, u = m, v = a, and set U = (1, 0, u) and
V = (0, 1, v). Use the notation Ui and Vi to refer to the ith entries
of U, V , for i = 0, 1, 2.

(4) [Iterate] Do the following as long as |V2| > b: Set q = ⌊U2/V2⌋, set
T = U − qV , and set U = V and V = T .

(5) [Numerator and Denominator] Set d = |V1| and n = V2.

(6) [Good?] If d ≤ b and gcd(n, d) = 1, return n/d; otherwise report
that there is no rational number as in (7.2.1).

Algorithm 7.4 for rational reconstruction is described (with proof) in
[Knu, pgs. 656–657] as the solution to Exercise 51 on page 379 in that
book. See, in particular, the paragraph right in the middle of page 657,
which describes the algorithm. Knuth attributes this rational reconstruction
algorithm to Wang, Kornerup, and Gregory from around 1983.

We now give an indication of why Algorithm 7.4 computes the rational
reconstruction of a (mod m), leaving the precise details and uniqueness to
[Knu, pgs. 656–657]. At each step in Algorithm 7.4, the 3-tuple V =
(v0, v1, v2) satisfies

(7.2.2) m · v0 + a · v1 = v2,

and similarly for U . When computing the usual extended gcd, at the end
v2 = gcd(a, m) and v0, v1 give a representation of the v2 as a Z-linear
combination of m and a. In Algorithm 7.4, we are instead interested in
finding a rational number n/d such that n ≡ a ·d (mod m). If we set n = v2

and d = v1 in (7.2.2) and rearrange, we obtain

n = a · d + m · v0.

Thus at every step of the algorithm we find a rational number n/d such that
n ≡ ad (mod m). The problem at intermediate steps is that, e.g., v0 could
be 0, or n or d could be too large.

Example 7.5. We compute an example using SAGE.

7.3. Echelon Forms over Q 107

sage: p = 389

sage: k = GF(p)

sage: a = k(7/13); a

210

sage: a.rational_reconstruction()

7/13

7.3. Echelon Forms over Q

A difficulty with computation of the echelon form of a matrix over the
rational numbers is that arithmetic with large rational numbers is time-
consuming; each addition potentially requires a gcd and numerous additions
and multiplications of integers. Moreover, the entries of A during intermedi-
ate steps of Algorithm 7.3 can be huge even though the entries of A and the
answer are small. For example, suppose A is an invertible square matrix.
Then the echelon form of A is the identity matrix, but during intermediate
steps the numbers involved could be quite large. One technique for mitigat-
ing this is to compute the echelon form using a multimodular method.

If A is a matrix with rational entries, let H(A) be the height of A, which
is the maximum of the absolute values of the numerators and denominators
of all entries of A. If x, y are rational numbers and p is a prime, we write
x ≡ y (mod p) to mean that the denominators of x and y are not divisible
by p but the numerator of the rational number x − y (in reduced form) is
divisible by p. For example, if x = 5/7 and y = 2/11, then x − y = 41/77,
so x ≡ y (mod 41).

Algorithm 7.6 (Multimodular Echelon Form). Given an m × n matrix A
with entries in Q, this algorithm computes the reduced row echelon form
of A.

(1) Rescale the input matrix A to have integer entries. This does not
change the echelon form and makes reduction modulo many primes
easier. We may thus assume A has integer entries.

(2) Let c be a guess for the height of the echelon form.

(3) List successive primes p1, p2, . . . such that the product of the pi is
greater than n · c · H(A) + 1, where n is the number of columns
of A.

(4) Compute the echelon forms Bi of the reduction A (mod pi) using,
e.g., Algorithm 7.3 or any other echelon algorithm.

(5) Discard any Bi whose pivot column list is not maximal among pivot
lists of all Bj found so far. (The pivot list associated to Bi is the
ordered list of integers k such that the kth column of Bj is a pivot

108 7. Linear Algebra

column. We mean maximal with respect to the following ordering
on integer sequences: shorter integer sequences are smaller, and
if two sequences have the same length, then order in reverse lex-
icographic order. Thus [1, 2] is smaller than [1, 2, 3], and [1, 2, 7]
is smaller than [1, 2, 5]. Think of maximal as “optimal”, i.e., best
possible pivot columns.)

(6) Use the Chinese Remainder Theorem to find a matrix B with in-
teger entries such that B ≡ Bi (mod pi) for all pi.

(7) Use Algorithm 7.4 to try to find a matrix C whose coefficients are

rational numbers n/r such that |n|, r ≤
√

M/2, where M =
∏

pi,
and C ≡ Bi (mod pi) for each prime p. If rational reconstruction
fails, compute a few more echelon forms mod the next few primes
(using the above steps) and attempt rational reconstruction again.
Let E be the matrix over Q so obtained. (A trick here is to keep
track of denominators found so far to avoid doing very many ratio-
nal reconstructions.)

(8) Compute the denominator d of E, i.e., the smallest positive integer
such that dE has integer entries. If

(7.3.1) H(dE) · H(A) · n <
∏

pi,

then E is the reduced row echelon form of A. If not, repeat the
above steps with a few more primes.

Proof. We prove that if (7.3.1) is satisfied, then the matrix E computed
by the algorithm really is the reduced row echelon form R of A. First note
that E is in reduced row echelon form since the set of pivot columns of all
matrices Bi used to construct E are the same, so the pivot columns of E are
the same as those of any Bi and all other entries in the Bi pivot columns
are 0, so the other entries of E in the pivot columns are also 0.

Recall from the end of Section 7.1 that a matrix whose columns are
a basis for the kernel of A can be obtained from the reduced row echelon
form R. Let K be the matrix whose columns are the vectors in the kernel
algorithm applied to E, so EK = 0. Since the reduced row echelon form is
obtained by left multiplying by an invertible matrix, for each i, there is an
invertible matrix Vi mod pi such that A ≡ ViBi (mod pi) so

A · dK ≡ ViBi · dK ≡ Vi · dE · K ≡ 0 (mod pi).

Since dK and A are integer matrices, the Chinese remainder theorem implies
that

A · dK ≡ 0
(
mod

∏
pi

)
.

The integer entries a of A · dK all satisfy |a| ≤ H(A) · H(dK) · n, where
n is the number of columns of A. Since H(K) ≤ H(E), the bound (7.3.1)

7.3. Echelon Forms over Q 109

implies that A · dK = 0. Thus AK = 0, so Ker(E) ⊂ Ker(A). On the other
hand, the rank of E equals the rank of each Bi (since the pivot columns are
the same), so

rank(E) = rank(Bi) = rank(A (mod pi)) ≤ rank(A).

Thus dim(Ker(A)) ≤ dim(Ker(E)), and combining this with the bound
obtained above, we see that Ker(E) = Ker(A). This implies that E is the
reduced row echelon form of A, since two matrices have the same kernel if
and only if they have the same reduced row echelon form (the echelon form
is an invariant of the row space, and the kernel is the orthogonal complement
of the row space).

The reason for step (5) is that the matrices Bi need not be the reduction
of R modulo pi, and indeed this reduction might not even be defined, e.g.,
if pi divides the denominator of some element of R, then this reduction
makes no sense. For example, set p = pi and suppose A =

(
p 1
0 0

)
. Then

R =
(

1 1/p
0 0

)
, which has no reduction modulo p; also, the reduction of A

modulo Bi is Bi = (0 1
0 0) (mod p), which is already in reduced row echelon

form. However if we were to combine Bi with the echelon form of A modulo
another prime, the result could never be lifted using rational reconstruction.
Thus the reason we exclude all Bi with nonmaximal pivot column sequence
is so that a rational reconstruction will exist. There are only finitely many
primes that divide denominators of entries of R, so eventually all Bi will
have maximal pivot column sequences, i.e., they are the reduction of the
true reduced row echelon form R, so the algorithm terminates. ¤

Remark 7.7. Algorithm 7.6, with sparse matrices seems to work very well
in practice. A simple but helpful modification to Algorithm 7.3 in the sparse
case is to clear each column using a row with a minimal number of nonzero
entries, so as to reduce the amount of “fill in” (denseness) of the matrix.
There are much more sophisticated methods along these lines called “intel-
ligent Gauss elimination”. (Cryptographers are interested in linear algebra
mod p with huge sparse matrices, since they come up in attacks on the
discrete log problem and integer factorization.)

One can adapt Algorithm 7.6 to computation of echelon forms of ma-
trices A over cyclotomic fields Q(ζn). Assume A has denominator 1. Let p
be a prime that splits completely in Q(ζn). Compute the homomorphisms
fi : Zp[ζn] → Fp by finding the elements of order n in F∗

p. Then com-
pute the mod p matrix fi(A) for each i, and find its reduced row eche-
lon form. Taken together, the maps fi together induce an isomorphism
Ψ : Fp[X]/Φn(X) ∼= Fd

p, where Φn(X) is the nth cyclotomic polynomial and
d is its degree. It is easy to compute Ψ(f(x)) by evaluating f(x) at each
element of order n in Fp. To compute Ψ−1, simply use linear algebra over Fp

110 7. Linear Algebra

to invert a matrix that represents Ψ. Use Ψ−1 to compute the reduced row
echelon form of A (mod p), where (p) is the nonprime ideal in Z[ζn] gener-
ated by p. Do this for several primes p, and use rational reconstruction on
each coefficient of each power of ζn, to recover the echelon form of A.

7.4. Echelon Forms via Matrix Multiplication

In this section we explain how to compute echelon forms using matrix multi-
plication. This is valuable because there are asymptotically fast, i.e., better
than O(n3) field operations, algorithms for matrix multiplication, and im-
plementations of linear algebra libraries often include highly optimized ma-
trix multiplication algorithms. We only sketch the basic ideas behind these
asymptotically fast algorithms (following [Ste]), since more detail would
take us too far from modular forms.

The naive algorithm for multiplying two m×m matrices requires O(m3)
arithmetic operations in the base ring. In [Str69], Strassen described a
clever algorithm that computes the product of two m × m matrices in
O(mlog2(7)) = O(m2.807...) arithmetic operations in the base ring. Because
of numerical stability issues, Strassen’s algorithm is rarely used in numerical
analysis. But for matrix arithmetic over exact base rings (e.g., the rational
numbers, finite fields, etc.) it is of extreme importance.

In [Str69], Strassen also sketched a new algorithm for computing the
inverse of a square matrix using matrix multiplication. Using this algorithm,
the number of operations to invert an m × m matrix is (roughly) the same
as the number needed to multiply two m × m matrices. Suppose the input
matrix is 2n × 2n and we write it in block form as

(
A B
C D

)
where A, B, C, D

are all 2n−1 × 2n−1 matrices. Assume that any intermediate matrices below
that we invert are invertible. Consider the augmented matrix

(
A B I 0
C D 0 I

)
.

Multiply the top row by A−1 to obtain
(

I A−1B A−1 0
C D 0 I

)
,

and write E = A−1B. Subtract C times the first row from the second row
to get (

I E A−1 0
0 D − CE −CA−1 I

)
.

Set F = D−CE and multiply the bottom row by F−1 on the left to obtain
(

I E A−1 0
0 I −F−1CA−1 F−1

)
.

7.4. Echelon Forms via Matrix Multiplication 111

Set G = −F−1CA−1, and subtract E times the second from the first row to
arrive at

(
I 0 A−1 − EG −EF−1

0 I G F−1

)
.

The idea listed above can, with significant work, be extended to a general
algorithm (as is done in [Ste06]).

Next we very briefly sketch how to compute echelon forms of matrices
using matrix multiplication and inversion. Its complexity is comparable to
the complexity of matrix multiplication.

As motivation, recall the standard algorithm from undergraduate linear
algebra for inverting an invertible square matrix A: form the augmented
matrix [A|I], and then compute the echelon form of this matrix, which is
[I|A−1]. If T is the transformation matrix to echelon form, then T [A|I] =
[I|T], so T = A−1. In particular, we could find the echelon form of [A|I] by
multiplying on the left by A−1. Likewise, for any matrix B with the same
number of rows as A, we could find the echelon form of [A|B] by multiplying
on the left by A−1. Next we extend this idea to give an algorithm to compute
echelon forms using only matrix multiplication (and echelon form modulo
one prime).

Algorithm 7.8 (Asymptotically Fast Echelon Form). Given a matrix A
over the rational numbers (or a number field), this algorithm computes the
echelon form of A.

(1) [Find Pivots] Choose a random prime p (coprime to the denomina-
tor of any entry of A) and compute the echelon form of A (mod p),
e.g., using Algorithm 7.3. Let c0, . . . , cn−1 be the pivot columns of
A (mod p). When computing the echelon form, save the positions
r0, . . . , rn−1 of the rows used to clear each column.

(2) [Extract Submatrix] Extract the n × n submatrix B of A whose
entries are Ari,cj

for 0 ≤ i, j ≤ n − 1.

(3) [Compute Inverse] Compute the inverse B−1 of B. Note that B
must be invertible since its reduction modulo p is invertible.

(4) [Multiply] Let C be the matrix whose rows are the rows r0, . . . , rn−1

of A. Compute E = B−1C. If E is not in echelon form, go to
step (1).

(5) [Done?] Write down a matrix D whose columns are a basis for
ker(E) as explained on page 105. Let F be the matrix whose rows
are the rows of A other than rows r0, . . . , rn−1. Compute the prod-
uct FD. If FD = 0, output E, which is the echelon form of A. If
FD 6= 0, go to step (1) and run the whole algorithm again.

112 7. Linear Algebra

Proof. We prove both that the algorithm terminates and that when it ter-
minates, the matrix E is the echelon form of A.

First we prove that the algorithm terminates. Let E be the echelon form
of A. By Exercise 7.3, for all but finitely many primes p (i.e., any prime
where A (mod p) has the same rank as A) the echelon form of A (mod p)
equals E (mod p). For any such prime p the pivot columns of E (mod p)
are the pivot columns of E, so the algorithm will terminate for that choice
of p.

We next prove that when the algorithm terminates, E is the echelon form
of A. By assumption, E is in echelon form and is obtained by multiplying
C on the left by an invertible matrix, so E must be the echelon form of C.
The rows of C are a subset of those of A, so the rows of E are a subset of
the rows of the echelon form of A. Thus ker(A) ⊂ ker(E). To show that E
equals the echelon form of A, we just need to verify that ker(E) ⊂ ker(A),
i.e., that AD = 0, where D is as in step (5). Since E is the echelon form
of C, we know that CD = 0. By step (5) we also know that FD = 0. Thus
AD = 0, since the rows of A are the union of the rows of F and C.

¤

Example 7.9. Let A be the 4 × 8 matrix

A =




−9 6 7 3 1 0 0 0
−10 3 8 2 0 1 0 0

3 −6 2 8 0 0 1 0
−8 −6 −8 6 0 0 0 1




from Example 7.2.

sage: M = MatrixSpace(QQ,4,8)

sage: A = M([[-9,6,7,3,1,0,0,0],[-10,3,8,2,0,1,0,0],

[3,-6,2,8,0,0,1,0],[-8,-6,-8,6,0,0,0,1]])

First choose the “random” prime p = 41, which does not divide any of
the entries of A, and compute the echelon form of the reduction of A modulo
41.

sage: A41 = MatrixSpace(GF(41),4,8)(A)

sage: E41 = A41.echelon_form()

The echelon form of A (mod 41) is



1 0 0 2 0 20 33 18
0 1 0 40 0 30 7 1
0 0 1 39 0 19 13 17
0 0 0 0 1 31 0 37


 .

7.4. Echelon Forms via Matrix Multiplication 113

Thus we take c0 = 0, c1 = 1, c2 = 2, and c3 = 4. Also ri = i for i = 0, 1, 2, 3.
Next extract the submatrix B.

sage: B = A.matrix_from_columns([0,1,2,4])

The submatrix B is

B =




−9 6 7 1
−10 3 8 0

3 −6 2 0
−8 −6 −8 0


 .

The inverse of B is

B−1 =




0 − 5
92

1
46 − 9

184

0 − 1
138 − 3

23 − 11
276

0 11
184

7
92 − 17

368

1 −159
184

41
92

45
368


 .

Multiplying by A yields

E = B−1A =




1 0 0 −21
92 0 − 5

92
1
46 − 9

184

0 1 0 −179
138 0 − 1

138 − 3
23 − 11

276

0 0 1 83
184 0 11

184
7
92 − 17

368

0 0 0 1025
184 1 −159

184
41
92

45
368


 .

sage: E = B^(-1)*A

This is not the echelon form of A. Indeed, it is not even in echelon form,
since the last row is not normalized so the leftmost nonzero entry is 1. We
thus choose another random prime, say p = 43. The echelon form mod 43
has columns 0, 1, 2, 3 as pivot columns. We thus extract the matrix

B =




−9 6 7 3
−10 3 8 2

3 −6 2 8
−8 −6 −8 6


 .

sage: B = A.matrix_from_columns([0,1,2,3])

This matrix has inverse

B−1 =




42
1025 − 92

1025
1
25 − 9

205
716
3075 − 641

3075 − 2
75 − 7

615

− 83
1025

133
1025

1
25 − 23

410
184
1025 − 159

1025
2
25

9
410


 .

114 7. Linear Algebra

Finally, the echelon form of A is E = B−1A. No further checking is needed
since the product so obtained is in echelon form, and the matrix F of the
last step of the algorithm has 0 rows.

Remark 7.10. Above we have given only the barest sketch of asymptot-
ically fast “block” algorithms for linear algebra. For optimized algorithms
that work in the general case, please see the source code of [Ste06].

7.5. Decomposing Spaces under the Action of Matrix

Efficiently solving the following problem is a crucial step in computing a basis
of eigenforms for a space of modular forms (see Sections 3.7 and 9.3.2).

Problem 7.11. Suppose T is an n × n matrix with entries in a field K
(typically a number field or finite field) and that the minimal polynomial
of T is square-free and has degree n. View T as acting on V = Kn. Find
a simple module decomposition W0 ⊕ · · · ⊕ Wm of V as a direct sum of
simple K[T]-modules. Equivalently, find an invertible matrix A such that
A−1TA is a block direct sum of matrices T0, . . . , Tm such that the minimal
polynomial of each Ti is irreducible.

Remark 7.12. A generalization of Problem 7.11 to arbitrary matrices with
entries in Q is finding the rational Jordan form (or rational canonical form,
or Frobenius form) of T . This is like the usual Jordan form, but the re-
sulting matrix is over Q and the summands of the matrix corresponding
to eigenvalues are replaced by matrices whose minimal polynomials are the
minimal polynomials (over Q) of the eigenvalues. The rational Jordan form
was extensively studied by Giesbrecht in his Ph.D. thesis and many succes-
sive papers, where he analyzes the complexity of his algorithms and observes
that the limiting step is factoring polynomials over K. The reason is that
given a polynomial f ∈ K[x], one can easily write down a matrix T such
that one can read off the factorization of f from the rational Jordan form
of T (see also [Ste97]).

7.5.1. Characteristic Polynomials. The computation of characteristic
polynomials of matrices is crucial to modular forms computations. There are
many approaches to this problems: compute det(xI−A) symbolically (bad),
compute the traces of the powers of A (bad), or compute the Hessenberg
form modulo many primes and use CRT (bad; see for [Coh93, §2.2.4] the
definition of Hessenberg form and the algorithm). A more sophisticated
method is to compute the rational canonical form of A using Giesbrecht’s
algorithm1 (see [GS02]), which involves computing Krylov subspaces (see
Remark 7.13 below), and building up the whole space on which A acts. This

1Allan Steel also invented a similar algorithm.

7.5. Decomposing Spaces under the Action of Matrix 115

latter method is a generalization of Wiedemann’s algorithm for computing
minimal polynomials (see Section 7.5.3), but with more structure to handle
the case when the characteristic polynomial is not equal to the minimal
polynomial.

7.5.2. Polynomial Factorization. Factorization of polynomials in Q[X]
(or over number fields) is an important step in computing an explicit basis
of Hecke eigenforms for spaces of modular forms. The best algorithm is the
van Hoeij method [BHKS06], which uses the LLL lattice basis reduction
algorithm [LLL82] in a novel way to solve the optimization problems that
come up in trying to lift factorizations mod p to Z. It has been generalized
by Belebas, van Hoeij, Klüners, and Steel to number fields.

7.5.3. Wiedemann’s Minimal Polynomial Algorithm. In this section
we describe an algorithm due to Wiedemann for computing the minimal
polynomial of an n × n matrix A over a field.

Choose a random vector v and compute the iterates

(7.5.1) v0 = v, v1 = A(v), v2 = A2(v), . . . , v2n−1 = A2n−1(v).

If f = xm + cm−1x
m−1 + · · ·+ c1x+ c0 is the minimal polynomial of A, then

Am + cm−1A
m−1 + · · · + c0In = 0,

where In is the n × n identity matrix. For any k ≥ 0, by multiplying both
sides on the right by the vector Akv, we see that

Am+kv + cm−1A
m−1+kv + · · · + c0A

kv = 0;

hence

vm+k + cm−1vm−1+k + · · · + c0vk = 0, all k ≥ 0.

Wiedemann’s idea is to observe that any single component of the vectors
v0, . . . , v2n−1 satisfies the linear recurrence with coefficients 1, cm−1, . . . , c0.
The Berlekamp-Massey algorithm (see Algorithm 7.14 below) was intro-
duced in the 1960s in the context of coding theory to find the minimal
polynomial of a linear recurrence sequence {ar}. The minimal polynomial
of this linear recurrence is by definition the unique monic polynomial g, such
that if {ar} satisfies a linear recurrence aj+k + bj−1aj−1+k + · · · + b0ak = 0

(for all k ≥ 0), then g divides the polynomial xj +
∑j−1

i=0 bix
i. If we apply

Berlekamp-Massey to the top coordinates of the vi, we obtain a polynomial
g0, which divides f . We then apply it to the second to the top coordinates
and find a polynomial g1 that divides f , etc. Taking the least common mul-
tiple of the first few gi, we find a divisor of the minimal polynomial of f .
One can show that with “high probability” one quickly finds f , instead of
just a proper divisor of f .

116 7. Linear Algebra

Remark 7.13. In the literature, techniques that involve iterating a vector
as in (7.5.1) are often called Krylov methods. The subspace generated by
the iterates of a vector under a matrix is called a Krylov subspace.

Algorithm 7.14 (Berlekamp-Massey). Suppose a0, . . . , a2n−1 are the first
2n terms of a sequence that satisfies a linear recurrence of degree at most n.
This algorithm computes the minimal polynomial f of the sequence.

(1) Let R0 = x2n, R1 =
∑2n−1

i=0 aix
i, V0 = 0, V1 = 1.

(2) While deg(R1) ≥ n, do the following:
(a) Compute Q and R such that R0 = QR1 + R.
(b) Let (V0, V1, R0, R1) = (V1, V0 − QV1, R1, R).

(3) Let d = max(deg(V1), 1 + deg(R1)) and set P = xdV1(1/x).

(4) Let c be the leading coefficient of P and output f = P/c.

The above description of Berlekamp-Massey is taken from [ADT04],
which contains some additional ideas for improvements.

Now suppose T is an n × n matrix as in Problem 7.11. We find the
minimal polynomial of T by computing the minimal polynomial of T (mod p)
using Wiedemann’s algorithm, for many primes p, and using the Chinese
Remainder Theorem. (One has to bound the number of primes that must
be considered; see, e.g., [Coh93].)

One can also compute the characteristic polynomial of T directly from
the Hessenberg form of T , which can be computed in O(n4) field operations,
as described in [Coh93]. This is simple but slow. Also, the T we consider
will often be sparse, and Wiedemann is particularly good when T is sparse.

Example 7.15. We compute the minimal polynomial of

A =




3 0 0
0 0 2
−1 1/2 −1




using Wiedemann’s algorithm. Let v = (1, 0, 0)t. Then

v = (1, 0, 0)t, Av = (3, 0,−1)t, A2v = (9,−2,−2)t,

A3v = (27,−4,−8)t, A4v = (81,−16,−21)t, A5v = (243,−42,−68)t.

The linear recurrence sequence coming from the first entries is

1, 3, 9, 27, 81, 243.

This sequence satisfies the linear recurrence

ak+1 − 3ak = 0, all k > 0,

so its minimal polynomial is x − 3. This implies that x − 3 divides the
minimal polynomial of the matrix A. Next we use the sequence of second

7.5. Decomposing Spaces under the Action of Matrix 117

coordinates of the iterates of v, which is

0, 0,−2,−4,−16,−42.

The recurrence that this sequence satisfies is slightly less obvious, so we
apply the Berlekamp-Massey algorithm to find it, with n = 3.

(1) We have R0 = x6, R1 = −42x5 − 16x4 − 4x3 − 2x2, V0 = 0, V1 = 1.

(2) (a) Dividing R0 by R1, we find

R0 = R1

(
− 1

42
x +

4

441

)
+

(
22

441
x4 − 5

441
x3 +

8

441
x2

)
.

(b) The new V0, V1, R0, R1 are

V0 = 1,

V1 =
1

42
x − 4

441
,

R0 = −42x5 − 16x4 − 4x3 − 2x2,

R1 =
22

441
x4 − 5

441
x3 +

8

441
x2.

Since deg(R1) ≥ n = 3, we do the above three steps again.

(3) We repeat the above three steps.
(a) Dividing R0 by R1, we find

R0 = R1

(
−9261

11
x − 123921

242

)
+

(
1323

242
x3 +

882

121
x2

)
.

(b) The new V0, V1, R0, R1 are:

V0 =
1

42
x − 4

441
,

V1 =
441

22
x2 +

2205

484
x +

441

121
,

R0 =
22

441
x4 − 5

441
x3 +

8

441
x2,

R1 =
1323

242
x3 +

882

121
x2.

118 7. Linear Algebra

(4) We have to repeat the steps yet again:

V0 =
441

22
x2 +

2205

484
x +

441

121
,

V1 = − 242

1323
x3 +

968

3969
x2 +

484

3969
x − 242

3969
,

R0 =
1323

242
x3 +

882

121
x2,

R1 =
484

3969
x2.

(5) We have d = 3, so P = − 242
3969x3 + 484

3969x2 + 968
3969x − 242

1323 .

(6) Multiply through by −3969/242 and output

x3 − 2x2 − 4x + 3 = (x − 3)(x2 + x − 1).

The minimal polynomial of T2 is (x − 3)(x2 + x − 1), since the minimal
polynomial has degree at most 3 and is divisible by (x − 3)(x2 + x − 1).

7.5.4. p-adic Nullspace. We will use the following algorithm of Dixon
[Dix82] to compute p-adic approximations to solutions of linear equations
over Q. Rational reconstruction modulo pn then allows us to recover the
corresponding solutions over Q.

Algorithm 7.16 (p-adic Nullspace). Given a matrix A with integer entries
and nonzero kernel, this algorithm computes a nonzero element of ker(A)
using successive p-adic approximations.

(1) [Prime] Choose a random prime p.

(2) [Echelon] Compute the echelon form of A modulo p.

(3) [Done?] If A has full rank modulo p, it has full rank, so we terminate
the algorithm.

(4) [Setup] Let b0 = 0.

(5) [Iterate] For each m = 0, 1, 2, . . . , k, use the echelon form of A
modulo p to find a vector ym with integer entries such that Aym ≡
bm (mod p), and then set

bm+1 =
bm − Aym

p
.

(If m = 0, choose ym 6= 0.)

(6) [p-adic Solution] Let x = y0 + y1p + y2p
2 + y3p

3 + · · · + ykp
k.

(7) [Lift] Use rational reconstruction (Algorithm 7.4) to find a vector z
with rational entries such that z ≡ x (mod pk+1), if such a vector
exists. If the vector does not exist, increase k or use a different p.
Otherwise, output z.

7.6. Exercises 119

Proof. We verify the case k = 2 only. We have Ay0 = 0 (mod p) and

Ay1 = −Ay0

p (mod p). Thus

Ay0 + pAy1 ≡ Ay0 + (−Ay0) (mod p2).

¤

7.5.5. Decomposition Using Kernels. We now know enough to give an
algorithm to solve Problem 7.11.

Algorithm 7.17 (Decomposition Using Kernels). Given an n×n matrix T
over a field K as in Problem 7.11, this algorithm computes the decomposition
of V as a direct sum of simple K[T] modules.

(1) [Minimal Polynomial] Compute the minimal polynomial f of T ,
e.g., using the multimodular Wiedemann algorithm.

(2) [Factorization] Factor f using the algorithm in Section 7.5.2.

(3) [Compute Kernels] For each irreducible factor gi of f , compute the
following.
(a) Compute the matrix Ai = gi(T).
(b) Compute Wi = ker(Ai), e.g., using Algorithm 7.16.

(4) [Output Answer] Then V =
⊕

Wi.

Remark 7.18. As mentioned in Remark 7.12, if one can compute such
decompositions V =

⊕
Wi, then one can easily factor polynomials f ; hence

the difficulty of polynomial factorization is a lower bound on the complexity
of writing V as a direct sum of simples.

7.6. Exercises

7.1 Given a subspace W of kn, where k is a field and n ≥ 0 is an integer,
give an algorithm to find a matrix A such that W = Ker(A).

7.2 If rref(A) denotes the row reduced echelon form of A and p is a
prime not dividing any denominator of any entry of A or of rref(A),
is rref(A (mod p)) = rref(A) (mod p)?

7.3 Let A be a matrix with entries in Q. Prove that for all but finitely
many primes p we have rref(A (mod p)) = rref(A) (mod p).

7.4 Let

A =




1 2 3
4 5 6
7 8 9


 .

(a) Compute the echelon form of A using each of Algorithm 7.3,
Algorithm 7.6, and Algorithm 7.8.

(b) Compute the kernel of A.

120 7. Linear Algebra

(c) Find the characteristic polynomial of A using the algorithm of
Section 7.5.3.

7.5 The notion of echelon form extends to matrices whose entries come
from certain rings other than fields, e.g., Euclidean domains. In the
case of matrices over Z we define a matrix to be in echelon form
(or Hermite normal form) if it satisfies

• aij = 0, for i > j,
• aii ≥ 0,
• aij < aii for all j < i (unless aii = 0, in which case all aij = 0).

There are algorithms for computing with finitely generated modules
over Z that are analogous to the ones in this chapter for vector
spaces, which depend on computation of Hermite forms.

(a) Show that the Hermite form of




1 2 3
4 5 6
7 8 9


 is




1 2 3
0 3 6
0 0 0


.

(b) Describe an algorithm for transforming an n×n matrix A with
integer entries into Hermite form using row operations and the
Euclidean algorithm.

Chapter 8

General Modular

Symbols

In this chapter we explain how to generalize the notion of modular symbols
given in Chapter 3 to higher weight and more general level. We define Hecke
operators on them and their relation to modular forms via the integration
pairing. We omit many difficult proofs that modular symbols have certain
properties and instead focus on how to compute with modular symbols. For
more details see the references given in this section (especially [Mer94])
and [Wie05].

Modular symbols are a formalism that make it elementary to compute
with homology or cohomology related to certain Kuga-Sato varieties (these
are E ×X · · ·×X E , where X is a modular curve and E is the universal elliptic
curve over it). It is not necessary to know anything about these Kuga-Sato
varieties in order to compute with modular symbols.

This chapter is about spaces of modular symbols and how to compute
with them. It is by far the most important chapter in this book. The
algorithms that build on the theory in this chapter are central to all the
computations we will do later in the book.

This chapter closely follows Löıc Merel’s paper [Mer94]. First we define
modular symbols of weight k ≥ 2. Then we define the corresponding Manin
symbols and state a theorem of Merel-Shokurov, which gives all relations
between Manin symbols. (The proof of the Merel-Shokurov theorem is be-
yond the scope of this book but is presented nicely in [Wie05].) Next we
describe how the Hecke operators act on both modular and Manin symbols

121

122 8. General Modular Symbols

and how to compute trace and inclusion maps between spaces of modular
symbols of different levels.

Not only are modular symbols useful for computation, but they have
been used to prove theoretical results about modular forms. For example,
certain technical calculations with modular symbols are used in Löıc Merel’s
proof of the uniform boundedness conjecture for torsion points on elliptic
curves over number fields (modular symbols are used to understand linear
independence of Hecke operators). Another example is [Gri05], which dis-
tills hypotheses about Kato’s Euler system in K2 of modular curves to a
simple formula involving modular symbols (when the hypotheses are satis-
fied, one obtains a lower bound on the Shafarevich-Tate group of an elliptic
curve).

8.1. Modular Symbols

We recall from Chapter 3 the free abelian group M2 of modular symbols.
We view these as elements of the relative homology of the extended upper
half plane h∗ = h ∪ P1(Q) relative to the cusps. The group M2 is the free
abelian group on symbols {α, β} with

α, β ∈ P1(Q) = Q ∪ {∞}
modulo the relations

{α, β} + {β, γ} + {γ, α} = 0,

for all α, β, γ ∈ P1(Q), and all torsion. More precisely,

M2 = (F/R)/(F/R)tor,

where F is the free abelian group on all pairs (α, β) and R is the subgroup
generated by all elements of the form (α, β) + (β, γ) + (γ, α). Note that M2

is a huge free abelian group of countable rank.

For any integer n ≥ 0, let Z[X, Y]n be the abelian group of homogeneous
polynomials of degree n in two variables X, Y .

Remark 8.1. Note that Z[X, Y]n is isomorphic to Symn(Z×Z) as a group,
but certain natural actions are different. In [Mer94], Merel uses the nota-
tion Zn[X, Y] for what we denote by Z[X, Y]n.

Now fix an integer k ≥ 2. Set

Mk = Z[X, Y]k−2 ⊗Z M2,

which is a torsion-free abelian group whose elements are sums of expressions
of the form XiY k−2−i ⊗ {α, β}. For example,

X3 ⊗ {0, 1/2} − 17XY 2 ⊗ {∞, 1/7} ∈ M5.

8.1. Modular Symbols 123

Fix a finite index subgroup G of SL2(Z). Define a left action of G on
Z[X, Y]k−2 as follows. If g =

(
a b
c d

)
∈ G and P (X, Y) ∈ Z[X, Y]k−2, let

(gP)(X, Y) = P (dX − bY,−cX + aY).

Note that if we think of z = (X, Y) as a column vector, then

(gP)(z) = P (g−1z),

since g−1 =
(

d −b
−c a

)
. The reason for the inverse is so that this is a left action

instead of a right action, e.g., if g, h ∈ G, then

((gh)P)(z) = P ((gh)−1z) = P (h−1g−1z) = (hP)(g−1z) = (g(hP))(z).

Recall that we let G act on the left on M2 by

g{α, β} = {g(α), g(β)},
where G acts via linear fractional transformations, so if g =

(
a b
c d

)
, then

g(α) =
aα + b

cα + d
.

For example, useful special cases to remember are that if g =
(

a b
c d

)
, then

g(0) =
b

d
and g(∞) =

a

c
.

(Here we view ∞ as 1/0 in order to describe the action.)

We now combine these two actions to obtain a left action of G on Mk,
which is given by

g(P ⊗ {α, β}) = (gP) ⊗ {g(α), g(β)}.
For example,

(
1 2

−2 −3

)
(X3 ⊗ {0, 1/2}) = (−3X − 2Y)3 ⊗

{
−2

3
,−5

8

}

= (−27X3 − 54X2Y − 36XY 2 − 8Y 3) ⊗
{
−2

3
,−5

8

}
.

We will often write P (X, Y){α, β} for P (X, Y) ⊗ {α, β}.

Definition 8.2 (Modular Symbols). Let k ≥ 2 be an integer and let G be
a finite index subgroup of SL2(Z). The space Mk(G) of weight k modular
symbols for G is the quotient of Mk by all relations gx−x for x ∈ Mk, g ∈ G,
and by any torsion.

Note that Mk is a torsion-free abelian group, and it is a nontrivial fact
that Mk has finite rank. We denote modular symbols for G in exactly the
same way we denote elements of Mk; the group G will be clear from context.

124 8. General Modular Symbols

The space of modular symbols over a ring R is

Mk(G; R) = Mk(G) ⊗Z R.

8.2. Manin Symbols

Let G be a finite index subgroup of SL2(Z) and k ≥ 2 an integer. Just as in
Chapter 3 it is possible to compute Mk(G) using a computer, despite that,
as defined above, Mk(G) is the quotient of one infinitely generated abelian
group by another one. This section is about Manin symbols, which are a
distinguished subset of Mk(G) that lead to a finite presentation for Mk(G).
Formulas written in terms of Manin symbols are frequently much easier to
compute using a computer than formulas in terms of modular symbols.

Suppose P ∈ Z[X, Y]k−2 and g ∈ SL2(Z). Then the Manin symbol
associated to this pair of elements is

[P, g] = g(P{0,∞}) ∈ Mk(G).

Notice that if Gg = Gh, then [P, g] = [P, h], since the symbol g(P{0,∞}) is
invariant by the action of G on the left (by definition, since it is a modular
symbol for G). Thus for a right coset Gg it makes sense to write [P, Gg] for
the symbol [P, h] for any h ∈ Gg. Since G has finite index in SL2(Z), the
abelian group generated by Manin symbols is of finite rank, generated by

{
[Xk−2−iY i, Ggj] : i = 0, . . . , k − 2 and j = 0, . . . , r

}
,

where g0, . . . , gr run through representatives for the right cosets G\SL2(Z).

We next show that every modular symbol can be written as a Z-linear
combination of Manin symbols, so they generate Mk(G).

Proposition 8.3. The Manin symbols generate Mk(G).

Proof. The proof if very similar to that of Proposition 3.11 except we in-
troduce an extra twist to deal with the polynomial part. Suppose that we
are given a modular symbol P{α, β} and wish to represent it as a sum of
Manin symbols. Because

P{a/b, c/d} = P{a/b, 0} + P{0, c/d},
it suffices to write P{0, a/b} in terms of Manin symbols. Let

0 =
p−2

q−2
=

0

1
,

p−1

q−1
=

1

0
,

p0

1
=

p0

q0
,

p1

q1
,

p2

q2
, . . . ,

pr

qr
=

a

b

denote the continued fraction convergents of the rational number a/b. Then

pjqj−1 − pj−1qj = (−1)j−1 for − 1 ≤ j ≤ r.

8.2. Manin Symbols 125

If we let gj =

(
(−1)j−1pj pj−1

(−1)j−1qj qj−1

)
, then gj ∈ SL2(Z) and

P{0, a/b} = P
r∑

j=−1

{
pj−1

qj−1
,
pj

qj

}

=
r∑

j=−1

gj((g
−1
j P){0,∞})

=
r∑

j=−1

[g−1
j P, gj].

Since gj ∈ SL2(Z) and P has integer coefficients, the polynomial g−1
j P also

has integer coefficients, so we introduce no denominators. ¤

Now that we know the Manin symbols generate Mk(G), we next con-
sider the relations between Manin symbols. Fortunately, the answer is fairly
simple (though the proof is not). Let

σ =

(
0 −1
1 0

)
, τ =

(
0 −1
1 −1

)
, J =

(
−1 0

0 −1

)
.

Define a right action of SL2(Z) on Manin symbols as follows. If h ∈ SL2(Z),
let

[P, g]h = [h−1P, gh].

This is a right action because both P 7→ h−1P and g 7→ gh are right actions.

Theorem 8.4. If x is a Manin symbol, then

x + xσ = 0,(8.2.1)

x + xτ + xτ2 = 0,(8.2.2)

x − xJ = 0.(8.2.3)

Moreover, these are all the relations between Manin symbols, in the sense
that the space Mk(G) of modular symbols is isomorphic to the quotient of
the free abelian group on the finitely many symbols [XiY k−2−i, Gg] (for i =
0, . . . , k − 2 and Gg ∈ G\SL2(Z)) by the above relations and any torsion.

Proof. First we prove that the Manin symbols satisfy the above relations.
We follow Merel’s proof (see [Mer94, §1.2]). Note that

σ(0) = σ2(∞) = ∞ and τ(1) = τ2(0) = ∞.

126 8. General Modular Symbols

Writing x = [P, g], we have

[P, g] + [P, g]σ = [P, g] + [σ−1P, gσ]

= g(P{0,∞}) + gσ(σ−1P{0,∞})
= (gP){g(0), g(∞)} + (gσ)(σ−1P){gσ(0), gσ(∞)}
= (gP){g(0), g(∞)} + (gP){g(∞), g(0)}
= (gP){g(0), g(∞)} + {g(∞), g(0)})
= 0.

Also,

[P, g] + [P, g]τ + [P, g]τ2 = [P, g] + [τ−1P, gτ] + [τ−2P, gτ2]

= g(P{0,∞}) + gτ(τ−1P{0,∞}) + gτ2(τ−2P{0,∞})
= (gP){g(0), g(∞)} + (gP){gτ(0), gτ(∞)} + (gP){gτ2(0), τ2(∞)}
= (gP){g(0), g(∞)} + (gP){g(1), g(0)}) + (gP){g(∞), g(1)}
= (gP)

(
{g(0), g(∞)} + {g(∞), g(1)} + {g(1), g(0)}

)

= 0.

Finally,

[P, g] + [P, g]J = g(P{0,∞}) − gJ(J−1P{gJ(0), gJ(∞)}
= (gP){g(0), g(∞)} − (gP){g(0), g(∞)}
= 0,

where we use that J acts trivially via linear fractional transformations. This
proves that the listed relations are all satisfied.

That the listed relations are all relations is more difficult to prove. One
approach is to show (as in [Mer94, §1.3]) that the quotient of Manin symbols
by the above relations and torsion is isomorphic to a space of Shokurov
symbols, which is in turn isomorphic to Mk(G). A much better approach is
to apply some results from group cohomology, as in [Wie05]. ¤

If G is a finite index subgroup and we have an algorithm to enumerate
the right cosets G\SL2(Z) and to decide which coset an arbitrary element of
SL2(Z) belongs to, then Theorem 8.4 and the algorithms of Chapter 7 yield
an algorithm to compute Mk(G; Q). Note that if J ∈ G, then the relation
x − xJ = 0 is automatic.

Remark 8.5. The matrices σ and τ do not commute, so in computing
Mk(G; Q), one cannot first quotient out by the two-term σ relations, then
quotient out only the remaining free generators by the τ relations, and get
the right answer in general.

8.2. Manin Symbols 127

8.2.1. Coset Representatives and Manin Symbols. The following is
analogous to Proposition 3.10:

Proposition 8.6. The right cosets Γ1(N)\SL2(Z) are in bijection with pairs
(c, d) where c, d ∈ Z/NZ and gcd(c, d, N) = 1. The coset containing a matrix(

a b
c d

)
corresponds to (c, d).

Proof. This proof is copied from [Cre92, pg. 203], except in that paper
Cremona works with the analogue of Γ1(N) in PSL2(Z), so his result is

slightly different. Suppose γi =
(

ai bi

ci di

)
∈ SL2(Z), for i = 1, 2. We have

γ1γ
−1
2 =

(
a1 b1

c1 d1

) (
d2 −b2

−c2 a2

)
=

(
a1d2 − b1c2 ∗
c1d2 − d1c2 a2d1 − b2c1

)
,

which is in Γ1(N) if and only if

(8.2.4) c1d2 − d1c2 ≡ 0 (mod N)

and

(8.2.5) a2d1 − b2c1 ≡ a1d2 − b1c2 ≡ 1 (mod N).

Since the γi have determinant 1, if (c1, d1) = (c2, d2) (mod N), then the
congruences (8.2.4)–(8.2.5) hold. Conversely, if (8.2.4)–(8.2.5) hold, then

c2 ≡ a2d1c2 − b2c1c2

≡ a2d2c1 − b2c2c1 since d1c2 ≡ d2c1 (mod N)

≡ c1 since a2d2 − b2c2 = 1,

and likewise

d2 ≡ a2d1d2 − b2c1d2 ≡ a2d1d2 − b2d1c2 ≡ d1 (mod N).

¤

Thus we may view weight k Manin symbols for Γ1(N) as triples of in-
tegers (i, c, d), where 0 ≤ i ≤ k − 2 and c, d ∈ Z/NZ with gcd(c, d, N) = 1.
Here (i, c, d) corresponds to the Manin symbol [XiY k−2−i,

(
a b
c′ d′

)
], where c′

and d′ are congruent to c, d (mod N). The relations of Theorem 8.4 become

(i, c, d) + (−1)i(k − 2 − i, d,−c) = 0,

(i, c, d) + (−1)k−2
k−2−i∑

j=0

(−1)j

(
k − 2 − i

j

)
(j, d,−c − d)

+ (−1)k−2−i
i∑

j=0

(−1)j

(
i

j

)
(k − 2 − i + j, −c − d, c) = 0,

(i, c, d) − (−1)k−2(i, −c,−d) = 0.

Recall that Proposition 3.10 gives a similar description for Γ0(N).

128 8. General Modular Symbols

8.2.2. Modular Symbols with Character. Suppose G = Γ1(N). Define
an action of diamond-bracket operators 〈d〉o, with gcd(d, N) = 1 on Manin
symbols as follows:

〈d〉([P, (u, v)]) = [P, (du, dv)] .

Let

ε : (Z/NZ)∗ → Q(ζ)∗

be a Dirichlet character, where ζ is an nth root of unity and n is the order
of ε. Let Mk(N, ε) be the quotient of Mk(Γ1(N); Z[ζ]) by the relations (given
in terms of Manin symbols)

〈d〉x − ε(d)x = 0,

for all x ∈ Mk(Γ1(N); Z[ζ]), d ∈ (Z/NZ)∗, and by any Z-torsion. Thus
Mk(N, ε) is a Z[ε]-module that has no torsion when viewed as a Z-module.

8.3. Hecke Operators

Suppose Γ is a subgroup of SL2(Z) of level N that contains Γ1(N). Just as
for modular forms, there is a commutative Hecke algebra T = Z[T1, T2, . . .],
which is the subring of End(Mk(Γ)) generated by all Hecke operators. Let

Rp =

{(
1 r
0 p

)
: r = 0, 1, . . . , p − 1

}
∪

{(
p 0
0 1

)}
,

where we omit
(

p 0
0 1

)
if p | N . Then the Hecke operator Tp on Mk(Γ) is given

by

Tp(x) =
∑

g∈Rp

gx.

Notice when p ∤ N that Tp is defined by summing over p + 1 matrices that
correspond to the p + 1 subgroups of Z × Z of index p. This is exactly how
we defined Tp on modular forms in Definition 2.26.

8.3.1. General Definition of Hecke Operators. Let Γ be a finite index
subgroup of SL2(Z) and suppose

∆ ⊂ GL2(Q)

is a set such that Γ∆ = ∆Γ = ∆ and Γ\∆ is finite. For example, ∆ = Γ
satisfies this condition. Also, if Γ = Γ1(N), then for any positive integer n,
the set

∆n =

{(
a b
c d

)
∈ Mat2(Z) : ad − bc = n,

(
a b
c d

)
≡

(
1 ∗
0 n

)
(mod N)

}

also satisfies this condition, as we will now prove.

8.3. Hecke Operators 129

Lemma 8.7. We have

Γ1(N) · ∆n = ∆n · Γ1(N) = ∆n

and

∆n =
⋃

a,b

Γ1(N) · σa

(
a b
0 n/a

)
,

where σa ≡
(

1/a 0
0 a

)
(mod N), the union is disjoint and 1 ≤ a ≤ n with

a | n, gcd(a, N) = 1, and 0 ≤ b < n/a. In particular, the set of cosets
Γ1(N)\∆n is finite.

Proof. (This is Lemma 1 of [Mer94, §2.3].) If γ ∈ Γ1(N) and δ ∈ ∆n, then
(

1 ∗
0 1

)
·
(

1 ∗
0 n

)
≡

(
1 ∗
0 n

)
·
(

1 ∗
0 1

)
≡

(
1 ∗
0 n

)
(mod N).

Thus Γ1(N)∆n ⊂ ∆n, and since Γ1(N) is a group, Γ1(N)∆n = ∆n; likewise
∆nΓ1(N) = ∆n.

For the coset decomposition, we first prove the statement for N = 1,
i.e., for Γ1(N) = SL2(Z). If A is an arbitrary element of Mat2(Z) with
determinant n, then using row operators on the left with determinant 1,
i.e., left multiplication by elements of SL2(Z), we can transform A into the

form
(

a b
0 n/a

)
, with 1 ≤ a ≤ n and 0 ≤ b < n. (Just imagine applying the

Euclidean algorithm to the two entries in the first column of A. Then a is
the gcd of the two entries in the first column, and the lower left entry is 0.
Next subtract n/a from b until 0 ≤ b < n/a.)

Next suppose N is arbitrary. Let g1, . . . , gr be such that

g1Γ1(N) ∪ · · · ∪ grΓ1(N) = SL2(Z)

is a disjoint union. If A ∈ ∆n is arbitrary, then as we showed above, there is

some γ ∈ SL2(Z), so that γ ·A =
(

a b
0 n/a

)
, with 1 ≤ a ≤ n and 0 ≤ b < n/a,

and a | n. Write γ = gi · α, with α ∈ Γ1(N). Then

α · A = g−1
i ·

(
a b
0 n/a

)
≡

(
1 ∗
0 n

)
(mod N).

It follows that

g−1
i ≡

(
1 ∗
0 n

)
·
(

a b
0 n/a

)−1

≡
(

1/a ∗
0 a

)
(mod N).

Since (1 1
0 1) ∈ Γ1(N) and gcd(a, N) = 1, there is γ′ ∈ Γ1(N) such that

γ′g−1
i ≡

(
1/a 0
0 a

)
(mod N).

130 8. General Modular Symbols

We may then choose σa = γ′g−1
i . Thus every A ∈ ∆n is of the form

γσa

(
a b
0 n/a

)
, with γ ∈ Γ1(N) and a, b suitably bounded. This proves the

second claim. ¤

Let any element δ =
(

a b
c d

)
∈ GL2(Q) act on the left on modular symbols

Mk ⊗ Q by

δ(P{α, β}) = P (dX − bY,−cX + aY){δ(α), δ(β)}.

(Until now we had only defined an action of SL2(Z) on modular symbols.)
For g =

(
a b
c d

)
∈ GL2(Q), let

(8.3.1) g̃ =

(
d −b

−c a

)
= det(g) · g−1.

Note that ˜̃g = g. Also, δP (X, Y) = (P ◦ g̃)(X, Y), where we set

g̃(X, Y) = (dX − bY,−cX + aY).

Suppose Γ and ∆ are as above. Fix a finite set R of representatives for
Γ\∆. Let

T∆ : Mk(Γ) → Mk(Γ)

be the linear map

T∆(x) =
∑

δ∈R

δx.

This map is well defined because if γ ∈ Γ and x ∈ Mk(Γ), then
∑

δ∈R

δγx =
∑

certain δ′

γδ′x =
∑

certain δ′

δ′x =
∑

δ∈R

δx,

where we have used that ∆Γ = Γ∆, and Γ acts trivially on Mk(Γ).

Let Γ = Γ1(N) and ∆ = ∆n. Then the nth Hecke operator Tn is T∆n ,
and by Lemma 8.7,

Tn(x) =
∑

a,b

σa

(
a b
0 n/a

)
· x,

where a, b are as in Lemma 8.7.

Given this definition, we can compute the Hecke operators on Mk(Γ1(N))
as follows. Write x as a modular symbol P{α, β}, compute Tn(x) as a mod-
ular symbol, and then convert to Manin symbols using continued fractions
expansions. This is extremely inefficient; fortunately Löıc Merel (following
[Maz73]) found a much better way, which we now describe (see [Mer94]).

8.3. Hecke Operators 131

8.3.2. Hecke Operators on Manin Symbols. If S is a subset of GL2(Q),
let

S̃ = {g̃ : g ∈ S},

where g̃ is as in (8.3.1). Also, for any ring R and any subset S ⊂ Mat2(Z), let
R[S] denote the free R-module with basis the elements of S, so the elements
of R[S] are the finite R-linear combinations of the elements of S.

One of the main theorems of [Mer94] is that for any Γ, ∆ satisfying
the condition at the beginning of Section 8.3.1, if we can find

∑
uMM ∈

C[Mat2(Z)] and a map

φ : ∆̃ SL2(Z) → SL2(Z)

that satisfies certain conditions, then for any Manin symbol [P, g] ∈ Mk(Γ),
we have

T∆([P, g]) =
∑

gM∈∆̃ SL2(Z) with M∈SL2(Z)

uM [M̃ · P, φ(gM)].

The paper [Mer94] contains many examples of φ and
∑

uMM ∈ C[Mat2(Z)]
that satisfy all of the conditions.

When Γ = Γ1(N), the complicated list of conditions becomes simpler.
Let Mat2(Z)n be the set of 2 × 2 matrices with determinant n. An element

h =
∑

uM [M] ∈ C[Mat2(Z)n]

satisfies condition Cn if for every K ∈ Mat2(Z)n/ SL2(Z), we have that

(8.3.2)
∑

M∈K

uM ([M∞] − [M0]) = [∞] − [0] ∈ C[P 1(Q)].

If h satisfies condition Cn, then for any Manin symbol [P, g] ∈ Mk(Γ1(N)),
Merel proves that

(8.3.3) Tn([P, (u, v)]) =
∑

M

uM [P (aX + bY, cX + dY), (u, v)M].

Here (u, v) ∈ (Z/NZ)2 corresponds via Proposition 8.6 to a coset of Γ1(N)
in SL2(Z), and if (u′, v′) = (u, v)M ∈ (Z/NZ)2 and gcd(u′, v′, N) 6= 1, then
we omit the corresponding summand.

For example, we will now check directly that the element

h2 =

[(
2 0
0 1

)]
+

[(
1 0
0 2

)]
+

[(
2 1
0 1

)]
+

[(
1 0
1 2

)]

132 8. General Modular Symbols

satisfies condition C2. We have, as in the proof of Lemma 8.7 (but using
elementary column operations), that

Mat2(Z)2/ SL2(Z) =

{(
a 0
b 2/a

)
SL2(Z) : a = 1, 2 and 0 ≤ b < 2/a

}

=

{(
1 0
0 2

)
SL2(Z),

(
1 0
1 2

)
SL2(Z),

(
2 0
0 1

)
SL2(Z)

}
.

To verify condition C2, we consider in turn each of the three elements of
Mat2(Z)2/ SL2(Z) and check that (8.3.2) holds. We have that

(
1 0
0 2

)
∈

(
1 0
0 2

)
SL2(Z),

(
2 1
0 1

)
,

(
1 0
1 2

)
∈

(
1 0
1 2

)
SL2(Z),

and (
2 0
0 1

)
∈

(
2 0
0 1

)
SL2(Z).

Thus if K = (1 0
0 2) SL2(Z), the left sum of (8.3.2) is [(1 0

0 2) (∞)]−[(1 0
0 2) (0)] =

[∞] − [0], as required. If K = (1 0
1 2) SL2(Z), then the left side of (8.3.2) is

[(2 1
0 1) (∞)] − [(2 1

0 1) (0)] + [(1 0
1 2) (∞)] − [(1 0

1 2) (0)]

= [∞] − [1] + [1] − [0] = [∞] − [0].

Finally, for K = (2 0
0 1) SL2(Z) we also have [(2 0

0 1) (∞)]−[(2 0
0 1) (0)] = [∞]−[0],

as required. Thus by (8.3.3) we can compute T2 on any Manin symbol, by
summing over the action of the four matrices (2 0

0 1) , (1 0
0 2) , (2 1

0 1) , (1 0
1 2).

Proposition 8.8 (Merel). The element

∑

a>b≥0
d>c≥0

ad−bc=n

[(
a b
c d

)]
∈ Z[Mat2(Z)n]

satisfies condition Cn.

Merel’s two-page proof of Proposition 8.8 is fairly elementary.

Remark 8.9. In [Cre97a, §2.4], Cremona discusses the work of Merel and
Mazur on Heilbronn matrices in the special cases Γ = Γ0(N) and weight 2.
He gives a simple proof that the action of Tp on Manin symbols can be com-
puted by summing the action of some set Rp of matrices of determinant p.
He then describes the set Rp and gives an efficient continued fractions al-
gorithm for computing it (but he does not prove that his Rp satisfy Merel’s
hypothesis).

8.4. Cuspidal Modular Symbols 133

8.3.3. Remarks on Complexity. Merel gives another family Sn of ma-
trices that satisfy condition Cn, and he proves that as n → ∞,

#Sn ∼ 12 log(2)

π2
· σ1(n) log(n),

where σ1(n) is the sum of the divisors of n. Thus for a fixed space Mk(Γ)
of modular symbols, one can compute Tn using O(σ1(n) log(n)) arithmetic
operations. Note that we have fixed Mk(Γ), so we ignore the linear algebra
involved in computation of a presentation; also, adding elements takes a
bounded number of field operations when the space is fixed. Thus, using
Manin symbols the complexity of computing Tp, for p prime, is O((p +
1) log(p)) field operations, which is exponential in the number of digits of p.

8.3.4. Basmaji’s Trick. There is a trick of Basmaji (see [Bas96]) for
computing a matrix of Tn on Mk(Γ), when n is very large, and it is more
efficient than one might naively expect. Basmaji’s trick does not improve the
big-oh complexity for a fixed space, but it does improve the complexity by a
constant factor of the dimension of Mk(Γ; Q). Suppose we are interested in
computing the matrix for Tn for some massive integer n and that Mk(Γ; Q)
has large dimension. The trick is as follows. Choose a list

x1 = [P1, g1], . . . , xr = [Pr, gr] ∈ V = Mk(Γ; Q)

of Manin symbols such that the map Ψ : T → V r given by

t 7→ (tx1, . . . , txr)

is injective. In practice, it is often possible to do this with r “very small”.
Also, we emphasize that V r is a Q-vector space of dimension r · dim(V).

Next find Hecke operators Ti, with i small, whose images form a basis for
the image of Ψ. Now with the above data precomputed, which only required
working with Hecke operators Ti for small i, we are ready to compute Tn with
n huge. Compute yi = Tn(xi), for each i = 1, . . . , r, which we can compute
using Heilbronn matrices since each xi = [Pi, gi] is a Manin symbol. We
thus obtain Ψ(Tn) ∈ V r. Since we have precomputed Hecke operators Tj

such that Ψ(Tj) generate V r, we can find aj such that
∑

ajΨ(Tj) = Ψ(Tn).
Then since Ψ is injective, we have Tn =

∑
ajTj , which gives the full matrix

of Tn on Mk(Γ; Q).

8.4. Cuspidal Modular Symbols

Let B be the free abelian group on symbols {α}, for α ∈ P1(Q), and set

Bk = Z[X, Y]k−2 ⊗ B.

Define a left action of SL2(Z) on Bk by

g(P{α}) = (gP){g(α)},

134 8. General Modular Symbols

for g ∈ SL2(Z). For any finite index subgroup Γ ⊂ SL2(Z), let Bk(Γ) be the
quotient of Bk by the relations x−gx for all g ∈ Γ and by any torsion. Thus
Bk(Γ) is a torsion-free abelian group.

The boundary map is the map

b : Mk(Γ) → Bk(Γ)

given by extending the map

b(P{α, β}) = P{β} − P{α}
linearly. The space Sk(Γ) of cuspidal modular symbols is the kernel

Sk(Γ) = ker(Mk(Γ) → Bk(Γ)),

so we have an exact sequence

0 → Sk(Γ) → Mk(Γ) → Bk(Γ).

One can prove that when k > 2, this sequence is exact on the right.

Next we give a presentation of Bk(Γ) in terms of “boundary Manin
symbols”.

8.4.1. Boundary Manin Symbols. We give an explicit description of the
boundary map in terms of Manin symbols for Γ = Γ1(N), then describe an
efficient way to compute the boundary map.

Let R be the equivalence relation on Γ\Q2 given by

[Γ
(

λu
λv

)
] ∼ sign(λ)k[Γ (u

v)],

for any λ ∈ Q∗. Denote by Bk(Γ) the finite-dimensional Q-vector space with
basis the equivalence classes (Γ\Q2)/R. The following two propositions are
proved in [Mer94].

Proposition 8.10. The map

µ : Bk(Γ) → Bk(Γ), P
{u

v

}
7→ P (u, v)

[
Γ

(
u
v

)]

is well defined and injective. Here u and v are assumed coprime.

Thus the kernel of δ : Sk(Γ) → Bk(Γ) is the same as the kernel of µ ◦ δ.

Proposition 8.11. Let P ∈ Vk−2 and g =
(

a b
c d

)
∈ SL2(Z). We have

µ ◦ δ([P, (c, d)]) = P (1, 0)[Γ (a
c)] − P (0, 1)[Γ

(
b
d

)
].

We next describe how to explicitly compute µ◦ δ : Mk(N, ε) → Bk(N, ε)
by generalizing the algorithm of [Cre97a, §2.2]. To compute the image of
[P, (c, d)], with g =

(
a b
c d

)
∈ SL2(Z), we must compute the class of [(a

c)] and

of [
(

b
d

)
]. Instead of finding a canonical form for cusps, we use a quick test for

equivalence modulo scalars. In the following algorithm, by the ith symbol we

8.4. Cuspidal Modular Symbols 135

mean the ith basis vector for a basis of Bk(N, ε). This basis is constructed
as the algorithm is called successively. We first give the algorithm, and then
prove the facts used by the algorithm in testing equivalence.

Algorithm 8.12 (Cusp Representation). Given a boundary Manin symbol
[(u

v)], this algorithm outputs an integer i and a scalar α such that [(u
v)] is

equivalent to α times the ith symbol found so far. (We call this algorithm
repeatedly and maintain a running list of cusps seen so far.)

(1) Use Proposition 3.21 to check whether or not [(u
v)] is equivalent,

modulo scalars, to any cusp found. If so, return the representative,
its index, and the scalar. If not, record (u

v) in the representative
list.

(2) Using Proposition 8.16, check whether or not [(u
v)] is forced to

equal 0 by the relations. If it does not equal 0, return its position
in the list and the scalar 1. If it equals 0, return the scalar 0 and
the position 1; keep (u

v) in the list, and record that it is equivalent
to 0.

The case considered in Cremona’s book [Cre97a] only involve the triv-
ial character, so no cusp classes are forced to vanish. Cremona gives the
following two criteria for equivalence.

Proposition 8.13 (Cremona). Consider (ui
vi

), i = 1, 2, with ui, vi integers
such that gcd(ui, vi) = 1 for each i.

(1) There exists g ∈ Γ0(N) such that g (u1
v1) = (u2

v2) if and only if

s1v2 ≡ s2v1 (mod gcd(v1v2, N)), where sj satisfies ujsj ≡ 1 (mod vj).

(2) There exists g ∈ Γ1(N) such that g (u1
v1) = (u2

v2) if and only if

v2 ≡ v1 (mod N) and u2 ≡ u1 (mod gcd(v1, N)).

Proof. The first statement is [Cre97a, Prop. 2.2.3], and the second is
[Cre92, Lem. 3.2]. ¤

Algorithm 8.14 (Explicit Cusp Equivalence). Suppose (u1
v1) and (u2

v2) are
equivalent modulo Γ0(N). This algorithm computes a matrix g ∈ Γ0(N)
such that g (u1

v1) = (u2
v2).

(1) Let s1, s2, r1, r2 be solutions to s1u1−r1v1 = 1 and s2u2−r2v2 = 1.

(2) Find integers x0 and y0 such that x0v1v2 + y0N = 1.

(3) Let x = −x0(s1v2 − s2v1)/(v1v2, N) and s′1 = s1 + xv1.

(4) Output g = (u2 r2
v2 s2) ·

(
u1 r1

v1 s′1

)−1
, which sends (u1

v1) to (u2
v2).

Proof. See the proof of [Cre97a, Prop. 8.13]. ¤

136 8. General Modular Symbols

The ε relations can make the situation more complicated, since it is
possible that ε(α) 6= ε(β) but

ε(α)

[(
u
v

)]
=

[
γα

(
u
v

)]
=

[
γβ

(
u
v

)]
= ε(β)

[(
u
v

)]
.

One way out of this difficulty is to construct the cusp classes for Γ1(N), and
then quotient out by the additional ε relations using Gaussian elimination.
This is far too inefficient to be useful in practice because the number of
Γ1(N) cusp classes can be unreasonably large. Instead, we give a quick test
to determine whether or not a cusp vanishes modulo the ε-relations.

Lemma 8.15. Suppose α and α′ are integers such that gcd(α, α′, N) =
1. Then there exist integers β and β′, congruent to α and α′ modulo N ,
respectively, such that gcd(β, β′) = 1.

Proof. By Exercise 8.2 the map SL2(Z) → SL2(Z/NZ) is surjective. By the
Euclidean algorithm, there exist integers x, y and z such that xα+yα′+zN =
1. Consider the matrix

(y −x
α α′

)
∈ SL2(Z/NZ) and take β, β′ to be the

bottom row of a lift of this matrix to SL2(Z). ¤

Proposition 8.16. Let N be a positive integer and ε a Dirichlet character
of modulus N . Suppose (u

v) is a cusp with u and v coprime. Then (u
v)

vanishes modulo the relations

[γ (u
v)] = ε(γ) [(u

v)] , all γ ∈ Γ0(N),

if and only if there exists α ∈ (Z/NZ)∗, with ε(α) 6= 1, such that

v ≡ αv (mod N),

u ≡ αu (mod gcd(v, N)).

Proof. First suppose such an α exists. By Lemma 8.15 there exists β, β′ ∈
Z lifting α, α−1 such that gcd(β, β′) = 1. The cusp

(
βu
β′v

)
has coprime

coordinates so, by Proposition 8.13 and our congruence conditions on α, the

cusps
(

βu
β′v

)
and (u

v) are equivalent by an element of Γ1(N). This implies

that
[(

βu
β′v

)]
= [(u

v)]. Since
[(

βu
β′v

)]
= ε(α) [(u

v)] and ε(α) 6= 1, we have

[(u
v)] = 0.

Conversely, suppose [(u
v)] = 0. Because all relations are two-term re-

lations and the Γ1(N)-relations identify Γ1(N)-orbits, there must exists α
and β with

[
γα

(
u
v

)]
=

[
γβ

(
u
v

)]
and ε(α) 6= ε(β).

8.5. Pairing Modular Symbols and Modular Forms 137

Indeed, if this did not occur, then we could mod out by the ε relations
by writing each [γα (u

v)] in terms of [(u
v)], and there would be no further

relations left to kill [(u
v)]. Next observe that

[
γβ−1α

(
u
v

)]
=

[
γβ−1γα

(
u
v

)]

= ε(β−1)

[
γα

(
u
v

)]
= ε(β−1)

[
γβ

(
u
v

)]
=

[(
u
v

)]
.

Applying Proposition 8.13 and noting that ε(β−1α) 6= 1 shows that β−1α
satisfies the properties of the “α” in the statement of the proposition. ¤

We enumerate the possible α appearing in Proposition 8.16 as follows.
Let g = (v, N) and list the α = v · N

g · a + 1, for a = 0, . . . , g − 1, such that

ε(α) 6= 0.

8.5. Pairing Modular Symbols and Modular Forms

In this section we define a pairing between modular symbols and modular
forms that the Hecke operators respect. We also define an involution on
modular symbols and study its relationship with the pairing. This pairing
is crucial in much that follows, because it gives rise to period maps from
modular symbols to certain complex vector spaces.

Fix an integer weight k ≥ 2 and a finite index subgroup Γ of SL2(Z).
Let Mk(Γ) denote the space of holomorphic modular forms of weight k for
Γ, and let Sk(Γ) denote its cuspidal subspace. Following [Mer94, §1.5], let

(8.5.1) Sk(Γ) = {f : f ∈ Sk(Γ)}
denote the space of antiholomorphic cusp forms. Here f is the function on
h∗ given by f(z) = f(z).

Define a pairing

(8.5.2) (Sk(Γ) ⊕ Sk(Γ)) × Mk(Γ) → C

by letting

〈(f1, f2), P{α, β}〉 =

∫ β

α
f1(z)P (z, 1)dz +

∫ β

α
f2(z)P (z, 1)dz

and extending linearly. Here the integral is a complex path integral along
a simple path from α to β in h (so, e.g., write z(t) = x(t) + iy(t), where
(x(t), y(t)) traces out the path and consider two real integrals).

Proposition 8.17. The integration pairing is well defined, i.e., if we replace
P{α, β} by an equivalent modular symbol (equivalent modulo the left action
of Γ), then the integral is the same.

138 8. General Modular Symbols

Proof. This follows from the change of variables formulas for integration
and the fact that f1 ∈ Sk(Γ) and f2 ∈ Sk(Γ). For example, if k = 2, g ∈ Γ
and f ∈ Sk(Γ), then

〈f, g{α, β}〉 = 〈f, {g(α), g(β)}〉

=

∫ g(β)

g(α)
f(z)dz

=

∫ β

α
f(g(z))dg(z)

=

∫ β

α
f(z)dz = 〈f, {α, β}〉,

where f(g(z))dg(z) = f(z)dz because f is a weight 2 modular form. For the
case of arbitrary weight k > 2, see Exercise 8.4. ¤

The integration pairing is very relevant to the study of special values of
L-functions. The L-function of a cusp form f =

∑
anqn ∈ Sk(Γ1(N)) is

L(f, s) = (2π)sΓ(s)−1

∫ ∞

0
f(it)ts

dt

t
(8.5.3)

=
∞∑

n=1

an

ns
for Re(s) ≫ 0.(8.5.4)

The equality of the integral and the Dirichlet series follows by switching
the order of summation and integration, which is justified using standard
estimates on |an| (see, e.g., [Kna92, Section VIII.5]).

For each integer j with 1 ≤ j ≤ k−1, we have, setting s = j and making
the change of variables t 7→ −it in (8.5.3), that

(8.5.5) L(f, j) =
(−2πi)j

(j − 1)!
·
〈
f, Xj−1Y k−2−(j−1){0,∞}

〉
.

The integers j as above are called critical integers. When f is an eigenform,
they have deep conjectural significance (see [BK90, Sch90]). One can
approximate L(f, j) to any desired precision by computing the above pairing
explicitly using the method described in Chapter 10. Alternatively, [Dok04]
contains methods for computing special values of very general L-functions,
which can be used for approximating L(f, s) for arbitrary s, in addition to
just the critical integers 1, . . . , k − 1.

Theorem 8.18 (Shokoruv). The pairing

〈· , ·〉 : (Sk(Γ) ⊕ Sk(Γ)) × Sk(Γ, C) → C

is a nondegenerate pairing of complex vector spaces.

Proof. This is [Sho80b, Thm. 0.2] and [Mer94, §1.5]. ¤

8.5. Pairing Modular Symbols and Modular Forms 139

Corollary 8.19. We have

dimC Sk(Γ, C) = 2 dimC S2(Γ).

The pairing is also compatible with Hecke operators. Before proving this,
we define an action of Hecke operators on Mk(Γ1(N)) and on Sk(Γ1(N)).
The definition is similar to the one we gave in Section 2.4 for modular forms
of level 1. For a positive integer n, let Rn be a set of coset representatives
for Γ1(N)\∆n from Lemma 8.7. For any γ =

(
a b
c d

)
∈ GL2(Q) and f ∈

Mk(Γ1(N)) set

f [γ]k = det(γ)k−1(cz + d)−kf(γ(z)).

Also, for f ∈ Sk(Γ1(N)), set

f [γ]′
k = det(γ)k−1(cz + d)−kf(γ(z)).

Then for f ∈ Mk(Γ1(N)),

Tn(f) =
∑

γ∈Rn

f [γ]k

and for f ∈ Sk(Γ1(N)),

Tn(f) =
∑

γ∈Rn

f [γ]′
k .

This agrees with the definition from Section 2.4 when N = 1.

Remark 8.20. If Γ is an arbitrary finite index subgroup of SL2(Z), then
we can define operators T∆ on Mk(Γ) for any ∆ with ∆Γ = Γ∆ = ∆ and
Γ\∆ finite. For concreteness we do not do the general case here or in the
theorem below, but the proof is exactly the same (see [Mer94, §1.5]).

Finally we prove the promised Hecke compatibility of the pairing. This
proof should convince you that the definition of modular symbols is sensible,
in that they are natural objects to integrate against modular forms.

Theorem 8.21. If

f = (f1, f2) ∈ Sk(Γ1(N)) ⊕ Sk(Γ1(N))

and x ∈ Mk(Γ1(N)), then for any n,

〈Tn(f), x〉 = 〈f, Tn(x)〉.

Proof. We follow [Mer94, §2.1] (but with more details) and will only prove
the theorem when f = f1 ∈ Sk(Γ1(N)), the proof in the general case being
the same.

Let α, β ∈ P1(Q), P ∈ Z[X, Y]k−2, and for g =
(

a b
c d

)
∈ GL2(Q), set

j(g, z) = cz + d.

140 8. General Modular Symbols

Let n be any positive integer, and let Rn be a set of coset representatives
for Γ1(N)\∆n from Lemma 8.7.

We have

〈Tn(f), P{α, β}〉 =

∫ β

α
Tn(f)P (z, 1)dz

=
∑

δ∈R

∫ β

α
det(δ)k−1f(δ(z))j(δ, z)−kP (z, 1)dz.

Now for each summand corresponding to the δ ∈ R, make the change of
variables u = δz. Thus we make #R change of variables. Also, we will use
the notation

g̃ =

(
d −b

−c a

)
= det(g) · g−1

for g ∈ GL2(Q). We have

〈Tn(f), P{α, β}〉 =

∑

δ∈R

∫ δ(β)

δ(α)
det(δ)k−1f(u)j(δ, δ−1(u))−kP (δ−1(u), 1)d(δ−1(u)).

We have δ−1(u) = δ̃(u), since a linear fractional transformation is unchanged
by a nonzero rescaling of a matrix that induces it. Thus by the quotient
rule, using that δ̃ has determinant det(δ), we see that

d(δ−1(u)) = d(δ̃(u)) =
det(δ)du

j(δ̃, u)2
.

We next show that

(8.5.6) j(δ, δ−1(u))−kP (δ−1(u), 1) = j(δ̃, u)k det(δ)−kP (δ̃(u), 1).

From the definitions, and again using that δ−1(u) = δ̃(u), we see that

j(δ, δ−1(u)) =
det(δ)

j(δ̃, u)
,

which proves that (8.5.6) holds. Thus

〈Tn(f), P{α, β}〉 =

∑

δ∈R

∫ δ(β)

δ(α)
det(δ)k−1f(u)j(δ̃, u)k det(δ)−kP (δ̃(u), 1)

det(δ)du

j(δ̃, u)2
.

Next we use that

(δP)(u, 1) = j(δ̃, u)k−2P (δ̃(u), 1).

8.5. Pairing Modular Symbols and Modular Forms 141

To see this, note that P (X, Y) = P (X/Y, 1) · Y k−2. Using this we see that

(δP)(X, Y) = (P ◦ δ̃)(X, Y)

= P

(
δ̃

(
X

Y

)
, 1

) (
−c · X

Y
+ a

)k−2

· Y k−2.

Now substituting (u, 1) for (X, 1), we see that

(δP)(u, 1) = P (δ̃(u), 1) · (−cu + a)k−2,

as required. Thus finally

〈Tn(f), P{α, β}〉 =
∑

δ∈R

∫ δ(β)

δ(α)
f(u)j(δ̃, u)k−2P (δ̃(u), 1)du

=
∑

δ∈R

∫ δ(β)

δ(α)
f(u) · ((δP)(u, 1))du

= 〈f, Tn(P{α, β})〉.
¤

Suppose that Γ is a finite index subgroup of SL2(Z) such that if η =(−1 0
0 1

)
, then

ηΓη = Γ.

For example, Γ = Γ1(N) satisfies this condition. There is an involution ι∗

on Mk(Γ) given by

(8.5.7) ι∗(P (X, Y){α, β}) = −P (X,−Y){−α,−β},
which we call the star involution. On Manin symbols, ι∗ is

(8.5.8) ι∗[P, (u, v)] = −[P (−X, Y), (−u, v)].

Let Sk(Γ)+ be the +1 eigenspace for ι∗ on Sk(Γ), and let Sk(Γ)− be the −1
eigenspace. There is also a map ι on modular forms, which is adjoint to ι∗.

Remark 8.22. Notice the minus sign in front of −P (X,−Y){−α,−β} in
(8.5.7). This sign is missing in [Cre97a], which is a potential source of
confusion (this is not a mistake, but a different choice of convention).

We now state the final result about the pairing, which explains how
modular symbols and modular forms are related.

Theorem 8.23. The integration pairing 〈· , ·〉 induces nondegenerate Hecke
compatible bilinear pairings

Sk(Γ)+ × Sk(Γ) → C and Sk(Γ)− × Sk(Γ) → C.

142 8. General Modular Symbols

Remark 8.24. We make some remarks about computing the boundary map
of Section 8.4.1 when working in the ±1 quotient. Let s be a sign, either +1
or −1. To compute Sk(N, ε)s, it is necessary to replace Bk(N, ε) by its
quotient modulo the additional relations [(−u

v)] = s [(u
v)] for all cusps (u

v).
Algorithm 8.12 can be modified to deal with this situation as follows. Given
a cusp x = (u

v), proceed as in Algorithm 8.12 and check if either (u
v) or

(−u
v) is equivalent (modulo scalars) to any cusp seen so far. If not, use the

following trick to determine whether the ε and s-relations kill the class of
(u

v): use the unmodified Algorithm 8.12 to compute the scalars α1, α2 and
indices i1, i2 associated to (u

v) and (−u
v), respectively. The s-relation kills

the class of (u
v) if and only if i1 = i2 but α1 6= sα2.

8.6. Degeneracy Maps

In this section, we describe natural maps between spaces of modular symbols
with character of different levels. We consider spaces with character, since
they are so important in applications.

Fix a positive integer N and a Dirichlet character ε : (Z/NZ)∗ → C∗.
Let M be a positive divisor of N that is divisible by the conductor of ε, in
the sense that ε factors through (Z/MZ)∗ via the natural map (Z/NZ)∗ →
(Z/MZ)∗ composed with some uniquely defined character ε′ : (Z/MZ)∗ →
C∗. For any positive divisor t of N/M , let T = (1 0

0 t) and fix a choice
Dt = {Tγi : i = 1, . . . , n} of coset representatives for Γ0(N)\TΓ0(M).

Remark 8.25. Note that [Mer94, §2.6] contains a typo: The quotient
“Γ1(N)\Γ1(M)T” should be replaced by “Γ1(N)\TΓ1(M)”.

Proposition 8.26. For each divisor t of N/M there are well-defined linear
maps

αt : Mk(N, ε) → Mk(M, ε′), αt(x) = (tT−1)x =

(
t 0
0 1

)
x,

βt : Mk(M, ε′) → Mk(N, ε), βt(x) =
∑

Tγi∈Dt

ε′(γi)
−1Tγix.

Furthermore, αt ◦ βt is multiplication by tk−2 · [Γ0(M) : Γ0(N)].

Proof. To show that αt is well defined, we must show that for each x ∈
Mk(N, ε) and γ =

(
a b
c d

)
∈ Γ0(N), we have

αt(γx − ε(γ)x) = 0 ∈ Mk(M, ε′).

We have

αt(γx) =

(
t 0
0 1

)
γx =

(
a tb

c/t d

) (
t 0
0 1

)
x = ε′(a)

(
t 0
0 1

)
x,

8.6. Degeneracy Maps 143

so

αt(γx − ε(γ)x) = ε′(a)αt(x) − ε(γ)αt(x) = 0.

We next verify that βt is well defined. Suppose that x ∈ Mk(M, ε′) and
γ ∈ Γ0(M); then ε′(γ)−1γx = x, so

βt(x) =
∑

Tγi∈Dt

ε′(γi)
−1Tγiε

′(γ)−1γx

=
∑

Tγiγ∈Dt

ε′(γiγ)−1Tγiγx.

This computation shows that the definition of βt does not depend on the
choice Dt of coset representatives. To finish the proof that βt is well defined,
we must show that, for γ ∈ Γ0(M), we have βt(γx) = ε′(γ)βt(x) so that βt

respects the relations that define Mk(M, ε). Using that βt does not depend
on the choice of coset representative, we find that for γ ∈ Γ0(M),

βt(γx) =
∑

Tγi∈Dt

ε′(γi)
−1Tγiγx

=
∑

Tγiγ−1∈Dt

ε′(γiγ
−1)−1Tγiγ

−1γx

= ε′(γ)βt(x).

To compute αt ◦ βt, we use that #Dt = [Γ0(N) : Γ0(M)]:

αt(βt(x)) = αt


∑

Tγi

ε′(γi)
−1Tγix




=
∑

Tγi

ε′(γi)
−1(tT−1)Tγix

= tk−2
∑

Tγi

ε′(γi)
−1γix

= tk−2
∑

Tγi

x

= tk−2 · [Γ0(N) : Γ0(M)] · x.

The scalar factor of tk−2 appears instead of t, because t is acting on x as an
element of GL2(Q) and not as an an element of Q. ¤

Definition 8.27 (New and Old Modular Symbols). The space Mk(N, ε)new

of new modular symbols is the intersection of the kernels of the αt as t runs
through all positive divisors of N/M and M runs through positive divisors
of M strictly less than N and divisible by the conductor of ε. The subspace

144 8. General Modular Symbols

Mk(N, ε)old of old modular symbols is the subspace generated by the images
of the βt where t runs through all positive divisors of N/M and M runs
through positive divisors of M strictly less than N and divisible by the
conductor of ε. The new and old subspaces of cuspidal modular symbols are
the intersections of the above spaces with Sk(N, ε).

Example 8.28. The new and old subspaces need not be disjoint, as the fol-
lowing example illustrates! (This contradicts [Mer94, pg. 80].) Consider,
for example, the case N = 6, k = 2, and trivial character. The spaces
M2(Γ0(2)) and M2(Γ0(3)) are each of dimension 1, and each is generated
by the modular symbol {∞, 0}. The space M2(Γ0(6)) is of dimension 3
and is generated by the three modular symbols {∞, 0}, {−1/4, 0}, and
{−1/2,−1/3}. The space generated by the two images of M2(Γ0(2)) un-
der the two degeneracy maps has dimension 2, and likewise for M2(Γ0(3)).
Together these images generate M2(Γ0(6)), so M2(Γ0(6)) is equal to its old
subspace. However, the new subspace is nontrivial because the two degen-
eracy maps M2(Γ0(6)) → M2(Γ0(2)) are equal, as are the two degeneracy
maps

M2(Γ0(6)) → M2(Γ0(3)).

In particular, the intersection of the kernels of the degeneracy maps has
dimension at least 1 (in fact, it equals 1). We verify some of the above
claims using SAGE.

sage: M = ModularSymbols(Gamma0(6)); M

Modular Symbols space of dimension 3 for Gamma_0(6)

of weight 2 with sign 0 over Rational Field

sage: M.new_subspace()

Modular Symbols subspace of dimension 1 of Modular

Symbols space of dimension 3 for Gamma_0(6) of weight

2 with sign 0 over Rational Field

sage: M.old_subspace()

Modular Symbols subspace of dimension 3 of Modular

Symbols space of dimension 3 for Gamma_0(6) of weight

2 with sign 0 over Rational Field

8.7. Explicitly Computing Mk(Γ0(N))

In this section we explicitly compute Mk(Γ0(N)) for various k and N . We
represent Manin symbols for Γ0(N) as triples of integers (i, u, v), where
(u, v) ∈ P1(Z/NZ), and (i, u, v) corresponds to [XiY k−2−i, (u, v)] in the
usual notation. Also, recall from Proposition 3.10 that (u, v) corresponds to

8.7. Explicitly Computing Mk(Γ0(N)) 145

the right coset of Γ0(N) that contains a matrix
(

a b
c d

)
with (u, v) ≡ (c, d) as

elements of P1(Z/NZ), i.e., up to rescaling by an element of (Z/NZ)∗.

8.7.1. Computing P1(Z/NZ). In this section we give an algorithm to
compute a canonical representative for each element of P1(Z/NZ). This
algorithm is extremely important because modular symbols implementa-
tions use it a huge number of times. A more naive approach would be to
store all pairs (u, v) ∈ (Z/NZ)2 and a fixed reduced representative, but this
wastes a huge amount of memory. For example, if N = 105, we would store
an array of

2 · 105 · 105 = 20 billion integers.

Another approach to enumerating P1(Z/NZ) is described at the end
of [Cre97a, §2.2]. It uses the fact that is easy to test whether two pairs
(u0, v0), (u1, v1) define the same element of P1(Z/NZ); they do if and only
if we have equality of cross terms u0v1 = v0u1 (mod N) (see [Cre97a,
Prop. 2.2.1]). So we consider the 0-based list of elements

(8.7.1) (1, 0), (1, 1), . . . , (1, N − 1), (0, 1)

concatenated with the list of nonequivalent elements (d, a) for d | N and
a = 1, . . . , N − 1, checking each time we add a new element to our list (of
(d, a)) whether we have already seen it.

Given a random pair (u, v), the problem is then to find the index of
the element of our list of the equivalent representative in P1(Z/NZ). We
use the following algorithm, which finds a canonical representative for each
element of P1(Z/NZ). Given an arbitrary (u, v), we first find the canonical
equivalent elements (u′, v′). If u′ = 1, then the index is v′. If u′ 6= 1, we
find the corresponding element in an explicit sorted list, e.g., using binary
search.

In the following algorithm, a (mod N) denotes the residue of a mod-
ulo N that satisfies 0 ≤ a < N . Note that we never create and store the list
(8.7.1) itself in memory.

Algorithm 8.29 (Reduction in P1(Z/NZ) to Canonical Form). Given u
and v and a positive integer N , this algorithm outputs a pair u0, v0 such
that (u, v) ≡ (u0, v0) as elements of P1(Z/NZ) and s ∈ Z such that (u, v) =
(su0, sv0) (mod Z/nZ). Moreover, the element (u0, v0) does not depend on
the class of (u, v), i.e., for any s with gcd(N, s) = 1 the input (su, sv) also
outputs (u0, v0). If (u, v) is not in P1(Z/NZ), this algorithm outputs (0, 0), 0.

(1) [Reduce] Reduce both u and v modulo N .

(2) [Easy (0, 1) Case] If u = 0, check that gcd(v, N) = 1. If so, return
s = 1 and (0, 1); otherwise return 0.

(3) [GCD] Compute g = gcd(u, N) and s, t ∈ Z such that g = su+ tN .

146 8. General Modular Symbols

(4) [Not in P 1?] We have gcd(u, v, N) = gcd(g, v), so if gcd(g, v) > 1,
then (u, v) 6∈ P1(Z/NZ), and we return 0.

(5) [Pseudo-Inverse] Now g = su+tN , so we may think of s as “pseudo-
inverse” of u (mod N), in the sense that su is as close as possible
to being 1 modulo N . Note that since g | u, changing s modulo
N/g does not change su (mod N). We can adjust s modulo N/g
so it is coprime to N (by adding multiples of N/g to s). (This is
because 1 = su/g + tN/g, so s is a unit mod N/g, and the map
(Z/NZ)∗ → (Z/(N/g)Z)∗ is surjective, e.g., as we saw in the proof
of Algorithm 4.28.)

(6) [Multiply by s] Multiply (u, v) by s, and replace (u, v) by the equiv-
alent element (g, sv) of P1(Z/NZ).

(7) [Normalize] Compute the unique pair (g, v′) equivalent to (g, v) that
minimizes v, as follows:
(a) [Easy Case] If g = 1, this pair is (1, v).

(b) [Enumerate and Find Best] Otherwise, note that if 1 6= t ∈
(Z/NZ)∗ and tg ≡ g (mod N), then (t − 1)g ≡ 0 (mod N),
so t − 1 = kN/g for some k with 1 ≤ k ≤ g − 1. Then for
t = 1+kN/g coprime to N , we have (gt, vt) = (g, v +kvN/g).
So we compute all pairs (g, v + kvN/g) and pick out the one
that minimizes the least nonnegative residue of vt modulo N .

(c) [Invert s and Output] The s that we computed in the above
steps multiplies the input (u, v) to give the output (u0, v0).
Thus we invert it, since the scalar we output multiplies (u0, v0)
to give (u, v).

Remark 8.30. In the above algorithm, there are many gcd’s with N so one
should create a table of the gcd’s of 0, 1, 2, . . . , N − 1 with N .

Remark 8.31. Another approach is to instead use that

P1(Z/NZ) ∼=
∏

p|N
P1(Z/pνpZ),

where νp = ordp(N), and that it is relatively easy to enumerate the elements
of P1(Z/pnZ) for a prime power pn.

Algorithm 8.32 (List P1(Z/NZ)). Given an integer N > 1, this algorithm
makes a sorted list of the distinct representatives (c, d) of P1(Z/NZ) with
c 6= 0, 1, as output by Algorithm 8.29.

(1) For each c = 1, . . . , N − 1 with g = gcd(c, N) > 1 do the following:
(a) Use Algorithm 8.29 to compute the canonical representative

(u′, v′) equivalent to (c, 1), and include it in the list.

8.8. Explicit Examples 147

(b) If g = c, for each d = 2, . . . , N − 1 with gcd(d, N) > 1 and
gcd(c, d) = 1, append the normalized representative of (c, d)
to the list.

(2) Sort the list.

(3) Pass through the sorted list and delete any duplicates.

8.8. Explicit Examples

Explicit detailed examples are crucial when implementing modular symbols
algorithms from scratch. This section contains a number of such examples.

8.8.1. Examples of Computation of Mk(Γ0(N)). In this section, we
compute Mk(Γ0(N)) explicitly in a few cases.

Example 8.33. We compute V = M4(Γ0(1)). Because Sk(Γ0(1)) = 0 and
Mk(Γ0(1)) = CE4, we expect V to have dimension 1 and for each integer
n the Hecke operator Tn to have eigenvalue the sum σ3(n) of the cubes of
positive divisors of n.

The Manin symbols are

x0 = (0, 0, 0), x1 = (1, 0, 0), x2 = (2, 0, 0).

The relation matrix is 


1 0 1
0 0 0

2 − 2 2
1 − 1 1
2 − 2 2




,

where the first two rows correspond to S-relations and the second three to
T -relations. Note that we do not include all S-relations, since it is obvious
that some are redundant, e.g., x + xS = 0 and (xS) + (xS)S = xS + x = 0
are the same since S has order 2.

The echelon form of the relation matrix is(
1 0 1
0 1 0

)
,

where we have deleted the zero rows from the bottom. Thus we may replace
the above complicated list of relations with the following simpler list of
relations:

x0 + x2 = 0,

x1 = 0

from which we immediately read off that the second generator x1 is 0 and
x0 = −x2. Thus M4(Γ0(1)) has dimension 1, with basis the equivalence class
of x2 (or of x0).

148 8. General Modular Symbols

Next we compute the Hecke operator T2 on M4(Γ0(1)). The Heilbronn
matrices of determinant 2 from Proposition 8.8 are

h0 =

(
1 0
0 2

)
,

h1 =

(
1 0
1 2

)
,

h2 =

(
2 0
0 1

)
,

h3 =

(
2 1
0 1

)
.

To compute T2, we apply each of these matrices to x0, then reduce modulo
the relations. We have

x2

(
1 0
0 2

)
= [X2, (0, 0)]

(
1 0
0 2

)
x2,

x2

(
1 0
1 2

)
= [X2, (0, 0)] = x2,

x2

(
2 0
0 1

)
= [(2X)2, (0, 0)] = 4x2,

x2

(
2 1
0 1

)
= [(2X + 1)2, (0, 0)] = x0 + 4x1 + 4x2 ∼ 3x2.

Summing we see that T2(x2) ∼ 9x2 in M4(Γ0(1)). Notice that

9 = 13 + 23 = σ3(2).

The Heilbronn matrices of determinant 3 from Proposition 8.8 are

h0 =

(
1 0
0 3

)
, h1 =

(
1 0
1 3

)
,

h2 =

(
1 0
2 3

)
, h3 =

(
2 1
1 2

)
,

h4 =

(
3 0
0 1

)
, h5 =

(
3 1
0 1

)
,

h6 =

(
3 2
0 1

)
.

8.8. Explicit Examples 149

We have

x2

(
1 0
0 3

)
= [X2, (0, 0)]

(
1 0
0 3

)
= x2,

x2

(
1 0
1 3

)
= [X2, (0, 0)] = x2,

x2

(
1 0
2 3

)
= [X2, (0, 0)] = x2,

x2

(
2 1
2 2

)
= [(2X + 1)2, (0, 0)] = x0 + 4x1 + 4x2 ∼ 3x2,

x2

(
3 0
0 1

)
= [(3X)2, (0, 0)] = 9x2,

x2

(
3 1
0 1

)
= [(3X + 1)2, (0, 0)] = x0 + 6x1 + 9x2 ∼ 8x2,

x2

(
3 2
0 1

)
= [(3X + 2)2, (0, 0)] = 4x0 + 12x1 + 9x2 ∼ 5x2.

Summing we see that

T3(x2) ∼ x2 + x2 + x2 + 3x2 + 9x2 + 8x2 + 5x2 = 28x2.

Notice that

28 = 13 + 33 = σ3(3).

Example 8.34. Next we compute M2(Γ0(11)) explicitly. The Manin symbol
generators are

x0 = (0, 1), x1 = (1, 0), x2 = (1, 1), x3 = (1, 2), x4 = (1, 3), x5 = (1, 4),

x6 = (1, 5), x7 = (1, 6), x8 = (1, 7), x9 = (1, 8), x10 = (1, 9), x11 = (1, 10).

The relation matrix is as follows, where the S-relations are above the line
and the T -relations are below it:




1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0

1 1 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 1 0 0




.

150 8. General Modular Symbols

In weight 2, two out of three T -relations are redundant, so we do not include
them. The reduced row echelon form of the relation matrix is




1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 0 1 −1 0
0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0




.

From the echelon form we see that every symbol is equivalent to a combi-
nation of x1 = (1, 0), x9 = (1, 8), and x10 = (1, 9). (Notice that columns 1,
9, and 10 are the pivot columns, where we index columns starting at 0.)

To compute T2, we apply each of the Heilbronn matrices of determinant 2
from Proposition 8.8 to x1, then to x9, and finally to x10. The matrices are
as in Example 8.33 above. We have

T2(x1) = 3(1, 0) + (1, 6) ∼ 3x1 − x10.

Applying T2 to x9 = (1, 8), we get

T2(x9) = (1, 3) + (1, 4) + (1, 5) + (1, 10) ∼ −2x9.

Applying T2 to x10 = (1, 9), we get

T2(x10) = (1, 4) + (1, 5) + (1, 7) + (1, 10) ∼ −x1 − 2x10.

Thus the matrix of T2 with respect to this basis is

T2 =




3 0 0
0 −2 0
−1 0 −2


 ,

where we write the matrix as an operator on the left on vectors written in
terms of x1, x9, and x10. The matrix T2 has characteristic polynomial

(x − 3)(x + 2)2.

The (x − 3) factor corresponds to the weight 2 Eisenstein series, and the
x + 2 factor corresponds to the elliptic curve E = X0(11), which has

a2 = −2 = 2 + 1 − #E(F2).

Example 8.35. In this example, we compute M6(Γ0(3)), which illustrates
both weight greater than 2 and level greater than 1. We have the following

8.8. Explicit Examples 151

generating Manin symbols:

x0 = [XY 4, (0, 1)], x1 = [XY 4, (1, 0)],

x2 = [XY 4, (1, 1)], x3 = [XY 4, (1, 2)],

x4 = [XY 3, (0, 1)], x5 = [XY 3, (1, 0)],

x6 = [XY 3, (1, 1)], x7 = [XY 3, (1, 2)],

x8 = [X2Y 2, (0, 1)], x9 = [X2Y 2, (1, 0)],

x10 = [X2Y 2, (1, 1)], x11 = [X2Y 2, (1, 2)],

x12 = [X3Y, (0, 1)], x13 = [X3Y, (1, 0)],

x14 = [X3Y, (1, 1)], x15 = [X3Y, (1, 2)],

x16 = [X4Y, (0, 1)], x17 = [X4Y, (1, 0)],

x18 = [X4Y, (1, 1)], x19 = [X4Y, (1, 2)].

The relation matrix is already very large for M6(Γ0(3)). It is as follows,
where the S-relations are before the line and the T -relations after it:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 −4 0 0 0 6 0 0 0 −4 0 1 0 1

1 1 0 0 −4 0 0 0 6 0 0 0 −4 0 0 0 1 0 0 1

0 0 2 0 0 0 −4 0 0 0 6 0 0 0 −4 0 0 0 2 0

0 1 0 1 0 −4 0 0 0 6 0 0 0 −4 0 0 1 1 0 0

0 0 0 1 1 0 0 −3 0 0 0 3 0 −1 0 −1 0 1 0 0

1 0 0 0 −3 1 0 0 3 0 0 0 −1 0 0 −1 0 0 0 1

0 0 1 0 0 0 −2 0 0 0 3 0 0 0 −2 0 0 0 1 0

0 1 0 0 0 −3 0 1 0 3 0 0 −1 −1 0 0 1 0 0 0

0 0 0 1 0 0 0 −2 1 1 0 1 0 −2 0 0 0 1 0 0

1 0 0 0 −2 0 0 0 1 1 0 1 0 0 0 −2 0 0 0 1

0 0 1 0 0 0 −2 0 0 0 3 0 0 0 −2 0 0 0 1 0

0 1 0 0 0 −2 0 0 1 1 0 1 −2 0 0 0 1 0 0 0

0 0 0 1 0 −1 0 −1 0 3 0 0 1 −3 0 0 0 1 0 0

1 0 0 0 −1 0 0 −1 0 0 0 3 0 1 0 −3 0 0 0 1

0 0 1 0 0 0 −2 0 0 0 3 0 0 0 −2 0 0 0 1 0

0 1 0 0 −1 −1 0 0 3 0 0 0 −3 0 0 1 1 0 0 0

0 1 0 1 0 −4 0 0 0 6 0 0 0 −4 0 0 1 1 0 0

1 0 0 1 0 0 0 −4 0 0 0 6 0 0 0 −4 0 1 0 1

0 0 2 0 0 0 −4 0 0 0 6 0 0 0 −4 0 0 0 2 0

1 1 0 0 −4 0 0 0 6 0 0 0 −4 0 0 0 1 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

152 8. General Modular Symbols

The reduced row echelon form of the relations matrix, with zero rows re-
moved is
0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3/16 −3/16

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1/16 1/16

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1/2 −5/16 −3/16

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1/2 3/16 5/16

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1/6 1/12 1/12

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1/6 −1/12 −1/12

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1/4 −1/4

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1/4 1/4

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1/16 1/16

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3/16 −3/16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1/2 3/16 5/16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1/2 −5/16 −3/16

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Since these relations are equivalent to the original relations, we see how
x0, . . . , x15 can be expressed in terms of x16, x17, x18, and x19. Thus
M6(Γ0(3)) has dimension 4. For example,

x15 ∼ 1

2
x17 −

5

16
x18 −

3

16
x19.

Notice that the number of relations is already quite large. It is perhaps
surprising how complicated the presentation is already for M6(Γ0(3)). Be-
cause there are denominators in the relations, the above calculation is only
a computation of M6(Γ0(3); Q). Computing M6(Γ0(3); Z) involves finding a
Z-basis for the kernel of the relation matrix (see Exercise 7.5).

As before, we find that with respect to the basis x16, x17, x18, and x19

T2 =




33 0 0 0
3 6 12 12

−3/2 27/2 15/2 27/2
−3/2 27/2 27/2 15/2


 .

Notice that there are denominators in the matrix for T2 with respect to this
basis. It is clear from the definition of T2 acting on Manin symbols that T2

preserves the Z-module M6(Γ0(3)), so there is some basis for M6(Γ0(3)) such
that T2 is given by an integer matrix. Thus the characteristic polynomial
f2 of T2 will have integer coefficients; indeed,

f2 = (x − 33)2 · (x + 6)2.

Note the factor (x−33)2, which comes from the two images of the Eisenstein
series E4 of level 1. The factor x + 6 comes from the cusp form

g = q − 6q2 + · · · ∈ S6(Γ0(3)).

By computing more Hecke operators Tn, we can find more coefficients of g.
For example, the charpoly of T3 is (x− 1)(x− 243)(x− 9)2, and the matrix

8.8. Explicit Examples 153

of T5 is

T5 =




3126 0 0 0
240 966 960 960
−120 1080 1086 1080
−120 1080 1080 1086


 ,

which has characteristic polynomial

f5 = (x − 3126)2(x − 6)2.

The matrix of T7 is

T7 =




16808 0 0 0
1296 5144 5184 5184
−648 5832 5792 5832
−648 5832 5832 5792


 ,

with characteristic polynomial

f7 = (x − 16808)2(x + 40)2.

One can put this information together to deduce that

g = q − 6q2 + 9q3 + 4q4 + 6q5 − 54q6 − 40q7 + · · · .

Example 8.36. Consider M2(Γ0(43)), which has dimension 7. With respect
to the symbols

x1 = (1, 0), x32 = (1, 31), x33 = (1, 32),

x39 = (1, 38), x40 = (1, 39), x41 = (1, 40), x42 = (1, 41),

the matrix of T2 is

T2 =




3 0 0 0 0 0 0
0 −2 −1 −1 −1 0 0
0 1 1 0 0 −2 −1
0 0 1 −1 1 0 0
0 0 0 2 1 2 1
0 0 −1 −1 −1 −2 0
−1 0 0 1 1 1 −1




,

which has characteristic polynomial

(x − 3)(x + 2)2(x2 − 2)2.

There is one Eisenstein series and there are three cusp forms with a2 = −2
and a2 = ±

√
2.

Example 8.37. To compute M2(Γ0(2004); Q), we first make a list of the

4032 = (22 + 2) · (3 + 1) · (167 + 1)

elements (a, b) ∈ P1(Z/2004Z) using Algorithm 8.29. The list looks like this:

(0, 1), (1, 0), (1, 1), (1, 2), . . . , (668, 1), (668, 3), (668, 5), (1002, 1).

154 8. General Modular Symbols

For each of the symbols xi, we consider the S-relations and T -relations.
Ignoring the redundant relations, we find 2016 S-relations and 1344 T -
relations. It is simple to quotient out by the S-relations, e.g., by identifying
xi with −xiS = −xj for some j (or setting xi = 0 if xiS = xi). Once
we have taken the quotient by the S-relations, we take the image of all
1344 of the T -relations modulo the S-relations and quotient out by those
relations. Because S and T do not commutate, we cannot only quotient
out by T -relations xi + xiT + xiT

2 = 0 where the xi are the basis after
quotienting out by the S-relations. The relation matrix has rank 3359, so
M2(Γ0(2004); Q) has dimension 673.

If we instead compute the quotient M2(Γ0(2004); Q)+ of M2(Γ0(2004); Q)
by the subspace of elements x − η∗(x), we include relations xi + xiI = 0,
where I =

(−1 0
0 1

)
. There are now 2016 S-relations, 2024 I-relations, and

1344 T -relations. Again, it is relatively easy to quotient out by the S-
relations by identifying xi and −xiS. We then take the image of all 2024
I-relations modulo the S-relations, and again directly quotient out by the
I-relations by identifying [xi] with −[xiI] = −[xj] for some j, where by [xi]
we mean the class of xi modulo the S-relations. Finally, we quotient out by
the 1344 T -relations, which involves sparse Gauss elimination on a matrix
with 1344 rows and at most three nonzero entries per row. The dimension
of M2(Γ0(2004); Q)+ is 331.

8.9. Refined Algorithm for the Presentation

Algorithm 8.38 (Modular Symbols Presentation). This is an algorithm
to compute Mk(Γ0(N); Q) or Mk(Γ0(N); Q)±, which only requires doing
generic sparse linear algebra to deal with the three term T -relations.

(1) Let x0, . . . , xn by a list of all Manin symbols.

(2) Quotient out the two-term S-relations and if the ± quotient is
desired, by the two-term η-relations. (Note that this is more subtle
than just “identifying symbols in pairs”, since complicated relations
can cause generators to surprisingly equal 0.) Let [xi] denote the
class of xi after this quotienting process.

(3) Create a sparse matrix A with m columns, whose rows encode the
relations

[xi] + [xiT] + [xiT
2] = 0.

For example, there are about n/3 such rows when k = 2. The
number of nonzero entries per row is at most 3(k − 1). Note that
we must include rows for all i, since even if [xi] = [xj], it need
not be the case that [xiT] = [xjT], since the matrices S and T
do not commute. However, we have an a priori formula for the
dimension of the quotient by all these relations, so we could omit

8.10. Applications 155

many relations and just check that there are enough at the end—if
there are not, we add in more.

(4) Compute the reduced row echelon form of A using Algorithm 7.6.
For k = 2, this is the echelon form of a matrix with size about
n/3 × n/4.

(5) Use what we have done above to read off a sparse matrix R that
expresses each of the n Manin symbols in terms of a basis of Manin
symbols, modulo the relations.

8.10. Applications

8.10.1. Later in This Book. We sketch some of the ways in which we
will apply the modular symbols algorithms of this chapter later in this book.

Cuspidal modular symbols are in Hecke-equivariant duality with cuspidal
modular forms, and as such we can compute modular forms by computing
systems of eigenvalues for the Hecke operators acting on modular symbols.
By the Atkin-Lehner-Li theory of newforms (see, e.g., Theorem 9.4), we can
construct Sk(N, ε) for any N , any ε, and k ≥ 2 using this method. See
Chapter 1 for more details.

Once we can compute spaces of modular symbols, we move to computing
the corresponding modular forms. We define inclusion and trace maps from
modular symbols of one level N to modular symbols of level a multiple or
divisor of N . Using these, we compute the quotient V of the new subspace
of cuspidal modular symbols on which a “star involution” acts as +1. The
Hecke operators act by diagonalizable commuting matrices on this space,
and computing the systems of Hecke eigenvalues is equivalent to computing
newforms

∑
anqn. In this way, we obtain a list of all newforms (normalized

eigenforms) in Sk(N, ε) for any N , ε, and k ≥ 2.

In Chapter 10, we compute with the period mapping from modular sym-
bols to C attached to a newform f ∈ Sk(N, ε). When k = 2, ε = 1 and f
has rational Fourier coefficients, this gives a method to compute the period
lattice associated to a modular elliptic curve attached to a newform (see
Section 10.7). In general, computation of this map is important when find-
ing equations for modular Q-curves, CM curves, and curves with a given
modular Jacobian. It is also important for computing special values of the
L-function L(f, s) at integer points in the critical strip.

8.10.2. Discussion of the Literature and Research. Modular symbols
were introduced by Birch [Bir71] for computations in support of the Birch
and Swinnerton-Dyer conjecture. Manin [Man72] used modular symbols to
prove rationality results about special values of L-functions.

156 8. General Modular Symbols

Merel’s paper [Mer94] builds on work of Shokurov (mainly [Sho80a]),
which develops a higher-weight generalization of Manin’s work partly to
understand rationality properties of special values of L-functions. Cremona’s
book [Cre97a] discusses how to compute the space of weight 2 modular
symbols for Γ0(N), in connection with the problem of enumerating all elliptic
curves of given conductor, and his article [Cre92] discusses the Γ1(N) case
and computation of modular symbols with character.

There have been several Ph.D. theses about modular symbols. Basmaji’s
thesis [Bas96] contains tricks to efficiently compute Hecke operators Tp,
with p very large (see Section 8.3.4), and also discusses how to compute
spaces of half integral weight modular forms building on what one can get
from modular symbols of integral weight. The author’s Ph.D. thesis [Ste00]
discusses higher-weight modular symbols and applies modular symbols to
study Shafarevich-Tate groups (see also [Aga00]). Martin’s thesis [Mar01]
is about an attempt to study an analogue of analytic modular symbols for
weight 1. Gabor Wiese’s thesis [Wie05] uses modular symbols methods to
study weight 1 modular forms modulo p. Lemelin’s thesis [Lem01] discusses
modular symbols for quadratic imaginary fields in the context of p-adic
analogues of the Birch and Swinnerton-Dyer conjecture. See also the survey
paper [FM99], which discusses computation with weight 2 modular symbols
in the context of modular abelian varieties.

The appendix of this book is about analogues of modular symbols for
groups besides finite index subgroups of SL2(Z), e.g., for subgroup of higher
rank groups such as SL3(Z). There has also been work on computing Hilbert
modular forms, e.g., by Lassina Dembelé [Dem05] Hilbert modular forms
are functions on a product of copies of h, and SL2(Z) is replaced by a group
of matrices with entries in a totally real field.

Glenn Stevens, Robert Pollack and Henri Darmon (see [DP04]) have
worked for many years to develop an analogue of modular symbols in a rigid
analytic context, which is helpful for questions about computing with over-
convergent p-adic modular forms or proving results about p-adic L-functions.

Finally we mention that Barry Mazur and some other authors use the
term “modular symbol” in a different way than we do. They use the term
in a way that is dual to our usage; for example, they attach a “modular
symbol” to a modular form or elliptic curve. See [MTT86] for an extensive
discussion of modular symbols from this point of view, where they are used
to construct p-adic L-functions.

8.11. Exercises

8.1 Suppose M is an integer multiple of N . Prove that the natural
map (Z/MZ)∗ → (Z/NZ)∗ is surjective.

8.11. Exercises 157

8.2 Prove that SL2(Z) → SL2(Z/NZ) is surjective (see Lemma 8.15).

8.3 Compute M3(Γ1(3)). List each Manin symbol the relations they
satisfy, compute the quotient, etc. Find the matrix of T2. (Check:
The dimension of M3(Γ1(3)) is 2, and the characteristic polynomial
of T2 is (x − 3)(x + 3).)

8.4 Finish the proof of Proposition 8.17.

8.5 (a) Show that if η =
(−1 0

0 1

)
, then ηΓη = Γ for Γ = Γ0(N) and

Γ = Γ1(N).
(b) (*) Give an example of a finite index subgroup Γ such that

ηΓη 6= Γ.

Chapter 9

Computing with

Newforms

In this chapter we pull together results and algorithms from Chapter 3, 4,
7, and 8 and explain how to use linear algebra techniques to compute cusp
forms and eigenforms using modular symbols.

We first discuss in Section 9.1 how to decompose Mk(Γ1(N)) as a direct
sum of subspaces corresponding to Dirichlet characters. Next in Section 9.2
we state the main theorems of Atkin-Lehner-Li theory, which decomposes
Sk(Γ1(N)) into subspaces on which the Hecke operators act diagonalizably
with “multiplicity one”. In Section 9.3 we describe two algorithms for com-
puting modular forms. One algorithm finds a basis of q-expansions, and the
other computes eigenvalues of newforms.

9.1. Dirichlet Character Decomposition

The group (Z/NZ)∗ acts on Mk(Γ1(N)) through diamond-bracket operators
〈d〉, as follows. For d ∈ (Z/NZ)∗, define

f |〈d〉 = f

h“
a b
c d′

”i
k ,

where
(

a b
c d′

)
∈ SL2(Z) is congruent to

(
d−1 0
0 d

)
(mod N). Note that the

map SL2(Z) → SL2(Z/NZ) is surjective (see Exercise 8.2), so the matrix(
a b
c d′

)
exists. To prove that 〈d〉 preserves Mk(Γ1(N)), we prove the more

general fact that Γ1(N) is a normal subgroup of

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡

(
∗ ∗
0 ∗

)
(mod N)

}
.

159

160 9. Computing with Newforms

This will imply that 〈d〉 preserves Mk(Γ1(N)) since
(

a b
c d′

)
∈ Γ0(N).

Lemma 9.1. The group Γ1(N) is a normal subgroup of Γ0(N), and the
quotient Γ0(N)/Γ1(N) is isomorphic to (Z/NZ)∗.

Proof. See Exercise 9.1. ¤

Alternatively, one can prove that 〈d〉 preserves Mk(Γ1(N)) by show-
ing that 〈d〉 ∈ T and noting that Mk(Γ1(N)) is preserved by T (see Re-
mark 9.11).

The diamond-bracket action is the action of Γ0(N)/Γ1(N) ∼= (Z/NZ)∗

on Mk(Γ1(N)). Since Mk(Γ1(N)) is a finite-dimensional vector space over C,
the 〈d〉 action breaks Mk(Γ1(N)) up as a direct sum of factors corresponding
to the Dirichlet characters D(N, C) of modulus N .

Proposition 9.2. We have

Mk(Γ1(N)) =
⊕

ε∈D(N,C)

Mk(N, ε),

where

Mk(N, ε) =
{
f ∈ Mk(Γ1(N)) : f |〈d〉 = ε(d)f, all d ∈ (Z/NZ)∗

}
.

Proof. The linear transformations 〈d〉, for the d ∈ (Z/NZ)∗, all commute,
since 〈d〉 acts through the abelian group Γ0(N)/Γ1(N). Also, if e is the
exponent of (Z/NZ)∗, then 〈d〉e = 〈de〉 = 〈1〉 = 1, so the matrix of 〈d〉 is
diagonalizable. It is a standard fact from linear algebra that any commuting
family of diagonalizable linear transformations is simultaneously diagonal-
izable (see Exercise 5.1), so there is a basis f1, . . . , fn for Mk(Γ1(N)) such
that all 〈d〉 act by diagonal matrices. The system of eigenvalues of the ac-
tion of (Z/NZ)∗ on a fixed fi defines a Dirichlet character, i.e., each fi has
the property that fi|〈d〉 = εi(d), for all d ∈ (Z/NZ)∗ and some Dirichlet
character εi. The fi for a given ε then span Mk(N, ε), and taken together
the Mk(N, ε) must span Mk(Γ1(N)). ¤

Definition 9.3 (Character of Modular Form). If f ∈ Mk(N, ε), we say
that ε is the character of the modular form f .

The spaces Mk(N, ε) are a direct sum of subspaces Sk(N, ε) and Ek(N, ε),
where Sk(N, ε) is the subspace of cusp forms, i.e., forms that vanish at all
cusps (elements of Q ∪ {∞}), and Ek(N, ε) is the subspace of Eisenstein
series, which is the unique subspace of Mk(N, ε) that is invariant under all
Hecke operators and is such that Mk(N, ε) = Sk(N, ε)⊕Ek(N, ε). The space
Ek(N, ε) can also be defined as the space spanned by all Eisenstein series
of weight k and level N , as defined in Chapter 5. The space Ek(N, ε) can

9.2. Atkin-Lehner-Li Theory 161

be defined in a third way using the Petersson inner product (see [Lan95,
§VII.5]).

The diamond-bracket operators preserve cusp forms, so the isomorphism
of Proposition 9.2 restricts to an isomorphism of the corresponding cuspidal
subspaces. We illustrate how to use SAGE to make a table of dimension of
Mk(Γ1(N)) and Mk(N, ε) for N = 13.

sage: G = DirichletGroup(13)

sage: G

Group of Dirichlet characters of modulus 13 over

Cyclotomic Field of order 12 and degree 4

sage: dimension_modular_forms(Gamma1(13),2)

13

sage: [dimension_modular_forms(e,2) for e in G]

[1, 0, 3, 0, 2, 0, 2, 0, 2, 0, 3, 0]

Next we do the same for N = 100.

sage: G = DirichletGroup(100)

sage: G

Group of Dirichlet characters of modulus 100 over

Cyclotomic Field of order 20 and degree 8

sage: dimension_modular_forms(Gamma1(100),2)

370

sage: v = [dimension_modular_forms(e,2) for e in G]; v

[24, 0, 0, 17, 18, 0, 0, 17, 18, 0, 0, 21, 18, 0, 0, 17,

18, 0, 0, 17, 24, 0, 0, 17, 18, 0, 0, 17, 18, 0, 0, 21,

18, 0, 0, 17, 18, 0, 0, 17]

sage: sum(v)

370

9.2. Atkin-Lehner-Li Theory

In Section 8.6 we defined maps between modular symbols spaces of different
level. There are similar maps between spaces of cusp forms. Suppose N and
M are positive integers with M | N and that t is a divisor of N/M . Let

(9.2.1) αt : Sk(Γ1(M)) → Sk(Γ1(N))

be the degeneracy map, which is given by f(q) 7→ f(qt). There are also maps
βt in the other direction; see [Lan95, Ch. VIII].

162 9. Computing with Newforms

The old subspace of Sk(Γ1(N)), denoted Sk(Γ1(N))old, is the sum of the
images of all maps αt with M a proper divisor of N and t any divisor of N/M
(note that αt depends on t, N , and M , so there is a slight abuse of notation).
The new subspace of Sk(Γ1(N)), which we denote by Sk(Γ1(N))new, is the
intersection of the kernel of all maps βt with M a proper divisor of N . One
can use the Petersson inner product to show that

Sk(Γ1(N)) = Sk(Γ1(N))new ⊕ Sk(Γ1(N))old.

Moreover, the new and old subspaces are preserved by all Hecke operators.

Let T = Z[T1, T2, . . .] be the commutative polynomial ring in infinitely
many indeterminates Tn. This ring acts (via Tn acting as the nth Hecke

operator) on Sk(Γ1(N)) for every integer N . Let T(N) be the subring of T
generated by the Tn with gcd(n, N) = 1.

Theorem 9.4 (Atkin, Lehner, Li). We have a decomposition

(9.2.2) Sk(Γ1(N)) =
⊕

M |N

⊕

d|N/M

αd(Sk(Γ1(M))new).

Each space Sk(Γ1(M))new is a direct sum of distinct (nonisomorphic) simple

T
(N)
C -modules.

Proof. The complete proof is in [Li75]. See also [DS05, Ch. 5] for a beau-
tiful modern treatment of this and related results. ¤

The analogue of Theorem 9.4 with Γ1 replaced by Γ0 is also true (this
is what was proved in [AL70]). The analogue for Sk(N, ε) is also valid, as
long as we omit the spaces Sk(Γ1(M), ε) for which cond(ε) ∤ M .

Example 9.5. If N is prime and k ≤ 11, then Sk(Γ1(N))new = Sk(Γ1(N)),
since Sk(Γ1(1)) = 0.

One can prove using the Petersson inner product that the operators Tn

on Sk(Γ1(N)), with gcd(n, N) = 1, are diagonalizable. Another result of
Atkin-Lehner-Li theory is that the ring of endomorphisms of Sk(Γ1(N))new

generated by all Hecke operators equals the ring generated by the Hecke
operators Tn with (n, N) = 1. This statement need not be true if we do not
restrict to the new subspace, as the following example shows.

Example 9.6. We have

S2(Γ0(22)) = S2(Γ0(11)) ⊕ α2(S2(Γ0(11))),

where each of the spaces S2(Γ0(11)) has dimension 1. Thus S2(Γ0(22))new =
0. The Hecke operator T2 on S2(Γ0(22)) has characteristic polynomial x2 +
2x + 2, which is irreducible. Since α2 commutes with all Hecke operators
Tn, with gcd(n, 2) = 1, the subring T(22) of the Hecke algebra generated by

9.2. Atkin-Lehner-Li Theory 163

operators Tn with n odd is isomorphic to Z (the 2×2 scalar matrices). Thus

on the full space S2(Γ0(22)), we do not have T(22) = T. However, on the new
subspace we do have this equality, since the new subspace has dimension 0.

Example 9.7. The space S2(Γ0(45)) has dimension 3 and basis

f0 = q − q4 − q10 − 2q13 − q16 + 4q19 + · · · ,

f1 = q2 − q5 − 3q8 + 4q11 − 2q17 + · · · ,

f2 = q3 − q6 − q9 − q12 + q15 + q18 + · · · .

The new subspace S2(Γ0(45))new is spanned by the single cusp form

q + q2 − q4 − q5 − 3q8 − q10 + 4q11 − 2q13 + · · · .

We have S2(Γ0(45/5)) = 0 and S2(Γ0(15)) has dimension 1 with basis

q − q2 − q3 − q4 + q5 + q6 + 3q8 + q9 − q10 − 4q11 + q12 − 2q13 + · · · .

We use SAGE to verify the above assertions.

sage: S = CuspForms(Gamma0(45), 2, prec=14); S

Cuspidal subspace of dimension 3 of Modular Forms space

of dimension 10 for Congruence Subgroup Gamma0(45) of

weight 2 over Rational Field

sage: S.basis()

[

q - q^4 - q^10 - 2*q^13 + O(q^14),

q^2 - q^5 - 3*q^8 + 4*q^11 + O(q^14),

q^3 - q^6 - q^9 - q^12 + O(q^14)

]

sage: S.new_subspace().basis()

(q - q^4 - q^10 - 2*q^13 + O(q^14),)

sage: CuspForms(Gamma0(9),2)

Cuspidal subspace of dimension 0 of Modular Forms space

of dimension 3 for Congruence Subgroup Gamma0(9) of

weight 2 over Rational Field

sage: CuspForms(Gamma0(15),2, prec=10).basis()

[

q - q^2 - q^3 - q^4 + q^5 + q^6 + 3*q^8 + q^9 + O(q^10)

]

Example 9.8. This example is similar to Example 9.6, except that there
are newforms. We have

S2(Γ0(55)) = S2(Γ0(11)) ⊕ α5(S2(Γ0(11))) ⊕ S2(Γ0(55))new,

164 9. Computing with Newforms

where S2(Γ0(11)) has dimension 1 and S2(Γ0(55))new has dimension 3. The
Hecke operator T5 on S2(Γ0(55))new acts via the matrix



−2 2 −1
−1 1 −1

1 −2 0




with respect to some basis. This matrix has eigenvalues 1 and −1. Atkin-
Lehner theory asserts that T5 must be a linear combination of Tn, with
gcd(n, 55) = 1. Upon computing the matrix for T2, we find by simple linear
algebra that T5 = 2T2 − T4.

Definition 9.9 (Newform). A newform is a T-eigenform f ∈ Sk(Γ1(N))new

that is normalized so that the coefficient of q is 1.

We now motivate this definition by explaining why any T-eigenform can
be normalized so that the coefficient of q is 1 and how such an eigenform has
the property that its Fourier coefficients are exactly the Hecke eigenvalues.

Proposition 9.10. If f =
∑∞

n=0 anqn ∈ Mk(N, ε) is an eigenvector for all
Hecke operators Tn normalized so that a1 = 1, then Tn(f) = anf .

Proof. If ε = 1, then f ∈ Mk(Γ0(N)) and this is Lemma 3.22. However, we
have not yet considered Hecke operators on q-expansions for more general
spaces of modular forms.

The Hecke operators Tp, for p prime, act on Sk(N, ε) by

Tp

(∞∑

n=0

anqn

)
=

∞∑

n=0

(
anpq

n + ε(p)pk−1anqnp
)

,

and there is a similar formula for Tm with m composite. If f =
∑∞

n=0 anqn

is an eigenform for all Tp, with eigenvalues λp, then by the above formula

(9.2.3) λpf = λpa1q + λpa2q
2 + · · · = Tp(f) = apq + higher terms.

Equating coefficients of q, we see that if a1 = 0, then ap = 0 for all p; hence
an = 0 for all n, because of the multiplicativity of Fourier coefficients and
the recurrence

apr = apr−1ap − ε(p)pk−1apr−2 .

This would mean that f = 0, a contradiction. Thus a1 6= 0, and it makes
sense to normalize f so that a1 = 1. With this normalization, (9.2.3) implies
that λp = ap, as desired. ¤

Remark 9.11. The Hecke algebra TQ on Mk(Γ1(N)) contains the operators
〈d〉, since they satisfy the relation Tp2 = T 2

p −〈p〉pk−1. Thus any T-eigenform
in Mk(Γ1(N)) lies in a subspace Mk(N, ε) for some Dirichlet character ε.
Also, one can even prove that 〈d〉 ∈ Z[. . . , Tn, . . .] (see Exercise 9.2).

9.3. Computing Cusp Forms 165

9.3. Computing Cusp Forms

Let Sk(N, ε; C) be the space of cuspidal modular symbols as in Chapter 8.
Let ι∗ be the map of (8.5.8), and let Sk(N, ε; C)+ be the plus one quotient
of cuspidal modular symbols, i.e., the quotient of Sk(N, ε; C) by the image
of ι∗ − 1. It follows from Theorem 8.23 and compatibility of the degeneracy
maps (for modular symbols they are defined in Section 8.6) that the T-
modules Sk(N, ε)new and Sk(N, ε; C)+new are dual as T-modules. Thus finding
the systems of T-eigenvalues on cusp forms is the same as finding the systems
of T-eigenvalues on cuspidal modular symbols.

Our strategy to compute Sk(N, ε) is to first compute spaces Sk(N, ε)new

using the Atkin-Lehner-Li decomposition (9.2.2). To compute Sk(N, ε)new

to a given precision, we compute the systems of eigenvalues of the Hecke
operators Tp on the space V = Sk(N, ε; C)+new, which we will define below.
Using Proposition 9.10, we then recover a basis of q-expansions for newforms.
Note that we only need to compute Hecke eigenvalues Tp, for p prime, not
the Tn for n composite, since the an can be quickly recovered in terms of
the ap using multiplicativity and the recurrence.

For some problems, e.g., construction of models for modular curves,
having a basis of q-expansions is enough. For many other problems, e.g.,
enumeration of modular abelian varieties, one is really interested in the
newforms. We next discuss algorithms aimed at each of these problems.

9.3.1. A Basis of q-Expansions. The following algorithm generalizes Al-
gorithm 3.26. It computes Sk(N, ε) without finding any eigenspaces.

Algorithm 9.12 (Merel’s Algorithm for Computing a Basis). Given inte-
gers m, N and k and a Dirichlet character ε with modulus N , this algorithm
computes a basis of q-expansions for Sk(N, ε) to precision O(qm+1).

(1) [Compute Modular Symbols] Use Algorithm 8.38 to compute

V = Sk(N, ε)+ ⊗ Q(ε),

viewed as a K = Q(ε) vector space, with an action of the Tn.

(2) [Basis for Linear Dual] Write down a basis for V ∗ = Hom(V, Q(ε)).
E.g., if we identify V with Kn viewed as column vectors, then V ∗

is the space of row vectors of length n, and the pairing is the row
× column product.

(3) [Find Generator] Find x ∈ V such that Tx = V by choosing ran-
dom x until we find one that generates. The set of x that fail to
generate lie in a union of a finite number of proper subspaces.

166 9. Computing with Newforms

(4) [Compute Basis] The set of power series

fi =
m∑

n=1

ψi(Tn(x))qn + O(qm+1)

forms a basis for Sk(N, ε) to precision m.

In practice Algorithm 9.12 seems slower than the eigenspace algorithm
that we will describe in the rest of this chapter. The theoretical complexity
of Algorithm 9.12 may be better, because it is not necessary to factor any
polynomials. Polynomial factorization is difficult from the worst-case com-
plexity point of view, though it is usually fast in practice. The eigenvalue
algorithm only requires computing a few images Tp(x) for p prime and x a
Manin symbol on which Tp can easily be computed. The Merel algorithm in-
volves computing Tn(x) for all n and for a fairly easy x, which is potentially
more work.

Remark 9.13. By “easy x”, I mean that computing Tn(x) is easier on x
than on a completely random element of Sk(N, ε)+, e.g., x could be a Manin
symbol.

9.3.2. Newforms: Systems of Eigenvalues. In this section we describe
an algorithm for computing the system of Hecke eigenvalues associated to
a simple subspace of a space of modular symbols. This algorithm is better
than doing linear algebra directly over the number field generated by the
eigenvalues. It only involves linear algebra over the base field and also yields
a compact representation for the answer, which is better than writing the
eigenvalues in terms of a power basis for a number field. In order to use
this algorithm, it is necessary to decompose the space of cuspidal modular
symbols as a direct sum of simples, e.g., using Algorithm 7.17.

Fix N and a Dirichlet character ε of modulus N , and let

V = Mk(N, ε)+

be the +1 quotient of modular symbols (see equation (8.5.8)).

Algorithm 9.14 (System of Eigenvalues). Given a T-simple subspace W ⊂
V of modular symbols, this algorithm outputs maps ψ and e, where ψ : TK →
W is a K-linear map and e : W ∼= L is an isomorphism of W with a number
field L, such that an = e(ψ(Tn)) is the eigenvalue of the nth Hecke operator
acting on a fixed T-eigenvector in W ⊗ Q. (Thus f =

∑∞
n=1 e(ψ(Tn))qn is

a newform.)

(1) [Compute Projection] Let ϕ : V → W ′ be any surjective linear map
such that ker(ϕ) equals the kernel of the T-invariant projection
onto W . For example, compute ϕ by finding a simple submodule

9.3. Computing Cusp Forms 167

of V ∗ = Hom(V, K) that is isomorphic to W , e.g., by applying
Algorithm 7.17 to V ∗ with T replaced by the transpose of T .

(2) [Choose v] Choose a nonzero element v ∈ V such that π(v) 6= 0
and computation of Tn(v) is “easy”, e.g., choose v to be a Manin
symbol.

(3) [Map from Hecke Ring] Let ψ be the map T → W ′, given by ψ(t) =
π(tv). Note that computation of ψ is relatively easy, because v was
chosen so that tv is relatively easy to compute. In particular, if
t = Tp, we do not need to compute the full matrix of Tp on V ;
instead we just compute Tp(v).

(4) [Find Generator] Find a random T ∈ T such that the iterates

ψ(T 0), ψ(T), ψ(T 2), . . . , ψ(T d−1)

are a basis for W ′, where W has dimension d.

(5) [Characteristic Polynomial] Compute the characteristic polynomial
f of T |W , and let L = K[x]/(f). Because of how we chose T
in step (4), the minimal and characteristic polynomials of T |W
are equal, and both are irreducible, so L is an extension of K of
degree d = dim(W).

(6) [Field Structure] In this step we endow W ′ with a field structure.
Let e : W ′ → L be the unique K-linear isomorphism such that

e(ψ(T i)) ≡ xi (mod f)

for i = 0, 1, 2, ...,deg(f) − 1. The map e is uniquely determined
since the ψ(T i) are a basis for W ′. To compute e, we compute the
change of basis matrix from the standard basis for W ′ to the basis
{ψ(T i)}. This change of basis matrix is the inverse of the matrix
whose rows are the ψ(T i) for i = 0, ...,deg(f) − 1.

(7) [Hecke Eigenvalues] Finally for each integer n ≥ 1, we have

an = e(ψ(Tn)) = e(π(Tn(v))),

where an is the eigenvalue of Tn. Output the maps ψ and e and
terminate.

One reason we separate ψ and e is that when dim(W) is large, the values
ψ(Tn) take less space to store and are easier to compute, whereas each one of
the values e(ψ(n)) is huge.1 The function e typically involves large numbers
if dim(W) is large, since e is obtained from the iterates of a single vector.
For many applications, e.g., databases, it is better to store a matrix that
defines e and the images under ψ of many Tn.

1John Cremona initially suggested to me the idea of separating these two maps.

168 9. Computing with Newforms

Example 9.15. The space S2(Γ0(23)) of cusp forms has dimension 2 and
is spanned by two Gal(Q/Q)-conjugate newforms, one of which is

f = q + aq2 + (−2a − 1)q3 + (−a − 1)q4 + 2aq5 + · · · ,

where a = (−1 +
√

5)/2. We will use Algorithm 9.14 to compute a few of
these coefficients.

The space M2(Γ0(23))+ of modular symbols has dimension 3. It has the
following basis of Manin symbols:

[(0, 0)], [(1, 0)], [(0, 1)],

where we use square brackets to differentiate Manin symbols from vectors.
The Hecke operator

T2 =




3 0 0
0 0 2
−1 1/2 −1




has characteristic polynomial (x−3)(x2 +x−1). The kernel of T2−3 corre-
sponds to the span of the Eisenstein series of level 23 and weight 2, and the
kernel V of T 2

2 +T2−1 corresponds to S2(Γ0(23)). (We could also have com-
puted V as the kernel of the boundary map M2(Γ0(23))+ → B2(Γ0(23))+.)
Each of the following steps corresponds to the step of Algorithm 9.14 with
the same number.

(1) [Compute Projection] We compute projection onto V (this will suf-
fice to give us a map φ as in the algorithm). The matrix whose first
two columns are the echelon basis for V and whose last column is
the echelon basis for the Eisenstein subspace is




0 0 1
1 0 −2/11
0 1 −3/11




and

B−1 =




2/11 1 0
3/11 0 1

1 0 0


 ,

so projection onto V is given by the first two rows:

π =

(
2/11 1 0
3/11 0 1

)
.

(2) [Choose v] Let v = (0, 1, 0)t. Notice that π(v) = (1, 0)t 6= 0, and
v = [(1, 0)] is a sum of only one Manin symbol.

9.3. Computing Cusp Forms 169

(3) [Map from Hecke Ring] This step is purely conceptual, since no
actual work needs to be done. We illustrate it by computing ψ(T1)
and ψ(T2). We have

ψ(T1) = π(v) = (1, 0)t

and

ψ(T2) = π(T2(v)) = π((0, 0, 1/2)t) = (0, 1/2)t.

(4) [Find Generator] We have

ψ(T 0
2) = ψ(T1) = (1, 0)t,

which is clearly independent from ψ(T2) = (0, 1/2)t. Thus we find
that the image of the powers of T = T2 generate V .

(5) [Characteristic Polynomial] The matrix of T2|V is
(

0 2
1/2 −1

)
, which

has characteristic polynomial f = x2 +x−1. Of course, we already
knew this because we computed V as the kernel of T 2

2 + T2 − 1.

(6) [Field Structure] We have

ψ(T 0
2) = π(v) = (1, 0)t and ψ(T2) = (0, 1/2).

The matrix with rows the ψ(T i
2) is

(
1 0
0 1/2

)
, which has inverse e =

(1 0
0 2). The matrix e defines an isomorphism between V and the

field

L = Q[x]/(f) = Q((−1 +
√

5)/2).

I.e., e((1, 0)) = 1 and e((0, 1)) = 2x, where x = (−1 +
√

5)/2.

(7) [Hecke Eigenvalues] We have an = e(Ψ(Tn)). For example,

a1 = e(Ψ(T1)) = e((1, 0)) = 1,

a2 = e(Ψ(T2)) = e((0, 1/2)) = x,

a3 = e(Ψ(T3)) = e(π(T3(v)))=e(π((0,−1,−1)t))

= e((−1,−1)t)=−1 − 2x,

a4 = e(Ψ(T4)) = e(π((0,−1,−1/2)t)) = e((−1,−1/2)t) = −1 − x,

a5 = e(Ψ(T5)) = e(π((0, 0, 1)t)) = e((0, 1)t) = 2x,

a23 = e(Ψ(T23)) = e(π((0, 1, 0)t)) = e((1, 0)t) = 1,

a97 = e(Ψ(T23)) = e(π((0, 14, 3)t)) = e((14, 3)t) = 14 + 6x.

Example 9.16. It is easier to appreciate Algorithm 9.14 after seeing how
big the coefficients of the power series expansion of a newform typically are,

170 9. Computing with Newforms

when the newform is defined over a large field. For example, there is a
newform

f =
∞∑

n=1

anqn ∈ S2(Γ0(389))

such that if α = a2, then

1097385680·a3(f) = −20146763x19 + 102331615x18 + 479539092x17

− 3014444212x16 − 3813583550x15 + 36114755350x14

+ 6349339639x13 − 227515736964x12 + 71555185319x11

+ 816654992625x10 − 446376673498x9 − 1698789732650x8

+ 1063778499268x7 + 1996558922610x6 − 1167579836501x5

− 1238356001958x4 + 523532113822x3 + 352838824320x2

− 58584308844x − 25674258672.

In contrast, if we take v = {0,∞} = (0, 1) ∈ M2(Γ0(389))+, then

T3(v) = −4(1, 0) + 2(1, 291) − 2(1, 294) − 2(1, 310) + 2(1, 313) + 2(1, 383).

Storing T3(v), T5(v), . . . as vectors is more compact than storing a3(f), a5(f),
. . . directly as polynomials in a2!

9.4. Congruences between Newforms

This section is about congruences between modular forms. Understanding
congruences is crucial for studying Serre’s conjectures, Galois representa-
tions, and explicit construction of Hecke algebras. We assume more back-
ground in algebraic number theory here than elsewhere in this book.

9.4.1. Congruences between Modular Forms. Let Γ be an arbitrary
congruence subgroup of SL2(Z), and suppose f ∈ Mk(Γ) is a modular form
of integer weight k for Γ. Since

(
1 N
0 1

)
∈ Γ for some integer N , the form

f has a Fourier expansion in nonnegative powers of q1/N . For a rational
number n, let an(f) be the coefficient of qn in the Fourier expansion of f .
Put

ordq(f) = min{n ∈ Q : an 6= 0},
where by convention we take min ∅ = +∞, so ordq(0) = +∞.

9.4.1.1. The j-invariant. Let

j =
1

q
+ 744 + 196884q + · · ·

be the j-function, which is a weight 0 modular function that is holomorphic
except for a simple pole at ∞ and has integer Fourier coefficients (see, e.g.,
[Ser73, Section VIII.3.3]).

9.4. Congruences between Newforms 171

Lemma 9.17. Suppose g is a weight 0 level 1 modular function that is holo-
morphic except possibly with a pole of order n at ∞. Then g is a polynomial
in j of degree at most n. Moreover, the coefficients of this polynomial lie in
the ideal I generated by the coefficients am(g) with m ≤ 0.

Proof. If n = 0, then g ∈ M0(SL2(Z)) = C, so g is constant with constant
term in I, so the statement is true. Next suppose n > 0 and the lemma has
been proved for all functions with smaller order poles. Let α = an(g), and
note that

ordq(g − αjn) = ordq

(
g − α ·

(
1

q
+ 744 + 196884q + · · ·

)n)
> −n.

Thus by induction h = g − αjn is a polynomial in j of degree < n with
coefficients in the ideal generated by the coefficients am(g) with m < 0. It
follows that g = α · jn − h satisfies the conclusion of the lemma. ¤

9.4.1.2. Sturm’s Theorem. If O is the ring of integers of a number field, m

is a maximal ideal of O, and f =
∑

anqn ∈ O[[q1/N]] for some integer N ,
let

ordm(f) = ordq(f mod m) = min{n ∈ Q : an 6∈ m}.
Note that ordm(fg) = ordm(f) + ordm(g). The following theorem was first
proved in [Stu87].

Theorem 9.18 (Sturm). Let m be a prime ideal in the ring of integers O of
a number field K, and let Γ be a congruence subgroup of SL2(Z) of index m
and level N . Suppose f ∈ Mk(Γ,O) is a modular form and

ordm(f) >
km

12

or f ∈ Sk(Γ,O) is a cusp form and

ordm(f) >
km

12
− m − 1

N
.

Then f ≡ 0 (mod m).

Proof. Case 1: First we assume Γ = SL2(Z).
Let

∆ = q + 24q2 + · · · ∈ S12(SL2(Z), Z)

be the ∆ function. Since ordm(f) > k/12, we have ordm(f12) > k. We have

(9.4.1) ordq(f
12 · ∆−k) = 12 · ordq(f) − k · ordq(∆) ≥ −k,

since f is holomorphic at infinity and ∆ has a zero of order 1. Also

(9.4.2) ordm(f12 · ∆−k) = ordm(f12) − k · ordm(∆) > k − k = 0.

172 9. Computing with Newforms

Combining (9.4.1) and (9.4.2), we see that

f12 · ∆−k =
∑

n≥−k

bnqn,

with bn ∈ O and bn ∈ m if n ≤ 0.

By Lemma 9.17,

f12 · ∆−k ∈ m[j]

is a polynomial in j of degree at most k with coefficients in m. Thus

f12 ∈ m[j] · ∆k,

so since the coefficients of ∆ are integers, every coefficient of f12 is in m.
Thus ordm(f12) = +∞, hence ordm(f) = +∞, so f = 0, as claimed.

Case 2: Γ Arbitrary

Let N be such that Γ(N) ⊂ Γ, so also f ∈ Mk(Γ(N)). If g ∈ Mk(Γ(N))
is arbitrary, then because Γ(N) is a normal subgroup of SL2(Z), we have
that for any γ ∈ Γ(N) and δ ∈ SL2(Z),

(g[δ]k)[γ]k = g[δγ]k = g[γ′δ]k = (g[γ′]k)[δ]k = g[δ]k ,

where γ′ ∈ SL2(Z). Thus for any δ ∈ SL2(Z), we have that g[δ]k ∈ Mk(Γ(N)),
so SL2(Z) acts on Mk(Γ(N)).

It is a standard (but nontrivial) fact about modular forms, which comes
from the geometry of the modular curve X(N) over Q(ζN) and Z[ζN], that

Mk(Γ(N)) has a basis with Fourier expansions in Z[ζN][[q1/N]] and that the
action of SL2(Z) on Mk(Γ(N)) preserves

Mk(Γ(N), Q(ζN)) = Mk(Γ(N)) ∩ (Q(ζN)[[q1/N]])

and the cuspidal subspace Sk(Γ(N), Q(ζN)). In particular, for any γ ∈
SL2(Z),

f [γ]k ∈ Mk(Γ(N), K(ζN))

Moreover, the denominators of f [γ]k are bounded, since f is an O[ζN]-linear

combination of a basis for Mk(Γ(N), Z[ζN]), and the denominators of f [γ]k

divide the product of the denominators of the images of each of these basis
vectors under [γ]k.

Let L = K(ζN). Let M be a prime of OL that divides mOL. We will
now show that for each γ ∈ SL2(Z), the Chinese Remainder Theorem implies
that there is an element Aγ ∈ L∗ such that

(9.4.3) Aγ · f [γ]k ∈ Mk(Γ(N),OL) and ordM(Aγ · f [γ]k) < ∞.

First find A ∈ L∗ such that A · f [γ]k has coefficients in OL. Choose α ∈ M

with α 6∈ M2, and find a negative power αt such that αt · A · f [γ]k has M-
integral coefficients and finite valuation. This is possible because we assumed

9.4. Congruences between Newforms 173

that f is nonzero. Use the Chinese Remainder Theorem to find β ∈ OL such
that β ≡ 1 (mod M) and β ≡ 0 (mod ℘) for each prime ℘ 6= M that divides
(α). Then for some s we have

βs · αt · A · f [γ]k = Aγ · f [γ]k ∈ Mk(Γ(N),OL)

and ordM(Aγ · f [γ]k) < ∞.

Write

SL2(Z) =
m⋃

i=1

Γγi

with γ1 = (1 0
0 1), and let

F = f ·
m∏

i=2

Aγi
· f [γi]k .

Then F ∈ Mkm(SL2(Z)) and since M ∩ OK = m, we have ordM(f) =
ordm(f), so

ordM(F) ≥ ordM(f) = ordm(f) >
km

12
.

Thus we can apply Case 1 to conclude that

ordM(F) = +∞.

Thus

(9.4.4) ∞ = ordM(F) = ordm(f) +
m∑

i=2

ordM(Aγi
f [γ]k),

so ordm(f) = +∞, because of (9.4.3).

We next obtain a better bound when f is a cusp form. Since [γ]k pre-

serves cusp forms, ordM(Aγi
f [γ]k) ≥ 1

N for each i. Thus

ordM(F) ≥ ordM(f) +
m − 1

N
= ordm(f) +

m − 1

N
>

km

12
,

since now we are merely assuming that

ordm(f) >
km

12
− m − 1

N
.

Thus we again apply Case 1 to conclude that ordM(F) = +∞, and using
(9.4.4), conclude that ordm(f) = +∞. ¤

Corollary 9.19. Let m be a prime ideal in the ring of integers O of a
number field. Suppose f, g ∈ Mk(Γ,O) are modular forms and

an(f) ≡ an(g) (mod m)

174 9. Computing with Newforms

for all

n ≤





km

12
− m − 1

N
if f − g ∈ Sk(Γ,O),

km

12
otherwise,

where m = [SL2(Z) : Γ]. Then f ≡ g (mod m).

Buzzard proved the following corollary, which is extremely useful in prac-
tical computations. It asserts that the Sturm bound for modular forms with
character is the same as the Sturm bound for Γ0(N).

Corollary 9.20 (Buzzard). Let m be a prime ideal in the ring of inte-
gers O of a number field. Suppose f, g ∈ Mk(N, ε,O) are modular forms
with Dirichlet character ε : (Z/NZ)∗ → C∗ and assume that

an(f) ≡ an(g) (mod m) for all n ≤ km

12
,

where

m = [SL2(Z) : Γ0(N)] = #P1(Z/NZ) = N ·
∏

p|N

(
1 +

1

p

)
.

Then f ≡ g (mod m).

Proof. Let h = f − g and let r = km/12, so ordm(h) > r. Let s be the
order of the Dirichlet character ε. Then hs ∈ Mks(Γ0(N)) and

ordm(hs) > sr =
ksm

12
.

By Theorem 9.18, we have ordm(hs) = ∞, so ordm(h) = ∞. It follows that
f ≡ g (mod m). ¤

9.4.1.3. Congruence for Newforms. Sturm’s paper [Stu87] also applies some
results of Asai on q-expansions at various cusps to obtain a more refined
result for newforms.

Theorem 9.21 (Sturm). Let N be a positive integer that is square-free,
and suppose f and g are two newforms in Sk(N, ε,O), where O is the ring
of integers of a number field, and suppose that m is a maximal ideal of O.
Let I be an arbitrary subset of the prime divisors of N . If ap(f) = ap(g) for
all p ∈ I and if

ap(f) ≡ ap(g) (mod m)

for all primes

p ≤ k · [SL2(Z) : Γ0(N)]

12 · 2#I
,

then f ≡ g (mod m).

9.4. Congruences between Newforms 175

The paper [BS02] contains a similar result about congruences between
newforms, which does not require that the level be square-free. Recall from
Definition 4.18 that the conductor of a Dirichlet character ε is the largest
divisor c of N such that ε factors through (Z/cZ)×.

Theorem 9.22. Let N > 4 be any integer, and suppose f and g are two
normalized eigenforms in Sk(N, ε;O), where O is the ring of integers of a
number field, and suppose that m is a maximal ideal of O. Let I be the set
of prime divisors of N that do not divide N

cond(ε) . If

ap(f) ≡ ap(g) (mod m)

for all primes p ∈ I and for all primes

p ≤ k · [SL2(Z) : Γ0(N)]

12 · 2#I
,

then f ≡ g (mod m).

For the proof, see Lemma 1.4 and Corollary 1.7 in [BS02, §1.3].

9.4.2. Generating the Hecke Algebra. The following theorem appeared
in [LS02, Appendix], except that we give a better bound here. It is a nice
application of the congruence result above, which makes possible explicit
computations with Hecke rings T.

Theorem 9.23. Suppose Γ is a congruence subgroup that contains Γ1(N)
and let

(9.4.5) r =
km

12
− m − 1

N
,

where m = [SL2(Z) : Γ]. Then the Hecke algebra

T = Z[. . . , Tn, . . .] ⊂ End(Sk(Γ))

is generated as a Z-module by the Hecke operators Tn for n ≤ r.

Proof. For any ring R, let Sk(N, R) = Sk(N ; Z) ⊗ R, where Sk(N ; Z) ⊂
Z[[q]] is the submodule of cusp forms with integer Fourier expansion at the
cusp ∞, and let TR = T ⊗Z R. For any ring R, there is a perfect pairing

Sk(N, R) ⊗R TR → R

given by 〈f, T 〉 7→ a1(T (f)) (this is true for R = Z, hence for any R).

Let M be the submodule of T generated by T1, T2, . . . , Tr, where r is the
largest integer ≤ kN

12 · [SL2(Z) : Γ]. Consider the exact sequence of additive
abelian groups

0 → M
i→ T → T/M → 0.

176 9. Computing with Newforms

Let p be a prime and use the fact that tensor product is right exact to obtain
an exact sequence

M ⊗ Fp
i→ T ⊗ Fp → (T/M) ⊗ Fp → 0.

Suppose that f ∈ Sk(N, Fp) pairs to 0 with each of T1, . . . , Tr. Then

am(f) = a1(Tmf) = 〈f, Tm〉 = 0

in Fp for each m ≤ r. By Theorem 9.18, it follows that f = 0. Thus the
pairing restricted to the image of M⊗Fp in TFp is nondegenerate, so because
(9.4.5) is perfect, it follows that

dimFp i(M ⊗ Fp) = dimFp Sk(N, Fp).

Thus (T/M)⊗ Fp = 0. Repeating the argument for all primes p shows that
T/M = 0, as claimed. ¤

Remark 9.24. In general, the conclusion of Theorem 9.23 is not true if
one considers only Tn where n runs over the primes less than the bound.
Consider, for example, S2(11), where the bound is 1 and there are no primes
≤ 1. However, the Hecke algebra is generated as an algebra by operators Tp

with p ≤ r.

9.5. Exercises

9.1 Prove that the group Γ1(N) is a normal subgroup of Γ0(N) and
that the quotient Γ0(N)/Γ1(N) is isomorphic to (Z/NZ)∗.

9.2 Prove that the operators 〈d〉 are elements of Z[. . . , Tn, . . .]. [Hint:
Use Dirichlet’s theorem on primes in arithmetic progression.]

9.3 Find an example like Example 9.6 but in which the new subspace is
nonzero. More precisely, find an integer N such that the Hecke ring
on S2(Γ0(N)) is not equal to the ring generated by Hecke operators
Tn with gcd(n, N) = 1 and S2(Γ0(N))new 6= 0.

9.4 (a) Following Example 9.15, compute a basis for S2(Γ0(31)).
(b) Use Algorithm 9.12 to compute a basis for S2(Γ0(31)).

Chapter 10

Computing Periods

This chapter is about computing period maps associated to newforms. We
assume you have read Chapters 8 and 9 and that you are familiar with
abelian varieties at the level of [Ros86].

In Section 10.1 we introduce the period map and give some examples
of situations in which computing it is relevant. Section 10.2 is about how
to use the period mapping to attach an abelian variety to any newform. In
Section 10.3, we introduce extended modular symbols, which are the key
computational tool for quickly computing periods of modular symbols. We
turn to numerical computation of period integrals in Section 10.4, and in
Section 10.5 we explain how to use Atkin-Lehner operators to speed conver-
gence. In Section 10.6 we explain how to compute the full period map with
a minimum amount of work.

Section 10.7 briefly sketches three approaches to computing all elliptic
curves of a given conductor.

This chapter was inspired by [Cre97a], which contains similar algo-
rithms in the special case of a newform f =

∑
anqn ∈ S2(Γ0(N)) with

an ∈ Z.

See also [Dok04] for algorithmic methods to compute special values of
very general L-functions, which can be used for approximating L(f, s) for
arbitrary s.

177

178 10. Computing Periods

10.1. The Period Map

Let Γ be a subgroup of SL2(Z) that contains Γ1(N) for some N , and suppose

f =
∑

n≥1

anqn ∈ Sk(Γ)

is a newform (see Definition 9.9). In this chapter we describe how to ap-
proximately compute the complex period mapping

Φf : Mk(Γ) → C,

given by

Φf (P{α, β}) = 〈f, P{α, β}〉 =

∫ β

α
f(z)P (z, 1)dz,

as in Section 8.5. As an application, we can approximate the special values
L(f, j), for j = 1, 2, . . . , k−1 using (8.5.5). We can also compute the period
lattice attached to a modular abelian variety, which is an important step,
e.g., in enumeration of Q-curves (see, e.g., [GLQ04]) or computation of a
curve whose Jacobian is a modular abelian variety Af (see, e.g., [Wan95]).

10.2. Abelian Varieties Attached to Newforms

Fix a newform f ∈ Sk(Γ), where Γ1(N) ⊂ Γ for some N . Let f1, . . . , fd be
the Gal(Q/Q)-conjugates of f , where Gal(Q/Q) acts via its action on the
Fourier coefficients, which are algebraic integers (since they are the eigen-
values of matrices with integer entries). Let

(10.2.1) Vf = Cf1 ⊕ · · · ⊕ Cfd ⊂ Sk(Γ)

be the subspace of cusp forms spanned by the Gal(Q/Q)-conjugates of f .
One can show using the results discussed in Section 9.2 that the above sum
is direct, i.e., that Vf has dimension d.

The integration pairing induces a T-equivariant homomorphism

Φf : Mk(Γ) → V ∗
f = HomC(Vf , C)

from modular symbols to the C-linear dual V ∗
f of Vf . Here T acts on V ∗

f via

(ϕt)(x) = ϕ(tx), and this homomorphism is T-stable by Theorem 8.21. The
abelian variety attached to f is the quotient

Af (C) = V ∗
f /Φf (Sk(Γ; Z)).

Here Sk(Γ; Z) = Sk(Γ), and we include the Z in the notation to emphasize
that these are integral modular symbols. See [Shi59] for a proof that Af (C)
is an abelian variety (in particular, Φf (Sk(Γ; Z)) is a lattice, and V ∗

f is

equipped with a nondegenerate Riemann form).

When k = 2, we can also construct Af as a quotient of the modular
Jacobian Jac(XΓ), so Af is an abelian variety canonically defined over Q.

10.3. Extended Modular Symbols 179

In general, we have an exact sequence

0 → Ker(Φf) → Sk(Γ) → V ∗
f → Af (C) → 0.

Remark 10.1. When k = 2, the abelian variety Af has a canonical struc-
ture of abelian variety over Q. Moreover, there is a conjecture of Ribet and
Serre in [Rib92] that describes the simple abelian varieties A over Q that
should arise via this construction. In particular, the conjecture is that A
is isogenous to some abelian variety Af if and only if End(A/Q) ⊗ Q is a
number field of degree dim(A). The abelian varieties Af have this property
since Q(. . . , an(f), . . .) embeds in End(A/Q)⊗Q and the endomorphism ring
over Q has degree at most dim(A) (see [Rib92] for details). Ribet proves
that his conjecture is a consequence of Serre’s conjecture [Ser87] on mod-
ularity of mod p odd irreducible Galois representations (see Section 1.5).
Much of Serre’s conjecture has been proved by Khare and Wintenberger
(not published). In particular, it is a theorem that if A is a simple abelian
variety over Q with End(A/Q) ⊗ Q a number field of degree dim(A) and if
A has good reduction at 2, then A is isogenous to some abelian variety Af .

Remark 10.2. When k > 2, there is an object called a Grothendieck motive
that is attached to f and has a canonical “structure over Q”. See [Sch90].

10.3. Extended Modular Symbols

In this section, we extend the notion of modular symbols to allows symbols
of the form P{w, z} where w and z are arbitrary elements of h∗ = h∪P1(Q).

Definition 10.3 (Extended Modular Symbols). The abelian group Mk of
extended modular symbols of weight k is the Z-span of symbols P{w, z}, with
P ∈ Vk−2 a homogeneous polynomial of degree k−2 with integer coefficients,
modulo the relations

P · ({w, y} + {y, z} + {z, w}) = 0

and modulo any torsion.

Fix a finite index subgroup Γ ⊂ SL2(Z). Just as for usual modular
symbols, Mk is equipped with an action of Γ, and we define the space of
extended modular symbols of weight k for Γ to be the quotient

Mk(Γ) = (Mk/〈γx − x : γ ∈ Γ, x ∈ Mk〉)/ tor .

The quotient Mk(Γ) is torsion-free and fixed by Γ.

The integration pairing extends naturally to a pairing

(10.3.1)
(
Sk(Γ) ⊕ Sk(Γ)

)
× Mk(Γ) → C,

180 10. Computing Periods

where we recall from (8.5.1) that Sk(Γ) denotes the space of antiholomorphic
cusp forms. Moreover, if

ι : Mk(Γ) → Mk(Γ)

is the natural map, then ι respects (10.3.1) in the sense that for all f ∈
Sk(Γ) ⊕ Sk(Γ) and x ∈ Mk(Γ), we have

〈f, x〉 = 〈f, ι(x)〉.
As we will see soon, it is often useful to replace x ∈ Mk(Γ) first by ι(x)
and then by an equivalent sum

∑
yi of symbols yi ∈ Mk(N, ε) such that

〈f,
∑

yi〉 is easier to compute numerically than 〈f, x〉.
Let ε be a Dirichlet character of modulus N . If γ =

(
a b
c d

)
∈ SL2(Z), let

ε(γ) = ε(d). Let Mk(N, ε) be the quotient of Mk(N, Z[ε]) by the relations
γ(x) − ε(γ)x, for all x ∈ Mk(N, Z[ε]), γ ∈ Γ0(N), and modulo any torsion.

10.4. Approximating Period Integrals

In this section we assume Γ is a congruence subgroup of SL2(Z) that contains
Γ1(N) for some N . Suppose α ∈ h, so Im(α) > 0 and m is an integer
such that 0 ≤ m ≤ k − 2, and consider the extended modular symbol
XmY k−2−m{α,∞}. Let 〈·, ·〉 denote the integration pairing from Section 8.5.
Given an arbitrary cusp form f =

∑∞
n=1 anqn ∈ Sk(Γ), we have

Φf (XmY k−2−m{α,∞}) =
〈
f, XmY k−2−m{α,∞}

〉
(10.4.1)

=

∫ ∞

α
f(z)zmdz(10.4.2)

=
∞∑

n=1

an

∫ ∞

α
e2πinzzmdz.(10.4.3)

The reversal of summation and integration is justified because the imaginary
part of α is positive so that the sum converges absolutely. The following
lemma is useful for computing the above infinite sum.

Lemma 10.4.

(10.4.4)

∫ ∞

α
e2πinzzmdz = e2πinα

m∑

s=0


(−1)sαm−s

(2πin)s+1

m∏

j=(m+1)−s

j


 .

Proof. See Exercise 10.1 ¤

In practice we will usually be interested in computing the period map
Φf when f ∈ Sk(Γ) is a newform. Since f is a newform, there is a Dirichlet
character ε such that f ∈ Sk(N, ε). The period map Φf : Mk(Γ) → C then

10.4. Approximating Period Integrals 181

factors through the quotient Mk(N, ε), so it suffices to compute the period
map on modular symbols in Mk(N, ε).

The following proposition is an analogue of [Cre97a, Prop. 2.1.1(5)].

Proposition 10.5. For any γ ∈ Γ0(N), P ∈ Vk−2 and α ∈ h∗, we have the
following relation in Mk(N, ε):

P{∞, γ(∞)} = P{α, γ(α)} + (P − ε(γ)γ−1P){∞, α}(10.4.5)

= ε(γ)(γ−1P){α,∞}− P{γ(α),∞}.(10.4.6)

Proof. By definition, if x ∈ Mk(N, ε) is a modular symbol and γ ∈ Γ0(N),
then γx = ε(γ)x. Thus ε(γ)γ−1x = x, so

P{∞, γ(∞)} = P{∞, α} + P{α, γ(α)} + P{γ(α), γ(∞)}
= P{∞, α} + P{α, γ(α)} + ε(γ)γ−1(P{γ(α), γ(∞)})
= P{∞, α} + P{α, γ(α)} + ε(γ)(γ−1P){α,∞}
= P{α, γ(α)} + P{∞, α} − ε(γ)(γ−1P){∞, α}
= P{α, γ(α)} + (P − ε(γ)γ−1P){∞, α}.

The second equality in the statement of the proposition now follows easily.
¤

In the case of weight 2 and trivial character, the “error term”

(10.4.7) (P − ε(γ)γ−1P){∞, α}
vanishes since P is constant and ε(γ) = 1. In general this term does not
vanish. However, we can suitably modify the formulas found in [Cre97a,
2.10] and still obtain an algorithm for computing period integrals.

Algorithm 10.6 (Period Integrals). Given γ ∈ Γ0(N), P ∈ Vk−2 and
f ∈ Sk(N, ε) presented as a q-expansion to some precision, this algorithm
outputs an approximation to the period integral 〈f, P{∞, γ(∞)}〉.

(1) Write γ =
(

a b
cN d

)
∈ Γ0(N), with a, b, c, d ∈ Z, and set α = −d+i

cN in
Proposition 10.5.

(2) Replacing γ by −γ if necessary, we find that the imaginary parts
of α and γ(α) = a+i

cN are both equal to the positive number 1
cN .

(3) Use (10.4.3) and Lemma 10.4 to compute the integrals that appear
in Proposition 10.5.

It would be nice if the modular symbols of the form P{∞, γ(∞)} for
P ∈ Vk−2 and γ ∈ Γ0(N) were to generate a large subspace of Mk(N, ε)⊗Q.
When k = 2 and ε = 1, Manin proved in [Man72] that the map Γ0(N) →
H1(X0(N), Z) sending γ to {0, γ(0)} is a surjective group homomorphism.
When k > 2, the author does not know a similar group-theoretic statement.
However, we have the following theorem.

182 10. Computing Periods

r

∞

-
P

r

γ∞

-

Q

r

β∞

r

α -

P

r

γα

-

Q

r

βα

Figure 10.4.1. “Transporting” a transportable modular symbol.

Theorem 10.7. Any element of Sk(N, ε) can be written in the form

n∑

i=1

Pi{∞, γi(∞)}

for some Pi ∈ Vk−2 and γi ∈ Γ0(N). Moreover, Pi and γi can be chosen so
that

∑
Pi =

∑
ε(γi)γ

−1
i (Pi), so the error term (10.4.7) vanishes.

The author and Helena Verrill prove this theorem in [SV01]. The con-
dition that the error term vanishes means that one can replace ∞ by any α
in the expression for the modular symbol and obtain an equivalent modular
symbol. For this reason, we call such modular symbols transportable, as
illustrated in Figure 10.4.1.

Note that in general not every element of the form P{∞, γ(∞)} must lie
in Sk(N, ε). However, if γP = P , then P{∞, γ(∞)} does lie in Sk(N, ε). It
would be interesting to know under what circumstances Sk(N, ε) is generated
by symbols of the form P{∞, γ(∞)} with γP = P . This sometimes fails
for k odd; for example, when k = 3, the condition γP = P implies that
γ ∈ Γ0(N) has an eigenvector with eigenvalue 1, and hence is of finite order.
When k is even, the author can see no obstruction to generating Sk(N, ε)
using such symbols.

10.5. Speeding Convergence Using Atkin-Lehner 183

10.5. Speeding Convergence Using Atkin-Lehner

Let wN =
(

0 −1
N 0

)
∈ Mat2(Z). Consider the Atkin-Lehner involution WN

on Mk(Γ1(N)), which is defined by

WN (f) = N (2−k)/2 · f |[wN]k

= N (2−k)/2 · f
(
− 1

Nz

)
· Nk−1 · (Nz)−k

= N−k/2 · z−k · f
(
− 1

Nz

)
.

Here we take the positive square root if k is odd. Then W 2
N = (−1)k is an

involution when k is even.

There is an operator on modular symbols, which we also denote WN ,
which is given by

WN (P{α, β}) = N (2−k)/2 · wN (P){wN (α), wN (β)}

= N (2−k)/2 · P (−Y, NX)

{
− 1

αN
,− 1

βN

}
,

and one has that if f ∈ Sk(Γ1(N)) and x ∈ Mk(Γ1(N)), then

〈WN (f), x〉 = 〈f, WN (x)〉.

If ε is a Dirichlet character of modulus N , then the operator WN sends
Sk(N, ε) to Sk(Γ1(N), ε). Thus if ε2 = 1, then WN preserves Sk(N, ε). In
particular, WN acts on Sk(Γ0(N)).

The next proposition shows how to compute the pairing 〈f, P{∞, γ(∞)}〉
under certain restrictive assumptions. It generalizes a result of [Cre97b] to
higher weight.

Proposition 10.8. Let f ∈ Sk(N, ε) be a cusp form which is an eigenform
for the Atkin-Lehner operator WN having eigenvalue w ∈ {±1} (thus ε2 = 1
and k is even). Then for any γ ∈ Γ0(N) and any P ∈ Vk−2, with the property
that γP = ε(γ)P , we have the following formula, valid for any α ∈ h:

〈f, P{∞, γ(∞)}〉 =
〈
f, w

P (Y,−NX)

Nk/2−1
{wN (α),∞}

+

(
P − w

P (Y,−NX)

Nk/2−1

) {
i/
√

N,∞
}
− P {γ(α),∞}

〉
.

Here wN (α) = − 1

Nα
.

Proof. By Proposition 10.5 our condition on P implies that P{∞, γ(∞)} =
P{α, γ(α)}. We describe the steps of the following computation below.

184 10. Computing Periods

〈
f, P{α, γ(α)}

〉

=
〈
f, P{α, i/

√
N} + P{i/

√
N, W (α)} + P{W (α), γ(α)}

〉

=

〈
f, w

W (P)

Nk/2−1
{W (α), i/

√
N} + P{i/

√
N, W (α)} + P{W (α), γ(α)}

〉
.

For the first equality, we break the path into three paths, and in the second,
we apply the W -involution to the first term and use that the action of W is
compatible with the pairing 〈 , 〉 and that f is an eigenvector with eigenvalue
w. In the following sequence of equalities we combine the first two terms
and break up the third; then we replace {W (α), i/

√
N} by {W (α),∞} +

{∞, i/
√

N} and regroup:

w
W (P)

Nk/2−1
{W (α), i/

√
N} + P{i/

√
N, W (α)} + P{W (α), γ(α)}

=

(
w

W (P)

Nk/2−1
− P

)
{W (α), i/

√
N} + P{W (α),∞}− P{γ(α),∞}

= w
W (P)

Nk/2−1
{W (α),∞} +

(
P − w

W (P)

Nk/2−1

)
{i/

√
N,∞}− P{γ(α),∞}.

¤

A good choice for α is α = γ−1
(

b
d + i

d
√

N

)
, so that W (α) = c

d + i
d
√

N
.

This maximizes the minimum of the imaginary parts of α and W (α), which
results in series that converge more quickly.

Let γ =
(

a b
c d

)
∈ Γ0(N). The polynomial

P (X, Y) = (cX2 + (d − a)XY − bY 2)
k−2
2

satisfies γ(P) = P . We obtained this formula by viewing Vk−2 as the (k−2)th
symmetric product of the 2-dimensional space on which Γ0(N) acts natu-
rally. For example, observe that since det(γ) = 1, the symmetric product of
two eigenvectors for γ is an eigenvector in V2 having eigenvalue 1. For the
same reason, if ε(γ) 6= 1, there need not be a polynomial P (X, Y) such that
γ(P) = ε(γ)P . One remedy is to choose another γ so that ε(γ) = 1.

Since the imaginary parts of the terms i/
√

N , α and W (α) in the propo-
sition are all relatively large, the sums appearing at the beginning of Sec-
tion 10.4 converge quickly if d is small. It is important to choose γ in
Proposition 10.8 with d small; otherwise the series will converge very slowly.

Remark 10.9. Is there a generalization of Proposition 10.8 without the
restrictions that ε2 = 1 and k is even?

10.6. Computing the Period Mapping 185

10.5.1. Another Atkin-Lehner Trick. Suppose E is an elliptic curve
and let L(E, s) be the corresponding L-function. Let ε ∈ {±1} be the
root number of E, i.e., the sign of the functional equation for L(E, s), so

Λ(E, s) = εΛ(E, 2−s), where Λ(E, s) = N s/2(2π)−sΓ(s)L(E, s). Let f = fE

be the modular form associated to E (which exists by [Wil95, BCDT01]).
If WN (f) = wf , then ε = −w (see Exercise 10.2). We have

L(E, 1) = −2π

∫ ∞

0
f(z) dz

= −2πi 〈f, {0,∞}〉

= −2πi
〈
f, {0, i/

√
N} + {i/

√
N,∞}

〉

= −2πi
〈
wf, {wN (0), wN (i/

√
N)} + {i/

√
N,∞}

〉

= −2πi
〈
wf, {∞, i/

√
N} + {i/

√
N,∞}

〉

= −2πi (w − 1)
〈
f, {∞, i/

√
N}

〉
.

If w = 1, then L(E, 1) = 0. If w = −1, then

(10.5.1) L(E, 1) = 4πi
〈
f, {∞, i/

√
N}

〉
= 2

∞∑

n=1

an

n
e−2πn/

√
N .

For more about computing with L-functions of elliptic curves, including
a trick for computing ε quickly without directly computing WN , see [Coh93,

§7.5] and [Cre97a, §2.11]. One can also find higher derivatives L(r)(E, 1)
by a formula similar to (10.5.1) (see [Cre97a, §2.13]). The methods in this
chapter for obtaining rapidly converging series are not just of computational
interest; see, e.g., [Gre83] for a nontrivial theoretical application to the
Birch and Swinnerton-Dyer conjecture.

10.6. Computing the Period Mapping

Fix a newform f =
∑

anqn ∈ Sk(Γ), where Γ1(N) ⊂ Γ for some N . Let Vf

be as in (10.2.1).

Let Θf : Mk(Γ; Q) → V be any Q-linear map with the same kernel as
Φf ; we call any such map a rational period mapping associated to f . Let

Φf be the period mapping associated to the Gal(Q/Q)-conjugates of f . We

186 10. Computing Periods

have a commutative diagram

Mk(Γ; Q)

Θf
$$IIIIIIIII

Φf
// HomC(Vf , C)

V
+

®

if
99rrrrrrrrrrr

Recall from Section 10.2 that the cokernel of Φf is the abelian variety Af (C).

The Hecke algebra T acts on the linear dual

Mk(Γ; Q)∗ = Hom(Mk(Γ), Q)

by (tϕ)(x) = ϕ(tx). Let I = If ⊂ T be the kernel of the ring homomorphism
T → Z[a2, a3, . . .] that sends Tn to an. Let

Mk(Γ; Q)∗[I] = {ϕ ∈ Mk(Γ; Q)∗ : tϕ = 0 all t ∈ I}.
Since f is a newform, one can show that Mk(Γ; Q)∗[I] has dimension d. Let
θ1, . . . , θd be a basis for Mk(Γ; Q)∗[I], so

Ker(Φf) = Ker(θ1) ⊕ · · · ⊕ Ker(θd).

We can thus compute Ker(Φf), hence a choice of Θf . To compute Φf , it
remains to compute if .

Let Sk(Γ; Q) denote the space of cusp forms with q-expansion in Q[[q]].
By Exercise 10.3

Sk(Γ; Q)[I] = Sk(Γ)[I] ∩ Q[[q]]

is a Q-vector space of dimension d. Let g1, . . . , gd be a basis for this Q-vector
space. We will compute Φf with respect to the basis of HomQ(Sk(Γ; Q)[I]; C)
dual to this basis. Choose elements x1, . . . , xd ∈ Mk(Γ) with the following
properties:

(1) Using Proposition 10.5 or Proposition 10.8, it is possible to compute
the period integrals 〈gi, xj〉, i, j ∈ {1, . . . , d}, efficiently.

(2) The 2d elements v + η(v) and v − η(v) for v = Θf (x1), . . . ,Θf (xd)
span a space of dimension 2d (i.e., they span Mk(Γ)/ Ker(Φf)).

Given this data, we can compute

if (v + η(v)) = 2Re(〈g1, xi〉, . . . , 〈gd, xi〉)
and

if (v − η(v)) = 2iIm(〈g1, xi〉, . . . , 〈gd, xi〉).
We break the integrals into real and imaginary parts because this increases
the precision of our answers. Since the vectors vn + η(vn) and vn − η(vn),
n = 1, . . . , d, span Mk(N, ε; Q)/ Ker(Φf), we have computed if .

10.7. All Elliptic Curves of Given Conductor 187

Remark 10.10. We want to find symbols xi satisfying the conditions of
Proposition 10.8. This is usually possible when d is very small, but in
practice it is difficult when d is large.

Remark 10.11. The above strategy was motivated by [Cre97a, §2.10].

10.7. All Elliptic Curves of Given Conductor

Using modular symbols and the period map, we can compute all elliptic
curves over Q of conductor N , up to isogeny. The algorithm in this sec-
tion gives all modular elliptic curves (up to isogeny), i.e., elliptic curves
attached to modular forms, of conductor N . Fortunately, it is now known
by [Wil95, BCDT01, TW95] that every elliptic curve over Q is modular,
so the procedure of this section gives all elliptic curves (up to isogeny) of
given conductor. See [Cre06] for a nice historical discussion of this problem.

Algorithm 10.12 (Elliptic Curves of Conductor N). Given N > 0, this
algorithm outputs equations for all elliptic curves of conductor N , up to
isogeny.

(1) [Modular Symbols] Compute M2(Γ0(N)) using Section 8.7.

(2) [Find Rational Eigenspaces] Find the 2-dimensional eigenspaces V
in M2(Γ0(N))new that correspond to elliptic curves. Do not use the
algorithm for decomposition from Section 7.5, which is too com-
plicated and gives more information than we need. Instead, for
the first few primes p ∤ N , compute all eigenspaces Ker(Tp − a),
where a runs through integers with −2

√
p < a < 2

√
p. Intersect

these eigenspaces to find the eigenspaces that correspond to elliptic
curves. To find just the new ones, either compute the degeneracy
maps to lower level or find all the rational eigenspaces of all levels
that strictly divide N and exclude them.

(3) [Find Newforms] Use Algorithm 9.14 to compute to some precision
each newform f =

∑∞
n=1 anqn ∈ Z[[q]] associated to each eigenspace

V found in step (2).

(4) [Find Each Curve] For each newform f found in step (3), do the
following:
(a) [Period Lattice] Compute the corresponding period lattice Λ =

Zω1 + Zω2 by computing the image of Φf , as described in
Section 10.6.

(b) [Compute τ] Let τ = ω1/ω2. If Im(τ) < 0, swap ω1 and ω2, so
Im(τ) > 0. By successively applying generators of SL2(Z), we
find an SL2(Z) equivalent element τ ′ in F , i.e., |Re(τ ′)| ≤ 1/2
and |τ | ≥ 1.

188 10. Computing Periods

(c) [c-invariants] Compute the invariants c4 and c6 of the lattice Λ
using the following rapidly convergent series:

c4 =

(
2π

ω2

)4

·
(

1 + 240

∞∑

n=1

n3qn

1 − qn

)
,

c6 =

(
2π

ω2

)6

·
(

1 − 504
∞∑

n=1

n5qn

1 − qn

)
,

where q = e2πiτ ′

, where τ ′ is as in step (4b). A theorem of
Edixhoven (that the Manin constant is an integer) implies that
the invariants c4 and c6 of Λ are integers, so it is only necessary
to compute Λ to large precision to completely determine them.

(d) [Elliptic Curve] An elliptic curve with invariants c4 and c6 is

E : y2 = x3 − c4

48
x − c6

864
.

(e) [Prove Correctness] Using Tate’s algorithm, find the conduc-
tor of E. If the conductor is not N , then recompute c4 and
c6 using more terms of f and real numbers to larger preci-
sion, etc. If the conductor is N , compute the coefficients bp

of the modular form g = gE attached to the elliptic curve E,
for p ≤ #P1(Z/NZ)/6. Verify that ap = bp, where ap are the
coefficients of f . If this equality holds, then E must be isoge-
nous to the elliptic curve attached to f , by the Sturm bound
(Theorem 9.18) and Faltings’s isogeny theorem. If the equality
fails for some p, recompute c4 and c6 to larger precision.

There are numerous tricks to optimize the above algorithm. For example,
often one can work separately with Mk(Γ0(N))+new and Mk(Γ0(N))−new and
get enough information to find E, up to isogeny (see [Cre97b]).

Once we have one curve from each isogeny class of curves of conductor N ,
we find each curve in each isogeny class (which is another interesting problem
discussed in [Cre97a]), hence all curves of conductor N . If E/Q is an elliptic
curve, then any curve isogenous to E is isogenous via a chain of isogenies of
prime degree. There is an a priori bound on the degrees of these isogenies
due to Mazur. Also, there are various methods for finding all isogenies of a
given degree with domain E. See [Cre97a, §3.8] for more details.

10.7.1. Finding Curves: S-Integral Points. In this section we briefly
survey an alternative approach to finding curves of a given conductor by
finding integral points on other elliptic curves.

Cremona and others have developed a complementary approach to the
problem of computing all elliptic curves of given conductor (see [CL04]).

10.7. All Elliptic Curves of Given Conductor 189

Instead of computing all curves of given conductor, we instead consider the
seemingly more difficult problem of finding all curves with good reduction
outside a finite set S of primes. Since one can compute the conductor of a
curve using Tate’s algorithm [Tat75, Cre97a, §3.2], if we know all curves
with good reduction outside S, we can find all curves of conductor N by
letting S be the set of prime divisors of N .

There is a strategy for finding all curves with good reduction outside S.
It is not an algorithm, in the sense that it is always guaranteed to terminate
(the modular symbols method above is an algorithm), but in practice it
often works. Also, this strategy makes sense over any number field, whereas
the modular symbols method does not (there are generalizations of modular
symbols to other number fields).

Fix a finite set S of primes of a number field K. It is a theorem of
Shafarevich that there are only finitely many elliptic curves with good re-
duction outside S (see [Sil92, Section IX.6]). His proof uses that the group
of S-units in K is finite and Siegel’s theorem that there are only finitely
many S-integral points on an elliptic curve. One can make all this explicit,
and sometimes in practice one can compute all these S-integral points.

The problem of finding all elliptic curves with good reduction outside
of S can be broken into several subproblems, the main ones being

(1) determine the following finite subgroup of K∗/(K∗)m:

K(S, m) = {x ∈ K∗/(K∗)m : m | ordp(x) all p 6∈ S};

(2) find all S-integral points on certain elliptic curves y2 = x3 + k.

In [CL04], there is one example, where they find all curves of conductor
N = 28 · 172 = 73984 by finding all curves with good reduction outside
{2, 17}. They finds 32 curves of conductor 73984 that divide into 16 isogeny
classes. (Note that dim S2(Γ0(N)) = 9577.)

10.7.2. Finding Curves: Enumeration. One can also find curves by
simply enumerating Weierstrass equations. For example, the paper [SW02]
discusses a database that the author and Watkins created that contains
hundreds of millions of elliptic curves. It was constructed by enumerating
Weierstrass equations of a certain form. This database does not contain
every curve of each conductor included in the database. It is, however, fairly
complete in some cases. For example, using the Mestre method of graphs
[Mes86], we verified in [JBS03] that the database contains all elliptic curve
of prime conductor < 234446, which implies that the smallest conductor rank
4 curve is composite.

190 10. Computing Periods

10.8. Exercises

10.1 Prove Lemma 10.4.

10.2 Suppose f ∈ S2(Γ0(N)) is a newform and that WN (f) = wf . Let

Λ(E, s) = N s/2(2π)−sΓ(s)L(E, s). Prove that

Λ(E, s) = −wΛ(E, 2 − s).

[Hint: Show that Λ(f, s) =
∫
0,∞ f(iy/

√
N)ys−1 dy. Then substitute

1/y for y.]

10.3 Let f =
∑

anqn ∈ C[[q]] be a power series whose coefficients an

together generate a number field K of degree d over Q. Let Vf

be the complex vector space spanned by the Gal(Q/Q)-conjugates
of f .
(a) Give an example to show that Vf need not have dimension d.
(b) Suppose Vf has dimension d. Prove that Vf ∩ Q[[q]] is a Q-

vector space of dimension d.

10.4 Find an elliptic curve of conductor 11 using Section 10.7.

Chapter 11

Solutions to Selected

Exercises

11.1. Chapter 1

(1) Exercise 1.1. Suppose γ =
(

a nb
c d

)
∈ GL2(R) is a matrix with

positive determinant. Then γ is a linear fractional transformation
that fixes the real line, so it must either fix or swap the upper and
lower half planes. Now

γ(i) =
ai + b

ci + d
=

ac + bd + (ad − bc)i

d2 + c2
,

so since det γ = ad− bc > 0, the imaginary part of γ(i) is positive;
hence γ sends the upper half plane to itself.

(2) Exercise 1.2. Avoiding poles, the quotient rule for differentiation
goes through exactly as in the real case, so any rational function
f(z) = p(z)/q(z) (p, q ∈ C[z]) is holomorphic on C−{α : q(α) = 0}.
By the fundamental theorem of algebra, this set of poles is finite,
and hence it is discrete. Write q(z) = an(z − α1)

r1 · · · (z − αk)
rk

for each αi and let qi(z) = q(z)/(z − αi)
ri which is a polynomial

nonzero at αi. Thus for each i we have (z − αi)
rif(z) = p(z)/q′(z)

is holomorphic at αi and hence f(z) is meromorphic on C.

(3) Exercise 1.3.
(a) The product fg of two meromorphic functions on the upper

half plane is itself meromorphic. Also, for all γ ∈ SL2(Z) we

191

192 11. Solutions to Selected Exercises

have

(fg)[γ]k+j =
1

(cz + d)k+j
((fg) ◦ γ)

=
1

(cz + d)k
(f ◦ γ)

1

(cz + d)j
(g ◦ γ) = fg,

so fg is weakly modular.
(b) If f is meromorphic on the upper half plane, then so is 1/f .

Now

1

f
=

1

(cz + d)−kf ◦ γ
= (cz + d)k((1/f) ◦ γ) =

1

f

[γ]−k

,

so 1/f is a weakly modular form of weight −k.
(c) Let f and g be modular functions. Then, as above, fg is a

weakly modular function. Let
∑∞

n=m anqn and
∑∞

n=m′ bnqn be
their q-expansions around any α ∈ P1(Q); then their formal
product is the q-expansion of fg. But the formal product of
two Laurent series about the same point is itself a Laurent
series with convergence in the intersection of the convergent
domains of the original series, so fg has a meromorphic q-
expansion at each α ∈ P1(Q) and hence at each cusp.

(d) We are in exactly the same case as in part (c), but because f
and g are modular functions, m, m′ ≥ 0 and hence the function
is holomorphic at each of its cusps.

(4) Exercise 1.4. Let f be a weakly modular function of odd weight
k. Since γ =

(−1 0
0 −1

)
∈ SL2(Z), we have f(z) = (−1)−kf(γ(z)) =

−f(z) so f = 0.

(5) Exercise 1.5. Because SL2(Z/1Z) is the trivial group, Γ(1) =
ker(SL2(Z) → SL2(Z/1Z)) must be all of SL2(Z). As SL2(Z) =
Γ(1) ⊂ Γ1(1) ⊂ Γ0(1) ⊂ SL2(Z), we must have Γ(1) = Γ1(1) =
Γ0(1) = SL2(Z).

(6) Exercise 1.6.
(a) The group Γ1(N) is the inverse image of the subgroup of

SL2(Z/NZ) generated by (1 1
0 1), and the inverse image of a

group (under a group homomorphism) is a group.
(b) The group contains the kernel of the homomorphism SL2(Z) →

SL2(Z/NZ), and that kernel has finite index since the quotient
is contained in SL2(Z/NZ), which is finite.

(c) Same argument as previous part.
(d) The level is at most N since both groups contain Γ(N). It can

be no greater than N since
(

1 N
0 1

)
is in both groups.

(7) Exercise 1.7. See [DS05, Lemma 1.2.2].

11.2. Chapter 2 193

(8) Exercise 1.8. Let α = p/q ∈ Q, where p and q are relatively prime.
By the Euclidean algorithm, we can find x, y ∈ Z such that px +
qy = 1. Let γα =

(
p −y
q x

)
. Note that γα ∈ SL2(Z) and γα(∞) = α.

Also let γ∞ be the identity map on P1(Q). Now γ−1
β sends β to ∞

so we have γα ◦ γ−1
β which sends α to β.

11.2. Chapter 2

(1) Exercise 2.1. We have

ζ(26) =
1315862 · π26

11094481976030578125
.

Variation: Compute ζ(28).

(2) Exercise 2.2. Omitted.

(3) Exercise 2.3.

E8 = −B8

16
+ q +

∞∑

n=2

σ7(n)qn

=
1

480
+ q + 129q2 + 2188q3 + · · · .

Variation: Compute E10.

(4) Exercise 2.4. Omitted.

(5) Exercise 2.5. We have d = dimS28 = 2. A choice of a, b with
4a + 6b ≤ 14 and 4a + 6b ≡ 4 (mod 12) is a = 1, b = 0. A basis for
S28 is then

g1 = ∆F
2(2−1)+0
6 F4 = q − 792q2 − 324q3 + 67590208q4 + · · · ,

g2 = ∆2F
2(2−2)+0
6 F4 = q2 + 192q3 − 8280q4 + · · · .

The Victor Miller basis is then

f1 = g1 + 729g2 = q + 151740q3 + 61032448q4 + · · · ,

f2 = g2 = q2 + 192q3 − 8280q4 + · · · .

Variation: Compute the Victor Miller basis for S30.

194 11. Solutions to Selected Exercises

(6) Exercise 2.6. From the previous exercise we have f = ∆2F4. Then

f = ∆2F4 =

(
F 3

4 − F 2
6

−1728

)2

· F4

=




(
− 8

B4
E4

)3
−

(
− 12

B6
E6

)2

−1728




2

·
(
− 8

B4
E4

)

= 5186160E4E
4
6 − 564480000E4

4E2
6 + 15360000000E7

4 .

(7) Exercise 2.7. No, it is not always integral. For example, for k = 12,
the coefficient of q is −2 · 12/B12 = 65520/691 6∈ Z. Variation:
Find, with proof, the set of all k such that the normalized series Fk

is integral (use that Bk is eventually very large compared to 2k).

(8) Exercise 2.8. We compute the Victor Miller basis to precision great
enough to determine T2. This means we need up to O(q5).

f0 = 1 + 2611200q3 + 19524758400q4 + · · · ,

f1 = q + 50220q3 + 87866368q4 + · · · ,

f2 = q2 + 432q3 + 39960q4 + · · · .

Then the matrix of T2 on this basis is



2147483649 0 19524758400
0 0 2235350016
0 1 39960


 .

(The rows of this matrix are the linear combinations that give the
images of the fi under T2.) This matrix has characteristic polyno-
mial

(x − 2147483649) · (x2 − 39960x − 2235350016).

11.3. Chapter 3

(1) Exercise 3.1. Write g =
(

a b
c d

)
, so λ′ = aλ+b

cλ+d . Let f be the isomor-

phism C/Λ → C/Λ′ given by f(z) = z/(cλ + d). We have

f

(
1

N

)
=

1

N(cλ + d)
=

a

N
− c

N
· aλ + b

cλ + d
∼= a

N
(mod Z + Zλ′),

where the second equality can be verified easily by expanding out
each side, and for the congruence we use that N | c. Thus the
subgroup of C/Λ generated by 1

N is taken isomorphically to the

subgroup of C/Λ′ generated by 1
N .

11.3. Chapter 3 195

(2) Exercise 3.2. For any integer r, we have (1 r
0 1) ∈ Γ0(N), so {0,∞} =

{r,∞}. Thus

0 = {0,∞}−{0,∞} = {n,∞}−{m,∞} = {n,∞}+{∞, m} = {n, m}.
(3) Exercise 3.3.

(a) (0 : 1), (1 : 0), (1 : 1), . . . , (1, p − 1).
(b) p + 1.
(c) See [Cre97a, Prop. 2.2.1].

(4) Exercise 3.4. We start with b = 4, a = 7. Then 4 · 2 ≡ 1 (mod 7).
Let δ1 = (4 1

7 2) ∈ SL2(Z). Since δ1 ∈ Γ0(7), we use the right coset
representative (1 0

0 1) and see that

{0, 4/7} = {0, 1/2} + (1 0
0 1) {0,∞}.

Repeating the process, we have δ2 = (1 1
2 0), which is in the same

coset at
(

0 −1
1 0

)
. Thus

{0, 1/2} = (0 6
1 0) {0,∞} + {0, 0}.

Putting it together gives

{0, 4/7} = (1 0
0 1) {0,∞} + (0 6

1 0) {0,∞} = [(0, 1)] + [(1, 0)].

(5) Exercise 3.5.
(a) Coset representatives for Γ0(3) in SL2(Z) are

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 0
2 1

)
,

(
0 −1
1 0

)
,

which we refer to below as [r0], [r1], [r2], and [r3], respectively.
(b) In terms of representatives we have

[r0] + [r3] = 0, [r0] + [r3] + [r2] = 0,
[r1] + [r2] = 0, [r1] + [r1] + [r1] = 0,
[r2] + [r1] = 0, [r2] + [r0] + [r3] = 0,
[r3] + [r0] = 0, [r3] + [r2] + [r0] = 0.

(c) By the first three relations we have [r2] = [r1] = 0 = 0[r0] and
[r3] = −1[r0].

(d)

T2([r0]) = [r0] (1 0
0 2) + [r0] (2 0

0 1) + [r0] (2 1
0 1) + [r0] (1 0

1 2)

= [(1 0
0 2)] + [(2 0

0 1)] + [(2 1
0 1)] + [(1 0

1 2)]

= [r0] + [r0] + [r0] + [r2]

= 3[r0].

196 11. Solutions to Selected Exercises

11.4. Chapter 4

(1) Exercise 4.1. Suppose f is a Dirichlet character with modulus N .
Then −1 = f(−1) = f(−1 + N) = 1, a contradiction.

(2) Exercise 4.2.
(a) Any finite subgroup of the multiplicative group of a field is

cyclic (since the number of roots of a polynomial over a field
is at most its degree), so (Z/pZ)∗ is cyclic. Let g be an integer
that reduces to a generator of (Z/pZ)∗. Let x = 1 + p ∈
(Z/pnZ)∗; by the binomial theorem

xpn−2
= 1 + pn−2 · p + · · · ≡ 1 + pn−1 6≡ 0 (mod pn),

so x has order pn−1. Since p is odd, gcd(pn−1, p − 1) = 1, so
xg has order pn−1 · (p − 1) = ϕ(pn); hence (Z/pnZ)∗ is cyclic.

(b) By the binomial theorem (1 + 22)2
n−3 6≡ 1 (mod 2n), so 5 has

order 2n−2 in (Z/2nZ)∗, and clearly −1 has order 2. Since
5 ≡ 1 (mod 4), −1 is not a power of 5 in (Z/2nZ)∗. Thus the
subgroups 〈−1〉 and 〈5〉 have trivial intersection. The product
of their orders is 2n−1 = ϕ(2n) = #(Z/2nZ)∗, so the claim
follows.

(3) Exercise 4.3. Write n =
∏

pei

i . The order of g divides n, so the
condition implies that pei

i divides the order of g for each i. Thus
the order of g is divisible by the least common multiple of the pei

i ,
i.e., by n.

(4) Exercise 4.4.
(a) The bijection given by 1 + pn−1a (mod pn) 7→ a (mod p) is a

homomorphism since

(1 + pn−1a)(1 + pn−1b) ≡ 1 + pn−1(a + b) (mod pn).

(b) We have an exact sequence

1 → 1 + pZ/pnZ → (Z/pnZ)∗ → (Z/pZ)∗ → 1,

so it suffices to solve the discrete log problem in the kernel and
cokernel. We prove by induction on n that we can solve the
discrete log problem in the kernel easily (compared to known
methods for solving the discrete log problem in (Z/pZ)∗). We
have an exact sequence

1 → 1 + pn−1Z/pnZ → (Z/pnZ)∗ → (Z/pn−1Z)∗ → 1.

The first part of this problem shows that we can solve the
discrete log problem in the kernel, and by induction we can
solve it in the cokernel. This completes the proof.

11.6. Chapter 6 197

(5) Exercise 4.5. If ε(5) = 1, then since ε is nontrivial, Exercise 4.2
implies that ε factors through (Z/4Z)∗, hence has conductor 4 =
21+1, as claimed. If ε(5) 6= 1, then again from Exercise 4.2 we see
that if ε has order r, then ε factors through (Z/2r+2Z)∗ but nothing
smaller.

(6) Exercise 4.6.
(a) Take f = x2 + 2.
(b) The element 2 has order 4.
(c) A minimal generator for (Z/25Z)∗ is 2, and the characters are

[1], [2], [3], [4].
(d) Each of the four Galois orbits has size 1.

11.5. Chapter 5

(1) Exercise 5.1. The eigenspace Eλ of A with eigenvalue λ is preserved
by B, since if v ∈ Eλ, then

ABv = BAv = B(λv) = λBv.

Because B is diagonalizable, its minimal polynomial equals its char-
acteristic polynomial; hence the same is true for the restriction of B
to Eλ, i.e., the restriction of B is diagonalizable. Choose basis for
all Eλ so that the restrictions of B to these eigenspaces is diagonal
with respect to these bases. Then the concatenation of these bases
is a basis that simultaneously diagonalizes A and B.

(2) Exercise 5.2. When ε is the trivial character, the Bk,ε are defined
by

1∑

a=1

ε(a)xeax

ex − 1
=

xex

ex − 1
= x +

x

ex − 1
=

∞∑

k=0

Bk,ε
xk

k!
.

Thus B1,ε = 1 + B1 = 1
2 , and for k > 1, we have Bk,ε = Bk.

(3) Exercise 5.3. Omitted.

(4) Exercise 5.4. The Eisenstein series in our basis for E3(Γ1(13)) are
of the form E3,1,ε or E3,ε,1 with ε(−1) = (−1)3 = −1. There are six
characters ε with modulus 13 such that ε(−1) = −1, and we have
the two series E3,1,ε and E3,ε,1 associated to each of these. This
gives a dimension of 12.

11.6. Chapter 6

(1) Exercise 6.1.

198 11. Solutions to Selected Exercises

(a) By Proposition 3.10, we have [SL2(Z) : Γ0(N)] = #P1(Z/NZ).
By the Chinese Remainder Theorem,

#P1(Z/NZ) =
∏

p|N
#P1(Z/pordp(N)Z).

So we are reduced to computing #P1(Z/pordp(N)Z). We have
(a, b) ∈ (Z/pnZ)2 with gcd(a, b, p) = 1 if and only if (a, b) 6∈
(pZ/pnZ)2, so there are p2n − p2(n−1) such pairs. The unit
group (Z/pnZ)∗ has order ϕ(pn) = pn − pn−1. It follows that

#P1(Z/NZ) =
p2n − p2(n−1)

pn − pn−1
= pn + pn−1.

(b) Omitted.

(2) Exercise 6.2. Omitted.

(3) Exercise 6.3. Omitted.

(4) Exercise 6.4. Omitted.

(5) Exercise 6.5. See the source code to SAGE.

11.7. Chapter 7

(1) Exercise 7.1. Take a basis of W and let G be the matrix whose rows
are these basis elements. Let B be the row echelon form of G. After
a permutation p of columns, we may write B = pi(I|C), where I
is the identity matrix. The matrix A = p−1(−Ct|I), where I is a
different sized identity matrix, has the property that W = Ker(A).

(2) Exercise 7.2. The answer is no. For example if A = nI is n times
the identity matrix and if p | n, then rref(A (mod p)) = 0 but
rref(A) (mod p) = I.

(3) Exercise 7.3. Let T =
∏

Ei be an invertible matrix such that
TA = E is in (reduced) echelon form and the Ei are elementary
matrices, i.e., the result of applying an elementary row operation
to the identity matrix. If p is a prime that does not divide any of
the nonzero numerators or denominators of the entries of A and
any Ei, then rref(A (mod p)) = rref(A) (mod p). This is because
E (mod p) is in echelon form and A (mod p) can be transformed
to E (mod p) via a series of elementary row operations modulo p.

(4) Exercise 7.4.
(a) The echelon form (over Q) is




1 0 −1
0 1 2
0 0 0


 .

11.8. Chapter 8 199

(b) The kernel is the 1-dimensional span of (1,−2, 1).
(c) The characteristic polynomial is x · (x2 − 15x − 18).

(5) Exercise 7.5.
(a) The answer is given in the problem.
(b) See [Coh93, §2.4].

11.8. Chapter 8

(1) Exercise 8.1. Using the Chinese Remainder Theorem we imme-
diately reduce to proving the statement when both M = pr and
N = ps are powers of a prime p. Then [a] ∈ (Z/psZ)∗ is repre-
sented by an integer a with gcd(a, p) = 1. That same integer a
defines an element of (Z/prZ)∗ that reduces modulo ps to [a].

(2) Exercise 8.2. See [Shi94, Lemma 1.38].

(3) Exercise 8.3. Coset representatives for Γ1(3) are in bijection with
(c, d) where c, d ∈ Z/3Z and gcd(c, d, N) = 1, so the following are
representatives:

(1 0
0 1) , (2 0

0 2) , (0 2
1 0) , (1 0

1 1) , (2 0
1 2) , (1 1

2 0) , (1 0
2 1) , (2 0

2 2) ,

which we call r1, . . . , r8, respectively. Now our Manin symbols are
of the form [X, ri] and [Y, ri] for 1 ≤ i ≤ 8 modulo the relations

x + xσ = 0, x + xτ + xτ2 = 0, and x − xJ = 0.

First, note that J acts trivially on Manin symbols of odd weight
because it sends X to −X, Y to −Y and ri to −ri, so

[z, g]J = [−z,−g] = [z, g].

Thus the last relation is trivially true.
Now σ−1X = −Y and σ−1Y = X. Also τ−1X = −Y, τ−1Y =

X − Y, τ−2X = −X + Y and τ−2Y = −X.
The first relation on the first symbol says that

[X, r1] = −[−Y, r3] = [Y, r3]

and the second relation tells us that

[X, r1] + [−Y, r5] + [−X + Y, r6] = 0.

(4) Exercise 8.4. Let f ∈ Sk(Γ) and g ∈ Γ. All that remains to
be shown is that this pairing respects the relation x = xg for all
modular symbols x. By linearity it suffices to show the invariance

200 11. Solutions to Selected Exercises

of 〈f, Xk−i−2Y i{α, β}〉. We have
〈
f, (Xk−2−iY i{α, β})g−1

〉

=
〈
f, (aX + bY)k−i−2(cX + dY)i{g−1(α), g−1(β)}

〉

=

∫ g−1(β)

g−1(α)
f(z)(az + b)k−i−2(cz + d)i dz

=

∫ g−1(β)

g−1(α)
f(z)

(az + b)k−i−2

(cz + d)k−i−2
(cz + d)k−2 dz

=

∫ g−1(β)

g−1(α)
f(z) g(z)k−i−2(cz + d)k−2 dz

=

∫ β

α
f(g−1(z)) g(g−1(z))k−i−2(cg−1(z) + d)k−2 d(g−1(z))

=

∫ β

α
f(g−1(z)) zk−i−2(cg−1(z) + d)k−2 (cg−1(z) + d)2 dz

=

∫ β

α
f(z) zk−i−2 dz

=
〈
f, Xk−i−2Y i{α, β}

〉
,

where the second to last simplification is due to invariance under
[g]k, i.e.,

f(g−1(z)) = f [g]k(g−1(z)) = (cg−1(z) + d)−kf(g(g−1(z))).

(The proof for f ∈ Sk(Γ) works in exactly the same way.)

(5) Exercise 8.5.

(a) Let η =
(

−1 0
0 1

)
. For any γ =

(
a b
c d

)
we have

γη =
(

−a b
−c d

)
, ηγ =

(
−a −b

c d

)
, and ηγη =

(
a −b

−c d

)
.

First, if γ ∈ SL2(Z), then ηγη ∈ GL2(Z) and

det(ηγη) = det η det γ det η = (−1)(1)(−1) = 1

so ηγη ∈ SL2(Z). As η2 = 1, conjugation by η is self-inverse,
so it must be a bijection.
Now if γ ∈ Γ0(N), then c ≡ 0 (mod N), so −c ≡ 0 (mod N),
and so ηγη ∈ Γ0(N). Thus ηΓ0(N)η = Γ0(N).
If γ ∈ Γ1(N), then −c ≡ 0 (mod N) as before and also a ≡
d ≡ 1 (mod N), so ηγη ∈ Γ1(N). Thus ηΓ1(N)η = Γ1(N).

(b) Omitted.

11.10. Chapter 10 201

11.9. Chapter 9

(1) Exercise 9.1. Consider the surjective homomorphism

r : SL2(Z) → SL2(Z/NZ).

Notice that Γ1(N) is the exact inverse image of the subgroup H of
matrices of the form (1 ∗

0 1) and Γ0(N) is the inverse image of the
subgroup T of upper triangular matrices. It thus suffices to observe
that H is normal in T , which is clear. Finally, the quotient T/H
is isomorphic to the group of diagonal matrices in SL2(Z/NZ)∗,
which is isomorphic to (Z/NZ)∗.

(2) Exercise 9.2. It is enough to show 〈p〉 ∈ Z[. . . , Tn, . . .] for primes p,
since each 〈d〉 can be written in terms of the 〈p〉. Since p ∤ N , we
have that

Tp2 = T 2
p − 〈p〉pk−1,

so

〈p〉pk−1 = T 2
p − Tp2 .

By Dirichlet’s theorem on primes in arithmetic progression, there
is a prime q 6= p congruent to p mod N . Since pk−1 and qk−1 are
relatively prime, there exist integers a and b such that apk−1 +
bqk−1 = 1. Then

〈p〉 = 〈p〉(apk−1 + bqk−1) = a(Tp
2 − Tp2) + b(Tq

2 − Tq2) ∈ Z[. . . , Tn, . . .].

(3) Exercise 9.3. Take N = 33. The space S2(Γ0(33)) is a direct
sum of the two old subspaces coming from S2(Γ0(11)) and the new
subspace, which has dimension 1. If f is a basis for S2(Γ0(11)) and
g is a basis for S2(Γ0(33))new, then α1(f), α3(f), g is a basis for
S2(Γ0(33)) on which all Hecke operators Tn, with gcd(n, 33) = 1,
have diagonal matrix. However, the operator T3 on S2(Γ0(33)) does
not act as a scalar on α1(f), so it cannot be in the ring generated
by all operators Tn with gcd(n, 33) = 1.

(4) Exercise 9.4. Omitted.

11.10. Chapter 10

(1) Exercise 10.1. Hint: Use either repeated integration by parts or a
change of variables that relates the integral to the Γ function.

(2) Exercise 10.2. See [Cre97a, §2.8].

(3) Exercise 10.3.
(a) Let f =

√
−1

∑
qn. Then d = 2, but the nontrivial conjugate

of f is −f , so Vf has dimension 1.

202 11. Solutions to Selected Exercises

(b) Choose α ∈ K such that K = Q(α). Write

(11.10.1) f =
d−1∑

i=0

αigi

with gi ∈ Q[[q]]. Let Wg be the Q-span of the gi, and let

Wf = Vf ∩ Q[[q]]. By considering the Gal(Q/Q) conjugates
of (11.10.1), we see that the Galois conjugates of f are in the
C-span of the gi, so

(11.10.2) d = dimC Vf ≤ dimQ Wg.

Likewise, taking the above modulo O(qn) for any n, we obtain
a matrix equation

F = AG,

where the columns of F are the Gal(Q/Q)-conjugates of f , the
matrix A is the Vandermonde matrix corresponding to α (and
its Gal(Q/Q) conjugates), and G has columns gi. Since A is
a Vandermonde matrix, it is invertible, so A−1F = G. Taking
the limit as n goes to infinity, we see that each gi is a linear
combination of the fi, hence an element of Vf . Thus Wg ⊂ Wf ,
so (11.10.2) implies that dimQ Wf ≥ d. But Wf ⊗Q C ⊂ Vf so
finally

d ≤ dimQ Wf = dimC(Wf ⊗Q C) ≤ dimC Vf = d.

(4) Exercise 10.4. See the appendix to Chapter II in [Cre97a], where
this example is worked out in complete detail.

Appendix A

Computing in Higher

Rank

by Paul E. Gunnells

A.1. Introduction

This book has addressed the theoretical and practical problems of perform-
ing computations with modular forms. Modular forms are the simplest
examples of the general theory of automorphic forms attached to a reduc-
tive algebraic group G with an arithmetic subgroup Γ; they are the case
G = SL2(R) with Γ a congruence subgroup of SL2(Z). For such pairs (G, Γ)
the Langlands philosophy asserts that there should be deep connections
between automorphic forms and arithmetic, connections that are revealed
through the action of the Hecke operators on spaces of automorphic forms.
There have been many profound advances in recent years in our understand-
ing of these phenomena, for example:

• the establishment of the modularity of elliptic curves defined over
Q [Wil95, TW95, Dia96, CDT99, BCDT01],

• the proof by Harris–Taylor of the local Langlands correspondence
[HT01], and

• Lafforgue’s proof of the global Langlands correspondence for func-
tion fields [Laf02].

Nevertheless, we are still far from seeing that the links between automorphic
forms and arithmetic hold in the broad scope in which they are generally

203

204 A. Computing in Higher Rank

believed. Hence one has the natural problem of studying spaces of automor-
phic forms computationally.

The goal of this appendix is to describe some computational techniques
for automorphic forms. We focus on the case G = SLn(R) and Γ ⊂ SLn(Z),
since the automorphic forms that arise are one natural generalization of
modular forms, and since this is the setting for which we have the most
tools available. In fact, we do not work directly with automorphic forms,
but rather with the cohomology of the arithmetic group Γ with certain
coefficient modules. This is the most natural generalization of the tools
developed in previous chapters.

Here is a brief overview of the contents. Section A.2 gives background on
automorphic forms and the cohomology of arithmetic groups and explains
why the two are related. In Section A.3 we describe the basic topological
tools used to compute the cohomology of Γ explicitly. Section A.4 defines
the Hecke operators, describes the generalization of the modular symbols
from Chapter 8 to higher rank, and explains how to compute the action
of the Hecke operators on the top degree cohomology group. Section A.5
discusses computation of the Hecke action on cohomology groups below the
top degree. Finally, Section A.6 briefly discusses some related material and
presents some open problems.

A.1.1. The theory of automorphic forms is notorious for the difficulty of its
prerequisites. Even if one is only interested in the cohomology of arithmetic
groups—a small part of the full theory—one needs considerable background
in algebraic groups, algebraic topology, and representation theory. This is
somewhat reflected in our presentation, which falls far short of being self-
contained. Indeed, a complete account would require a long book of its
own. We have chosen to sketch the foundational material and to provide
many pointers to the literature; good general references are [BW00, Harb,

LS90, Vog97]. We hope that the energetic reader will follow the references
and fill many gaps on his/her own.

The choice of topics presented here is heavily influenced (as usual) by the
author’s interests and expertise. There are many computational topics in
the cohomology of arithmetic groups we have completely omitted, including
the trace formula in its many incarnations [GP05], the explicit Jacquet–
Langlands correspondence [Dem04, SW05], and moduli space techniques
[FvdG, vdG]. We encourage the reader to investigate these extremely
interesting and useful techniques.

A.1.2. Acknowledgements. I thank Avner Ash, John Cremona, Mark
McConnell, and Dan Yasaki for helpful comments. I also thank the NSF for
support.

A.2. Automorphic Forms and Arithmetic Groups 205

A.2. Automorphic Forms and Arithmetic Groups

A.2.1. Let Γ = Γ0(N) ⊂ SL2(Z) be the usual Hecke congruence subgroup
of matrices upper-triangular mod N . Let Y0(N) be the modular curve Γ\h,
and let X0(N) be its canonical compactification obtained by adjoining cusps.
For any integer k ≥ 2, let Sk(N) be the space of weight k holomorphic cus-
pidal modular forms on Γ. According to Eichler–Shimura [Shi94, Chapter
8], we have the isomorphism

(A.2.1) H1(X0(N); C)
∼−→ S2(N) ⊕ S2(N),

where the bar denotes complex conjugation and where the isomorphism is
one of Hecke modules.

More generally, for any integer n ≥ 0, let Mn ⊂ C[x, y] be the subspace of
degree n homogeneous polynomials. The space Mn admits a representation
of Γ by the “change of variables” map

(A.2.2)

(
a b
c d

)
· p(x, y) = p(dx − by,−cx + ay).

This induces a local system M̃n on the curve X0(N).1 Then the analogue of
(A.2.1) for higher-weight modular forms is the isomorphism

(A.2.3) H1(X0(N); M̃k−2)
∼−→ Sk(N) ⊕ Sk(N).

Note that (A.2.3) reduces to (A.2.1) when k = 2.

Similar considerations apply if we work with the open curve Y0(N) in-
stead, except that Eisenstein series also contribute to the cohomology. More
precisely, let Ek(N) be the space of weight k Eisenstein series on Γ0(N).
Then (A.2.3) becomes

(A.2.4) H1(Y0(N); M̃k−2)
∼−→ Sk(N) ⊕ Sk(N) ⊕ Ek(N).

These isomorphisms lie at the heart of the modular symbols method.

A.2.2. The first step on the path to general automorphic forms is a reinter-
pretation of modular forms in terms of functions on SL2(R). Let Γ ⊂ SL2(Z)
be a congruence subgroup. A weight k modular form on Γ is a holomorphic
function f : h → C satisfying the transformation property

f((az + b)/(cz + d)) = j(γ, z)kf(z), γ =

(
a b
c d

)
∈ Γ, z ∈ h.

1The classic references for cohomology with local systems are [Ste99a, Section 31] and [Eil47,

Ch. V]. A more recent exposition (in the language of Čech cohomology and locally constant
sheaves) can be found in [BT82, II.13]. For an exposition tailored to our needs, see [Harb,
Section 2.9].

206 A. Computing in Higher Rank

Here j(γ, z) is the automorphy factor cz + d. There are some additional
conditions f must satisfy at the cusps of h, but these are not so important
for our discussion.

The group G = SL2(R) acts transitively on h, with the subgroup K =
SO(2) fixing i. Thus h can be written as the quotient G/K. From this,
we see that f can be viewed as a function G → C that is K-invariant on
the right and that satisfies a certain symmetry condition with respect to
the Γ-action on the left. Of course not every f with these properties is a
modular form: some extra data is needed to take the role of holomorphicity
and to handle the behavior at the cusps. Again, this can be ignored right
now.

We can turn this interpretation around as follows. Suppose ϕ is a func-
tion G → C that is Γ-invariant on the left, that is, ϕ(γg) = ϕ(g) for all
γ ∈ Γ. Hence ϕ can be thought of as a function ϕ : Γ\G → C. We further
suppose that ϕ satisfies a certain symmetry condition with respect to the
K-action on the right. In particular, any matrix m ∈ K can be written

(A.2.5) m =

(
cos θ − sin θ
sin θ cos θ

)
, θ ∈ R,

with θ uniquely determined modulo 2π. Let ζm be the complex number eiθ.
Then the K-symmetry we require is

ϕ(gm) = ζ−k
m ϕ(z), m ∈ K,

where k is some fixed nonnegative integer.

It turns out that such functions ϕ are very closely related to modular
forms: any f ∈ Sk(Γ) uniquely determines such a function ϕf : Γ\G → C.
The correspondence is very simple. Given a weight k modular form f , define

(A.2.6) ϕf (g) := f(g · i)j(g, i)−k.

We claim ϕf is left Γ-invariant and satisfies the desired K-symmetry on the
right. Indeed, since j satisfies the cocycle property

j(gh, z) = j(g, h · z)j(h, z),

we have

ϕf (γg) = f((γg)·i)j(γg, i)−k = j(γ, g ·i)kf(g ·i)j(γ, g ·i)−kj(g, i)−k = ϕf (g).

Moreover, any m ∈ K stabilizes i. Hence

ϕf (gm) = f((gm) · i)j(gm, i)−k = f(g · i)j(m, i)−kj(g, m · i)−k.

From (A.2.5) we have j(m, i)−k = (cos θ + i sin θ)−k = ζ−k
m , and thus

ϕf (gm) = ζ−k
m ϕf (g).

Hence in (A.2.6) the weight and the automorphy factor “untwist” the
Γ-action to make ϕf left Γ-invariant. The upshot is that we can study

A.2. Automorphic Forms and Arithmetic Groups 207

modular forms by studying the spaces of functions that arise through the
construction (A.2.6).

Of course, not every ϕ : Γ\G → C will arise as ϕf for some f ∈ SK(Γ):
after all, f is holomorphic and satisfies rather stringent growth conditions.
Pinning down all the requirements is somewhat technical and is (mostly)
done in the sequel.

A.2.3. Before we define automorphic forms, we need to find the correct
generalizations of our groups SL2(R) and Γ0(N). The correct setup is rather
technical, but this really reflects the power of the general theory, which
handles so many different situations (e.g., Maass forms, Hilbert modular
forms, Siegel modular forms, etc.).

Let G be a connected Lie group, and let K ⊂ G be a maximal com-
pact subgroup. We assume that G is the set of real points of a connected
semisimple algebraic group G defined over Q. These conditions mean the
following [PR94, §2.1.1]:

(1) The group G has the structure of an affine algebraic variety given
by an ideal I in the ring R = C[xij , D

−1], where the variables
{xij | 1 ≤ i, j ≤ n} should be interpreted as the entries of an
“indeterminate matrix,” and D is the polynomial det(xij). Both
the group multiplication G × G → G and inversion G → G are
required to be morphisms of algebraic varieties.

The ring R is the coordinate ring of the algebraic group GLn.
Hence this condition means that G can be essentially viewed as a
subgroup of GLn(C) defined by polynomial equations in the matrix
entries of the latter.

(2) Defined over Q means that I is generated by polynomials with
rational coefficients.

(3) Connected means that G is connected as an algebraic variety.

(4) Set of real points means that G is the set of real solutions to the
equations determined by I. We write G = G(R).

(5) Semisimple means that the maximal connected solvable normal
subgroup of G is trivial.

Example A.1. The most important example for our purposes is the split
form of SLn. For this choice we have

G = SLn(R) and K = SO(n).

Example A.2. Let F/Q be a number field. Then there is a Q-group G such
that G(Q) = SLn(F). The group G is constructed as RF/Q(SLn), where
RF/Q denotes the restriction of scalars from F to Q [PR94, §2.1.2]. For

208 A. Computing in Higher Rank

example, if F is totally real, the group RF/Q(SL2) appears when one studies
Hilbert modular forms.

Let (r, s) be the signature of the field F , so that F ⊗R ≃ Rr ×Cs. Then
G = SLn(R)r × SLn(C)s and K = SO(n)r × SU(n)s.

Example A.3. Another important example is the split symplectic group
Sp2n. This is the group that arises when one studies Siegel modular forms.
The group of real points Sp2n(R) is the subgroup of SL2n(R) preserving a
fixed nondegenerate alternating bilinear form on R2n. We have K = U(n).

A.2.4. To generalize Γ0(N), we need the notion of an arithmetic group.
This is a discrete subgroup Γ of the group of rational points G(Q) that is
commensurable with the set of integral points G(Z). Here commensurable
simply means that Γ∩G(Z) is a finite index subgroup of both Γ and G(Z);
in particular G(Z) itself is an arithmetic group.

Example A.4. For the split form of SLn we have G(Z) = SLn(Z) ⊂
G(Q) = SLn(Q). A trivial way to obtain other arithmetic groups is by
conjugation: if g ∈ SLn(Q), then g · SLn(Z) · g−1 is also arithmetic.

A more interesting collection of examples is given by the congruence
subgroups. The principal congruence subgroup Γ(N) is the group of matri-
ces congruent to the identity modulo N for some fixed integer N ≥ 1. A
congruence subgroup is a group containing Γ(N) for some N .

In higher dimensions there are many candidates to generalize the Hecke
subgroup Γ0(N). For example, one can take the subgroup of SLn(Z) that is
upper-triangular mod N . From a computational perspective, this choice is
not so good since its index in SLn(Z) is large. A better choice, and the one
that usually appears in the literature, is to define Γ0(N) to be the subgroup
of SLn(Z) with bottom row congruent to (0, . . . , 0, ∗) mod N .

A.2.5. We are almost ready to define automorphic forms. Let g be the Lie
algebra of G, and let U(g) be its universal enveloping algebra over C. Geo-
metrically, g is just the tangent space at the identity of the smooth manifold
G. The algebra U(g) is a certain complex associative algebra canonically
built from g. The usual definition would lead us a bit far afield, so we
will settle for an equivalent characterization: U(g) can be realized as a cer-
tain subalgebra of the ring of differential operators on C∞(G), the space of
smooth functions on G.

In particular, G acts on C∞(G) by left translations: given g ∈ G and
f ∈ C∞(G), we define

Lg(f)(x) := f(g−1x).

Then U(g) can be identified with the ring of all differential operators on
C∞(G) that are invariant under left translation. For our purposes the most

A.2. Automorphic Forms and Arithmetic Groups 209

important part of U(g) is its center Z(g). In terms of differential opera-
tors, Z(g) consists of those operators that are also invariant under right
translation:

Rg(f)(x) := f(xg).

Definition A.5. An automorphic form on G with respect to Γ is a function
ϕ : G → C satisfying

(1) ϕ(γg) = ϕ(g) for all γ ∈ Γ,

(2) the right translates {ϕ(gk) | k ∈ K} span a finite-dimensional space
ξ of functions,

(3) there exists an ideal J ⊂ Z(g) of finite codimension such that J
annihilates ϕ, and

(4) ϕ satisfies a certain growth condition that we do not wish to make
precise. (In the literature, ϕ is said to be slowly increasing.)

For fixed ξ and J , we denote by A (Γ, ξ, J, K) the space of all functions
satisfying the above four conditions. It is a basic theorem, due to Harish-
Chandra [HC68], that A (Γ, ξ, J, K) is finite-dimensional.

Example A.6. We can identify the cuspidal modular forms Sk(N) in the
language of Definition A.5. Given a modular form f , let ϕf ∈ C∞(SL2(R))
be the function from (A.2.6). Then the map f 7→ ϕf identifies Sk(N) with
the subspace Ak(N) of functions ϕ satisfying

(1) ϕ(γg) = ϕ(g) for all γ ∈ Γ0(N),

(2) ϕ(gm) = ζ−k
m ϕ(g) for all m ∈ SO(2),

(3) (∆ + λk)ϕ = 0, where ∆ ∈ Z(g) is the Laplace–Beltrami–Casimir
operator and

λk =
k

2

(
k

2
− 1

)
,

(4) ϕ is slowly increasing, and

(5) ϕ is cuspidal.

The first four conditions parallel Definition A.5. Item (1) is the Γ-
invariance. Item (2) implies that the right translates of ϕ by SO(2) lie in a
fixed finite-dimensional representation of SO(2). Item (3) is how holomor-
phicity appears, namely that ϕ is killed by a certain differential operator.
Finally, item (4) is the usual growth condition.

The only condition missing from the general definition is (5), which is an
extra constraint placed on ϕ to ensure that it comes from a cusp form. This
condition can be expressed by the vanishing of certain integrals (“constant
terms”); for details we refer to [Bum97, Gel75].

210 A. Computing in Higher Rank

Example A.7. Another important example appears when we set k = 0
in (2) in Example A.6 and relax (3) by requiring only that (∆ − λ)ϕ = 0
for some nonzero λ ∈ R. Such automorphic forms cannot possibly arise
from modular forms, since there are no nontrivial cusp forms of weight 0.
However, there are plenty of solutions to these conditions: they correspond
to real-analytic cuspidal modular forms of weight 0 and are known as Maass
forms. Traditionally one writes λ = (1 − s2)/4. The positivity of ∆ implies
that s ∈ (−1, 1) or is purely imaginary.

Maass forms are highly elusive objects. Selberg proved that there are in-
finitely many linearly independent Maass forms of full level (i.e., on SL2(Z)),
but to this date no explicit construction of a single one is known. (Selberg’s
argument is indirect and relies on the trace formula; for an exposition see
[Sar03].) For higher levels some explicit examples can be constructed using
theta series attached to indefinite quadratic forms [Vig77]. Numerically
Maass forms have been well studied; see for example [FL].

In general the arithmetic nature of the eigenvalues λ that correspond
to Maass forms is unknown, although a famous conjecture of Selberg states
that for congruence subgroups they satisfy the inequality λ ≥ 1/4 (in other
words, only purely imaginary s appear above). The truth of this conjecture
would have far-reaching consequences, from analytic number theory to graph
theory [Lub94].

A.2.6. As Example A.6 indicates, there is a notion of cuspidal automorphic
form. The exact definition is too technical to state here, but it involves
an appropriate generalization of the notion of constant term familiar from
modular forms.

There are also Eisenstein series [Lan66, Art79]. Again the complete
definition is technical; we only mention that there are different types of
Eisenstein series corresponding to certain subgroups of G. The Eisenstein
series that are easiest to understand are those built from cusp forms on lower
rank groups. Very explicit formulas for Eisenstein series on GL3 can be seen
in [Bum84]. For a down-to-earth exposition of some of the Eisenstein series
on GLn, we refer to [Gol05].

The decomposition of Mk(Γ0(N)) into cusp forms and Eisenstein series
also generalizes to a general group G, although the statement is much more
complicated. The result is a theorem of Langlands [Lan76] known as the
spectral decomposition of L2(Γ\G). A thorough recent presentation of this
can be found in [MW94].

A.2.7. Let A = A (Γ, K) be the space of all automorphic forms, where ξ
and J range over all possibilities. The space A is huge, and the arithmetic
significance of much of it is unknown. This is already apparent for G =

A.2. Automorphic Forms and Arithmetic Groups 211

SL2(R). The automorphic forms directly connected with arithmetic are the
holomorphic modular forms, not the Maass forms2. Thus the question arises:
which automorphic forms in A are the most natural generalization of the
modular forms?

One answer is provided by the isomorphisms (A.2.1), (A.2.3), (A.2.4).
These show that modular forms appear naturally in the cohomology of mod-
ular curves. Hence a reasonable approach is to generalize the left of (A.2.1),
(A.2.3), (A.2.4), and to study the resulting cohomology groups. This is the
approach we will take. One drawback is that it is not obvious that our
generalization has anything to do with automorphic forms, but we will see
eventually that it certainly does. So we begin by looking for an appropriate
generalization of the modular curve Y0(N).

Let G and K be as in Section A.2.3, and let X be the quotient G/K.
This is a global Riemannian symmetric space [Hel01]. One can prove that
X is contractible. Any arithmetic group Γ ⊂ G acts on X properly dis-
continuously. In particular, if Γ is torsion-free, then the quotient Γ\X is a
smooth manifold.

Unlike the modular curves, Γ\X will not have a complex structure in
general3; nevertheless, Γ\X is a very nice space. In particular, if Γ is torsion-
free, it is an Eilenberg–Mac Lane space for Γ, otherwise known as a K(Γ, 1).
This means that the only nontrivial homotopy group of Γ\X is its fundamen-
tal group, which is isomorphic to Γ, and that the universal cover of Γ\X is
contractible. Hence Γ\X is in some sense a “topological incarnation”4 of Γ.

This leads us to the notion of the group cohomology H∗(Γ; C) of Γ with
trivial complex coefficients. In the early days of algebraic topology, this was
defined to be the complex cohomology of an Eilenberg–Mac Lane space for
Γ [Bro94, Introduction, I.4]:

(A.2.7) H∗(Γ; C) = H∗(Γ\X; C).

Today there are purely algebraic approaches to H∗(Γ; C) [Bro94, III.1],
but for our purposes (A.2.7) is exactly what we need. In fact, the group
cohomology H∗(Γ; C) can be identified with the cohomology of the quotient
Γ\X even if Γ has torsion, since we are working with complex coefficients.
The cohomology groups H∗(Γ; C), where Γ is an arithmetic group, are our
proposed generalization for the weight 2 modular forms.

What about higher weights? For this we must replace the trivial co-
efficient module C with local systems, just as we did in (A.2.3). For our

2However, Maass forms play a very important indirect role in arithmetic.
3The symmetric spaces that have a complex structure are known as bounded domains, or

Hermitian symmetric spaces [Hel01].
4This apt phrase is due to Vogan [Vog97].

212 A. Computing in Higher Rank

purposes it is enough to let M be a rational finite-dimensional representa-
tion of G over the complex numbers. Any such M gives a representation of

Γ ⊂ G and thus induces a local system M̃ on Γ\X. As before, the group

cohomology H∗(Γ; M) is the cohomology H∗(Γ\X; M̃). In (A.2.3) we took
M = Mn, the nth symmetric power of the standard representation. For a
general group G there are many kinds of representations to consider. In any
case, we contend that the cohomology spaces

H∗(Γ; M) = H∗(Γ\X; M̃)

are a good generalization of the spaces of modular forms.

A.2.8. It is certainly not obvious that the cohomology groups H∗(Γ; M)
have anything to do with automorphic forms, although the isomorphisms
(A.2.1), (A.2.3), (A.2.4) look promising.

The connection is provided by a deep theorem of Franke [Fra98], which
asserts that

(1) the cohomology groups H∗(Γ; M) can be directly computed in
terms of certain automorphic forms (the automorphic forms of “co-
homological type,” also known as those with “nonvanishing (g, K)
cohomology” [VZ84]); and

(2) there is a direct sum decomposition

(A.2.8) H∗(Γ; M) = H∗
cusp(Γ; M) ⊕

⊕

{P}
H∗

{P}(Γ; M),

where the sum is taken over the set of classes of associate proper
Q-parabolic subgroups of G.

The precise version of statement (1) is known in the literature as the Borel
conjecture. Statement (2) parallels Langlands’s spectral decomposition of
L2(Γ\G).

Example A.8. For Γ = Γ0(N) ⊂ SL2(Z), the decomposition (A.2.8) is

exactly (A.2.4). The cusp forms Sk(N)⊕Sk(N) correspond to the summand
H1

cusp(Γ; M). There is one class of proper Q-parabolic subgroups in SL2(R),
represented by the Borel subgroup of upper-triangular matrices. Hence only
one term appears in big direct sum on the right of (A.2.8), which is the
Eisenstein term Ek.

The summand H∗
cusp(Γ; M) of (A.2.8) is called the cuspidal cohomol-

ogy; this is the subspace of classes represented by cuspidal automorphic
forms. The remaining summands constitute the Eisenstein cohomology of Γ
[Har91]. In particular the summand indexed by {P} is constructed using
Eisenstein series attached to certain cuspidal automorphic forms on lower

A.3. Combinatorial Models for Group Cohomology 213

rank groups. Hence H∗
cusp(Γ; M) is in some sense the most important part

of the cohomology: all the rest can be built systematically from cuspidal co-
homology on lower rank groups5. This leads us to our basic computational
problem:

Problem A.9. Develop tools to compute explicitly the cohomology spaces
H∗(Γ; M) and to identify the cuspidal subspace H∗

cusp(Γ; M).

A.3. Combinatorial Models for Group Cohomology

A.3.1. In this section, we restrict attention to G = SLn(R) and Γ, a
congruence subgroup of SLn(Z). By the previous section, we can study the

group cohomology H∗(Γ; M) by studying the cohomology H∗(Γ\X; M̃).
The latter spaces can be studied using standard topological techniques, such
as taking the cohomology of complexes associated to cellular decompositions
of Γ\X. For SLn(R), one can construct such decompositions using a version
of explicit reduction theory of real positive-definite quadratic forms due to
Voronǒı [Vor08]. The goal of this section is to explain how this is done. We
also discuss how the cohomology can be explicitly studied for congruence
subgroups of SL3(Z).

A.3.2. Let V be the R-vector space of all symmetric n × n matrices, and
let C ⊂ V be the subset of positive-definite matrices. The space C can be
identified with the space of all real positive-definite quadratic forms in n
variables: in coordinates, if x = (x1, . . . , xn)t ∈ Rn (column vector), then
the matrix A ∈ C induces the quadratic form

x 7−→ xtAx,

and it is well known that any positive-definite quadratic form arises in this
way. The space C is a cone, in that it is preserved by homotheties: if
x ∈ C, then λx ∈ C for all λ ∈ R>0. It is also convex: if x1, x2 ∈ C, then
tx1 +(1− t)x2 ∈ C for t ∈ [0, 1]. Let D be the quotient of C by homotheties.

Example A.10. The case n = 2 is illustrative. We can take coordinates on
V ≃ R3 by representing any matrix in V as

(
x y
y z

)
, x, y, z ∈ R.

The subset of singular matrices Q = {xz − y2 = 0} is a quadric cone in
V dividing the complement V r Q into three connected components. The
component containing the identity matrix is the cone C of positive-definite
matrices. The quotient D can be identified with an open 2-disk.

5This is a bit of an oversimplification, since it is a highly nontrivial problem to decide when
cusp cohomology from lower rank groups appears in Γ. However, many results are known; as a
selection we mention [Har91, Har87, LS04]

214 A. Computing in Higher Rank

The group G acts on C on the left by

(g, c) 7−→ gcgt.

This action commutes with that of the homotheties and thus descends to a
G-action on D. One can show that G acts transitively on D and that the
stabilizer of the image of the identity matrix is K = SO(n). Hence we may
identify D with our symmetric space X = SLn(R)/ SO(n). We will do this in
the sequel, using the notation D when we want to emphasize the coordinates
coming from the linear structure of C ⊂ V and using the notation X for the
quotient G/K.

We can make the identification D ≃ X more explicit. If g ∈ SLn(R),
then the map

(A.3.1) g 7−→ ggt

takes g to a symmetric positive-definite matrix. Any coset gK is taken to the
same matrix since KKt = Id. Thus (A.3.1) identifies G/K with a subset C1

of C, namely those positive-definite symmetric matrices with determinant
1. It is easy to see that C1 maps diffeomorphically onto D.

The inverse map C1 → G/K is more complicated. Given a determinant
1 positive-definite symmetric matrix A, one must find g ∈ SLn(R) such that
ggt = A. Such a representation always exists, with g determined uniquely up
to right multiplication by an element of K. In computational linear algebra,
such a g can be constructed through Cholesky decomposition of A.

The group SLn(Z) acts on C via the G-action and does so properly
discontinuously. This is the “unimodular change of variables” action on
quadratic forms [Ser73, V.1.1]. Under our identification of D with X, this
is the usual action of SLn(Z) by left translation from Section A.2.7.

A.3.3. Now consider the group cohomology H∗(Γ; M) = H∗(Γ\X; M̃).
The identification D ≃ X shows that the dimension of X is n(n + 1)/2 −
1. Hence H i(Γ; M) vanishes if i > n(n + 1)/2 − 1. Since dim X grows
quadratically in n, there are many potentially interesting cohomology groups
to study.

However, it turns out that there is some additional vanishing of the
cohomology for deeper (topological) reasons. For n = 2, this is easy to see.
The quotient Γ\h is homeomorphic to a topological surface with punctures,
corresponding to the cusps of Γ. Any such surface S can be retracted onto a
finite graph simply by “stretching” S along its punctures. Thus H2(Γ; M) =
0, even though dim Γ\h = 2.

For Γ ⊂ SLn(Z), a theorem of Borel–Serre implies that H i(Γ; M) van-
ishes if i > dim X − n + 1 = n(n − 1)/2 [BS73, Theorem 11.4.4]. The
number ν = n(n − 1)/2 is called the virtual cohomological dimension of Γ

A.3. Combinatorial Models for Group Cohomology 215

and is denoted vcdΓ. Thus we only need to consider cohomology in degrees
i ≤ ν.

Moreover we know from Section A.2.8 that the most interesting part of
the cohomology is the cuspidal cohomology. In what degrees can it live?
For n = 2, there is only one interesting cohomology group H1(Γ; M), and
it contains the cuspidal cohomology. For higher dimensions, the situation
is quite different: for most i, the subspace H i

cusp(Γ; M) vanishes! In fact in
the late 1970’s Borel, Wallach, and Zuckerman observed that the cuspidal
cohomology can only live in the cohomological degrees lying in an interval
around (dimX)/2 of size linear in n. An explicit description of this interval
is given in [Sch86, Proposition 3.5]; one can also look at Table A.3.1, from
which the precise statement is easy to determine.

Another feature of Table A.3.1 deserves to be mentioned. There are
exactly two values of n, namely n = 2, 3, such that virtual cohomological
dimension equals the upper limit of the cuspidal range. This will have
implications later, when we study the action of the Hecke operators on the
cohomology.

n 2 3 4 5 6 7 8 9

dim X 2 5 9 14 20 27 35 44
vcdΓ 1 3 6 10 15 21 28 36

top degree of H∗
cusp 1 3 5 8 11 15 19 24

bottom degree of H∗
cusp 1 2 4 6 9 12 16 20

Table A.3.1. The virtual cohomological dimension and the cuspidal
range for subgroups of SLn(Z).

A.3.4. Recall that a point in Zn is said to be primitive if the greatest
common divisor of its coordinates is 1. In particular, a primitive point is
nonzero. Let P ⊂ Zn be the set of primitive points. Any v ∈ P, written as
a column vector, determines a rank-1 symmetric matrix q(v) in the closure C̄
via q(v) = vvt. The Voronǒı polyhedron Π is defined to be the closed convex
hull in C̄ of the points q(v), as v ranges over P. Note that by construction,
SLn(Z) acts on Π, since SLn(Z) preserves the set {q(v)} and acts linearly
on V .

Example A.11. Figure A.3.1 represents a crude attempt to show what Π
looks like for n = 2. These images were constructed by computing a large
subset of the points q(v) and taking the convex hull (we took all points
v ∈ P such that Trace q(v) < N for some large integer N). From a distance,
the polyhedron Π looks almost indistinguishable from the cone C; this is
somewhat conveyed by the right of Figure A.3.1. Unfortunately Π is not

216 A. Computing in Higher Rank

locally finite, so we really cannot produce an accurate picture. To get a
more accurate image, the reader should imagine that each vertex meets
infinitely many edges. On the other hand, Π is not hopelessly complex:
each maximal face is a triangle, as the pictures suggest.

(a) (b)

Figure A.3.1. The polyhedron Π for SL2(Z). In (a) we see Π from the
origin, in (b) from the side. The small triangle at the right center of (a)
is the facet with vertices {q(e1), q(e2), q(e1 + e2)}, where {e1, e2} is the
standard basis of Z2. In (b) the x-axis runs along the top from left to
right, and the z-axis runs down the left side. The facet from (a) is the
little triangle at the top left corner of (b).

A.3.5. The polyhedron Π is quite complicated: it has infinitely many faces
and is not locally finite. However, one of Voronǒı’s great insights is that Π
is actually not as complicated as it seems.

For any A ∈ C, let µ(A) be the minimum value attained by A on P and
let M(A) ⊂ P be the set on which A attains µ(A). Note that µ(A) > 0 and
M(A) is finite since A is positive-definite. Then A is called perfect if it is
recoverable from the knowledge of the pair (µ(A), M(A)). In other words,
given (µ(A), M(A)), we can write a system of linear equations

(A.3.2) mZmt = µ(A), m ∈ M(A),

where Z = (zij) is a symmetric matrix of variables. Then A is perfect if and
only if A is the unique solution to the system (A.3.2).

Example A.12. The quadratic form Q(x, y) = x2−xy +y2 is perfect. The
smallest nontrivial value it attains on Z2 is µ(Q) = 1, and it does so on the
columns of

M(Q) =

(
1 0 1
0 1 1

)

A.3. Combinatorial Models for Group Cohomology 217

and their negatives. Letting αx2 +βxy +γy2 be an undetermined quadratic
form and applying the data (µ(Q), M(Q)), we are led to the system of linear
equations

α = 1, γ = 1, α + β + γ = 1.

From this we recover Q(x, y).

Example A.13. The quadratic form Q′(x, y) = x2 + y2 is not perfect.
Again the smallest nontrivial value of Q′ on Z2 is m(Q′) = 1, attained on
the columns of

M(Q′) =

(
1 0
0 1

)

and their negatives. But every member of the one-parameter family of qua-
dratic forms

(A.3.3) x2 + αxy + y2, α ∈ (−1, 1)

has the same set of minimal vectors, and so Q′ cannot be recovered from
the knowledge of m(Q′), M(Q′).

Example A.14. Example A.12 generalizes to all n. Define

(A.3.4) An(x) :=
n∑

i=1

x2
i −

∑

1≤i<j≤n

xixj .

Then An is perfect for all n. We have µ(An) = 1, and M(An) consists of all
points of the form

±(ei + ei+1 + · · · + ei+k), 1 ≤ i ≤ n, i ≤ i + k ≤ n,

where {ei} is the standard basis of Zn. This quadratic form is closely related
to the An root lattice [FH91], which explains its name. It is one of two
infinite families of perfect forms studied by Voronǒı (the other is related to
the Dn root lattice).

We can now summarize Voronǒı’s main results:

(1) There are finitely many equivalence classes of perfect forms modulo
the action of SLn(Z). Voronǒı even gave an explicit algorithm to
determine all the perfect forms of a given dimension.

(2) The facets of Π, in other words the codimension 1 faces, are in bijec-
tion with the rank n perfect quadratic forms. Under this correspon-
dence the minimal vectors M(A) determine a facet FA by taking
the convex hull in C̄ of the finite point set {q(m) | m ∈ M(A)}.
Hence there are finitely many faces of Π modulo SLn(Z) and thus
finitely many modulo any finite index subgroup Γ.

218 A. Computing in Higher Rank

(3) Let V be the set of cones over the faces of Π. Then V is a fan,
which means (i) if σ ∈ V , then any face of σ is also in V ; and
(ii) if σ, σ′ ∈ V , then σ ∩ σ′ is a common face of each6. The
fan V provides a reduction theory for C in the following sense:
any point x ∈ C is contained in a unique σ(x) ∈ V , and the
set {γ ∈ SLn(Z) | γ · σ(x) = σ(x)} is finite. Voronǒı also gave an
explicit algorithm to determine σ(x) given x, the Voronǒı reduction
algorithm.

The number Nperf of equivalence classes of perfect forms modulo the
action of GLn(Z) grows rapidly with n (Table A.3.2); the complete classifi-
cation is known only for n ≤ 8. For a list of perfect forms up to n = 7, see
[CS88]. For a recent comprehensive treatment of perfect forms, with many
historical remarks, see [Mar03].

Dimension Nperf Authors

2 1 Voronǒı [Vor08]
3 1 ibid.
4 2 ibid.
5 3 ibid.
6 7 Barnes [Bar57]
7 33 Jaquet-Chiffelle [Jaq91, JC93]
8 10916 Dutour–Schürmann–Vallentin [DVS05]

Table A.3.2. The number Nperf of equivalence classes of perfect forms.

A.3.6. Our goal now is to describe how the Voronǒı fan V can be used to
compute the cohomology H∗(Γ; M). The idea is to use the cones in V to
chop the quotient D into pieces.

For any σ ∈ V , let σ◦ be the open cone obtained by taking the comple-
ment in σ of its proper faces. Then after taking the quotient by homotheties,
the cones {σ◦ ∩ C | σ ∈ V } pass to locally closed subsets of D. Let C be
the set of these images.

Any c ∈ C is a topological cell, i.e., it is homeomorphic to an open ball,
since c is homeomorphic to a face of Π. Because C comes from the fan V ,
the cells in C have good incidence properties: the closure in D of any c ∈ C

can be written as a finite disjoint union of elements of C . Moreover, C is
locally finite: by taking quotients of all the σ◦ meeting C, we have eliminated
the open cones lying in C̄, and it is these cones that are responsible for the
failure of local finiteness of V . We summarize these properties by saying

6Strictly speaking, Voronǒı actually showed that every codimension 1 cone is contained in
two top-dimensional cones.

A.3. Combinatorial Models for Group Cohomology 219

that C gives a cellular decomposition of D. Clearly SLn(Z) acts on C , since
C is constructed using the fan V . Thus we obtain a cellular decomposition7

of Γ\D for any torsion-free Γ. We call C the Voronǒı decomposition of D.

Some care must be taken in using these cells to perform topological
computations. The problem is that even though the individual pieces are
homeomorphic to balls and are glued together nicely, the boundaries of
the closures of the pieces are not homeomorphic to spheres in general. (If
they were, then the Voronǒı decomposition would give rise to a regular cell
complex [CF67], which can be used as a substitute for a simplicial or CW
complex in homology computations.) Nevertheless, there is a way to remedy
this.

Recall that a subspace A of a topological space B is a strong deformation
retract if there is a continuous map f : B × [0, 1] → B such that f(b, 0) = b,
f(b, 1) ∈ A, and f(a, t) = a for all a ∈ A. For such pairs A ⊂ B we
have H∗(A) = H∗(B). One can show that there is a strong deformation
retraction from C to itself equivariant under the actions of both SLn(Z) and
the homotheties and that the image of the retraction modulo homotheties,
denoted W , is naturally a locally finite regular cell complex of dimension ν.
Moreover, the cells in W are in bijective, inclusion-reversing correspondence
with the cells in C . In particular, if a cell in C has codimension d, the
corresponding cell in W has dimension d. Thus, for example, the vertices
of W modulo SLn(Z) are in bijection with the top-dimensional cells in C ,
which are in bijection with equivalence classes of perfect forms.

In the literature W is called the well-rounded retract. The subspace
W ⊂ D ≃ X has a beautiful geometric interpretation. The quotient

SLn(Z)\X = SLn(Z)\SLn(R)/ SO(n)

can be interpreted as the moduli space of lattices in Rn modulo the equiv-
alence relation of rotation and positive scaling (cf. [AG00]; for n = 2 one
can also see [Ser73, VII, Proposition 3]). Then W corresponds to those
lattices whose shortest nonzero vectors span Rn. This is the origin of the
name: the shortest vectors of such a lattice are “more round” than those of
a generic lattice.

The space W was known classically for n = 2 and was constructed
for n ≥ 3 by Lannes and Soulé, although Soulé only published the case
n = 3 [Sou75]. The construction for all n appears in work of Ash [Ash80,

Ash84], who also generalized W to a much larger class of groups. Explicit
computations of the cell structure of W have only been performed up to

7If Γ has torsion, then cells in C can have nontrivial stabilizers in Γ, and thus Γ\C should
be considered as an “orbifold” cellular decomposition.

220 A. Computing in Higher Rank

n = 6 [EVGS02]. Certainly computing W explicitly for n = 8 seems very
difficult, as Table A.3.2 indicates.

Example A.15. Figure A.3.2 illustrates C and W for SL2(Z). As in Ex-
ample A.11, the polyhedron Π is 3-dimensional, and so the Voronǒı fan V

has cones of dimensions 0, 1, 2, 3. The 1-cones of V , which correspond to the
vertices of Π, pass to infinitely many points on the boundary ∂D̄ = D̄ r D.
The 3-cones become triangles in D̄ with vertices on ∂D̄. In fact, the iden-
tifications D ≃ SL2(R)/ SO(2) ≃ h realize D as the Klein model for the
hyperbolic plane, in which geodesics are represented by Euclidean line seg-
ments. Hence, the images of the 1-cones of V are none other than the usual
cusps of h, and the triangles are the SL2(Z)-translates of the ideal triangle
with vertices {0, 1,∞}. These triangles form a tessellation of h sometimes
known as the Farey tessellation. The edges of the Voronǒı are the SL2(Z)-
translates of the ideal geodesic between 0 and ∞. After adjoining cusps
and passing to the quotient X0(N), these edges become the supports of
the Manin symbols from Section 8.2 (cf. Figure 3.2.1). This example also
shows how the Voronǒı decomposition fails to be a regular cell complex: the
boundaries of the closures of the triangles in D do not contain the vertices
and thus are not homeomorphic to circles.

The virtual cohomological dimension of SL2(Z) is 1. Hence the well-
rounded retract W is a graph (Figures A.3.2 and A.3.3). Note that W is
not a manifold. The vertices of W are in bijection with the Farey triangles—
each vertex lies at the center of the corresponding triangle—and the edges
are in bijection with the Manin symbols. Under the map D → h, the graph
W becomes the familiar “PSL2-tree” embedded in h, with vertices at the
order 3 elliptic points (Figure A.3.3).

A.3.7. We now discuss the example SL3(Z) in some detail. This example
gives a good feeling for how the general situation compares to the case n = 2.

We begin with the Voronǒı fan V . The cone C is 6-dimensional, and the
quotient D is 5-dimensional. There is one equivalence class of perfect forms
modulo the action of SL3(Z), represented by the form (A.3.4). Hence there
are 12 minimal vectors; six are the columns of the matrix

(A.3.5)




1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1


 ,

and the remaining six are the negatives of these. This implies that the cone
σ corresponding to this form is 6-dimensional and simplicial. The latter
implies that the faces of σ are the cones generated by {q(v) | v ∈ S}, where
S ranges over all subsets of (A.3.5). To get the full structure of the fan, one

A.3. Combinatorial Models for Group Cohomology 221

Figure A.3.2. The Voronǒı decomposition and the retract in D.

Figure A.3.3. The Voronǒı decomposition and the retract in h.

must determine the SL3(Z) orbits of faces, as well as which faces lie in the
boundary ∂C̄ = C̄ r C. After some pleasant computation, one finds:

(1) There is one equivalence class modulo SL3(Z) for each of the 6-, 5-,
2-, and 1-dimensional cones.

(2) There are two equivalence classes of the 4-dimensional cones, rep-
resented by the sets of minimal vectors




1 0 0 1
0 1 0 1
0 0 1 1


 and




1 0 0 1
0 1 0 1
0 0 1 0


 .

(3) There are two equivalence classes of the 3-dimensional cones, rep-
resented by the sets of minimal vectors




1 0 0
0 1 0
0 0 1


 and




1 0 1
0 1 1
0 0 0


 .

222 A. Computing in Higher Rank

The second type of 3-cone lies in ∂C̄ and thus does not determine
a cell in C .

(4) The 2- and 1-dimensional cones lie entirely in ∂C̄ and do not de-
termine cells in C .

After passing from C to D, the cones of dimension k determine cells
of dimension k − 1. Therefore, modulo the action of SL3(Z) there are five
types of cells in the Voronǒı decomposition C , with dimensions from 5 to 2.
We denote these cell types by c5, c4, c3a, c3b, and c2. Here c3a corresponds
to the first type of 4-cone in item (2) above, and c3b to the second. For
a beautiful way to index the cells of C using configurations in projective
spaces, see [McC91].

The virtual cohomological dimension of SL3(Z) is 3, which means that
the retract W is a 3-dimensional cell complex. The closures of the top-
dimensional cells in W , which are in bijection with the Voronǒı cells of type
c2, are homeomorphic to solid cubes truncated along two pairs of opposite
corners (Figure A.3.4). To compute this, one must see how many Voronǒı
cells of a given type contain a fixed cell of type c2 (since the inclusions of
cells in W are the opposite of those in C).

A table of the incidence relations between the cells of C and W is given
in Table A.3.3. To interpret the table, let m = m(X, Y) be the integer in
row X and column Y .

• If m is below the diagonal, then the boundary of a cell of type Y
contains m cells of type X.

• If m is above the diagonal, then a cell of type Y appears in the
boundary of m cells of type X.

For instance, the entry 16 in row c5 and column c2 means that a Voronǒı
cell of type c2 meets the boundaries of 16 cells of type c5. This is the same
as the number of vertices in the Soulé cube (Figure A.3.4). Investigation
of the table shows that the triangular (respectively, hexagonal) faces of the
Soulé cube correspond to the Voronǒı cells of type c3a (resp., c3b).

Figure A.3.5 shows a Schlegel diagram for the Soulé cube. One vertex is
at infinity; this is indicated by the arrows on three of the edges. This Soulé
cube is dual to the Voronǒı cell C of type c2 with minimal vectors given by
the columns of the identity matrix. The labels on the 2-faces are additional
minimal vectors that show which Voronǒı cells contain C. For example, the
central triangle labelled with (1, 1, 1)t is dual to the Voronǒı cell of type c3a

with minimal vectors given by those of C together with (1, 1, 1)t. Cells of
type c4 containing C in their closure correspond to the edges of the figure;
the minimal vectors for a given edge are those of C together with the two
vectors on the 2-faces containing the edge. Similarly, one can read off the

A.3. Combinatorial Models for Group Cohomology 223

minimal vectors of the top-dimensional Voronǒı cells containing C, which
correspond to the vertices of Figure A.3.5.

c5 c4 c3a c3b c2

c5 • 2 3 6 16
c4 6 • 3 6 24
c3a 3 1 • • 4
c3b 12 4 • • 6
c2 12 8 4 3 •

Table A.3.3. Incidence relations in the Voronǒı decomposition and the
retract for SL3(Z).

Figure A.3.4. The Soulé cube.

A.3.8. Now let p be a prime, and let Γ = Γ0(p) ⊂ SL3(Z) be the Hecke
subgroup of matrices with bottom row congruent to (0, 0, ∗) mod p (Ex-
ample A.4). The virtual cohomological dimension of Γ is 3, and the cusp
cohomology with constant coefficients can appear in degrees 2 and 3. One
can show that the cusp cohomology in degree 2 is dual to that in degree 3,
so for computational purposes it suffices to focus on degree 3.

In terms of W , these will be cochains supported on the 3-cells. Unfortu-
nately we cannot work directly with the quotient Γ\W since Γ has torsion:
there will be cells taken to themselves by the Γ-action, and thus the cells of
W need to be subdivided to induce the structure of a cell complex on Γ\W .
Thus when Γ has torsion, the “set of 3-cells modulo Γ” unfortunately makes
no sense.

To circumvent this problem, one can mimic the idea of Manin symbols.
The quotient Γ\SL3(Z) is in bijection with the finite projective plane P2(Fp),

224 A. Computing in Higher Rank

(1, 1, 1)t

(−1, 1, 1)t

(1,−1, 1)t

(1, 1,−1)t

(1, 1, 0)t

(1,−1, 0)t

(0, 1, 1)t

(0, 1,−1)t(1, 0, 1)t

(1, 0,−1)t

Figure A.3.5. A Schlegel diagram of a Soulé cube, showing the mini-
mal vectors that correspond to the 2-faces.

where Fp is the field with p elements (cf. Proposition 3.10). The group
SL3(Z) acts transitively on the set of all 3-cells of W ; if we fix one such
cell w, its stabilizer Stab(w) = {γ ∈ SL3(Z) | γw = w} is a finite subgroup
of SL3(Z). Hence the set of 3-cells modulo Γ should be interpreted as the
set of orbits in P2(Fp) of the finite group Stab(w). This suggests describing
H3(Γ; C) in terms of the space S of complex-valued functions f : P2(Fp) →
C. To carry this out, there are two problems:

(1) How do we explicitly describe H3(Γ; C) in terms of S ?

(2) How can we isolate the cuspidal subspace H3
cusp(Γ; C) ⊂ H3(Γ; C)

in terms of our description?

Fully describing the solutions to these problems is rather complicated. We
content ourselves with presenting the following theorem, which collects to-
gether several statements in [AGG84]. This result should be compared to
Theorems 3.13 and 8.4.

Theorem A.16 (Theorem 3.19 and Summary 3.23 of [AGG84]). We have

dimH3(Γ0(p); C) = dim H3
cusp(Γ0(p); C) + 2Sp,

where Sp is the dimension of the space of weight 2 holomorphic cusp forms
on Γ0(p) ⊂ SL2(Z). Moreover, the cuspidal cohomology H3

cusp(Γ0(p); C) is

isomorphic to the vector space of functions f : P2(Fp) → C satisfying

(1) f(x, y, z) = f(z, x, y) = f(−x, y, z) = −f(y, x, z),

(2) f(x, y, z) + f(−y, x − y, z) + f(y − x,−x, z) = 0,

(3) f(x, y, 0) = 0, and

A.4. Hecke Operators and Modular Symbols 225

(4)
∑p−1

z=1 f(x, y, z) = 0.

Unlike subgroups of SL2(Z), cuspidal cohomology is apparently much
rarer for Γ0(p) ⊂ SL3(Z). The computations of [AGG84, vGvdKTV97]
show that the only prime levels p ≤ 337 with nonvanishing cusp cohomology
are 53, 61, 79, 89, and 223. In all these examples, the cuspidal subspace is
2-dimensional.

For more details of how to implement such computations, we refer to
[AGG84, vGvdKTV97]. For further details about the additional compli-
cations arising for higher rank groups, in particular subgroups of SL4(Z),
see [AGM02, Section 3].

A.4. Hecke Operators and Modular Symbols

A.4.1. There is one ingredient missing so far in our discussion of the co-
homology of arithmetic groups, namely the Hecke operators. These are an
essential tool in the study of modular forms. Indeed, the forms with the
most arithmetic significance are the Hecke eigenforms, and the connection
with arithmetic is revealed by the Hecke eigenvalues.

In higher rank the situation is similar. There is an algebra of Hecke
operators acting on the cohomology spaces H∗(Γ; M). The eigenvalues of
these operators are conjecturally related to certain representations of the
Galois group. Just as in the case G = SL2(R), we need tools to compute
the Hecke action.

In this section we discuss this problem. We begin with a general de-
scription of the Hecke operators and how they act on cohomology. Then we
focus on one particular cohomology group, namely the top degree Hν(Γ; C),
where ν = vcd(Γ) and Γ has finite index in SLn(Z). This is the setting
that generalizes the modular symbols method from Chapter 8. We con-
clude by giving examples of Hecke eigenclasses in the cuspidal cohomology
of Γ0(p) ⊂ SL3(Z).

A.4.2. Let g ∈ SLn(Q). The group Γ′ = Γ ∩ g−1Γg has finite index in
both Γ and g−1Γg. The element g determines a diagram C(g)

Γ′\X
s

{{xxxxxxxx
t

##FFFFFFFF

Γ\X Γ\X

226 A. Computing in Higher Rank

called a Hecke correspondence. The map s is induced by the inclusion Γ′ ⊂ Γ,
while t is induced by the inclusion Γ′ ⊂ g−1Γg followed by the diffeomor-
phism g−1Γg\X → Γ\X given by left multiplication by g. Specifically,

s(Γ′x) = Γx, t(Γ′x) = Γgx, x ∈ X.

The maps s and t are finite-to-one, since the indices [Γ′ : Γ] and [Γ′ :
g−1Γg] are finite. This implies that we obtain maps on cohomology

s∗ : H∗(Γ\X) → H∗(Γ′\X), t∗ : H∗(Γ′\X) → H∗(Γ\X).

Here the map s∗ is the usual induced map on cohomology, while the “wrong-
way” map8 t∗ is given by summing a class over the finite fibers of t. These
maps can be composed to give a map

Tg := t∗s
∗ : H∗(Γ\X; M̃) −→ H∗(Γ\X; M̃).

This is called the Hecke operator associated to g. There is an obvious notion
of isomorphism of Hecke correspondences. One can show that up to iso-
morphism, the correspondence C(g) and thus the Hecke operator Tg depend
only on the double coset ΓgΓ. One can compose Hecke correspondences,
and thus we obtain an algebra of operators acting on the cohomology, just
as in the classical case.

Example A.17. Let n = 2, and let Γ = SL2(Z). If we take g = diag(1, p),
where p is a prime, then the action of Tg on H1(Γ; Mk−2) is the same as
the action of the classical Hecke operator Tp on the weight k holomorphic
modular forms. If we take Γ = Γ0(N), we obtain an operator T (p) for
all p prime to N , and the algebra of Hecke operators coincides with the
(semisimple) Hecke algebra generated by the Tp, (p, N) = 1. For p|N , one
can also describe the Up operators in this language.

Example A.18. Now let n > 2 and let Γ = SLn(Z). The picture is
very similar, except that now there are several Hecke operators attached
to any prime p. In fact there are n − 1 operators T (p, k), k = 1, . . . , n − 1.
The operator T (p, k) is associated to the correspondence C(g), where g =
diag(1, . . . , 1, p, . . . , p) and where p occurs k times. If we consider the con-
gruence subgroups Γ0(N), we have operators T (p, k) for (p, N) = 1 and
analogues of the Up operators for p|N .

Just as in the classical case, any double coset ΓgΓ can be written as a
disjoint union of left cosets

ΓgΓ =
∐

h∈Ω

Γh

8Under the identification H∗(Γ\X; fM) ≃ H∗(Γ; M), the map t∗ becomes the transfer map
in group cohomology [Bro94, III.9].

A.4. Hecke Operators and Modular Symbols 227

for a certain finite set of n×n integral matrices Ω. For the operator T (p, k),
the set Ω can be taken to be all upper-triangular matrices of the form [Kri90,
Proposition 7.2] 


pe1 aij

. . .

pen


 ,

where

• ei ∈ {0, 1} and exactly k of the ei are equal to 1 and

• aij = 0 unless ei = 0 and ej = 1, in which case aij satisfies 0 ≤
aij < p.

Remark A.19. The number of coset representatives for the operator T (p, k)
is the same as the number of points in the finite Grassmannian G(k, n)(Fp).
A similar phenomenon is true for the Hecke operators for any group G,
although there are some subtleties [Gro98].

A.4.3. Recall that in Section A.3.6 we constructed the Voronǒı decom-
position C and the well-rounded retract W and that we can use them to
compute the cohomology H∗(Γ; M). Unfortunately, we cannot directly use
them to compute the action of the Hecke operators on cohomology, since
the Hecke operators do not act cellularly on C or W . The problem is that
the Hecke image of a cell in C (or W) is usually not a union of cells in
C (or W). This is already apparent for n = 2. The edges of C are the
SL2(Z)-translates of the ideal geodesic τ from 0 to ∞ (Example A.15). Ap-
plying a Hecke operator takes such an edge to a union of ideal geodesics,
each with vertices at a pair of cusps. In general such geodesics are not an
SL2(Z)-translate of τ .

For n = 2, one solution is to work with all possible ideal geodesics
with vertices at the cusps, in other words the space of modular symbols M2

from Section 3.2. Manin’s trick (Proposition 3.11) shows how to write any
modular symbol as a linear combination of unimodular symbols, by which
we mean modular symbols supported on the edges of C . These are the ideas
we now generalize to all n.

Definition A.20. Let S0 be the Q-vector space spanned by the symbols
v = [v1, . . . , vn], where vi ∈ Qn r {0}, modulo the following relations:

(1) If τ is a permutation on n letters, then

[v1, . . . , vn] = sign(τ)[τ(v1), . . . , τ(vn)],

where sign(τ) is the sign of τ .

(2) If q ∈ Q×, then

[qv1, v2 . . . , vn] = [v1, . . . , vn].

228 A. Computing in Higher Rank

(3) If the points v1, . . . , vn are linearly dependent, then v = 0.

Let B ⊂ S0 be the subspace generated by linear combinations of the form

(A.4.1)
n∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vn],

where v0, . . . , vn ∈ Qn r {0} and where v̂i means to omit vi.

We call S0 the space of modular symbols. We caution the reader that
there are some differences in what we call modular symbols and those found
in Section 3.2 and Definition 8.2; we compare them in Section A.4.4. The
group SLn(Q) acts on S0 by left multiplication: g · v = [gv1, . . . , gvn]. This
action preserves the subspace B and thus induces an action on the quotient
M = S0/B. For Γ ⊂ SLn(Z) a finite index subgroup, let MΓ be the space
of Γ-coinvariants in M . In other words, MΓ is the quotient of M by the
subspace generated by {m − γ · m | γ ∈ Γ}.

The relationship between modular symbols and the cohomology of Γ is
given by the following theorem, first proved for SLn by Ash and Rudolph
[AR79] and by Ash for general G [Ash86]:

Theorem A.21 ([Ash86, AR79]). Let Γ ⊂ SLn(Z) be a finite index sub-
group. There is an isomorphism

(A.4.2) MΓ
∼−→ Hν(Γ; Q),

where Γ acts trivially on Q and where ν = vcd(Γ).

We remark that Theorem A.21 remains true if Q is replaced with non-
trivial coefficients as in Section A.2.7. Moreover, if Γ is assumed to be
torsion-free then we can replace Q with Z.

The great virtue of MΓ is that it admits an action of the Hecke operators.
Given a Hecke operator Tg, write the double coset ΓgΓ as a disjoint union
of left cosets

(A.4.3) ΓgΓ =
∐

h∈Ω

Γh

as in Example A.18. Any class in MΓ can be lifted to a representative
η =

∑
q(v)v ∈ S0, where q(v) ∈ Q and almost all q(v) vanish. Then we

define

(A.4.4) Tg(v) =
∑

h∈Ω

h · v

and extend to η by linearity. The right side of (A.4.4) depends on the
choices of η and Ω, but after taking quotients and coinvariants, we obtain a
well-defined action on cohomology via (A.4.2).

A.4. Hecke Operators and Modular Symbols 229

A.4.4. The space S0 is closely related to the space M2 from Section 3.2
and Section 8.1. Indeed, M2 was defined to be the quotient (F/R)/(F/R)tor,
where F is the free abelian group generated by ordered pairs

(A.4.5) {α, β}, α, β ∈ P1(Q),

and R is the subgroup generated by elements of the form

(A.4.6) {α, β} + {β, γ} + {γ, α}, α, β, γ ∈ P1(Q).

The only new feature in Definition A.20 is item (3). For n = 2 this corre-
sponds to the condition {α, α} = 0, which follows from (A.4.6). We have

S0/B ≃ M2 ⊗ Q.

Hence there are two differences between S0 and M2: our notion of modular
symbols uses rational coefficients instead of integral coefficients and is the
space of symbols before dividing out by the subspace of relations B; we
further caution the reader that this is somewhat at odds with the literature.

We also remark that the general arbitrary weight definition of modular
symbols for a subgroup Γ ⊂ SL2(Z) given in Section 8.1 also includes taking
Γ-coinvariants, as well as extra data for a coefficient system. We have not
included the latter data since our emphasis is trivial coefficients, although
it would be easy to do so in the spirit of Section 8.1.

Elements of M2 also have a geometric interpretation: the symbol {α, β}
corresponds to the ideal geodesic in h with endpoints at the cusps α and
β. We have a similar picture for the symbols v = [v1, . . . , vn]. We can
assume that each vi is primitive, which means that each vi determines a
vertex of the Voronǒı polyhedron Π. The rational cone generated by these
vertices determines a subset ∆(v) ⊂ D, where D is the linear model of the
symmetric space X = SLn(R)/ SO(n) from Section A.3.2. This subset ∆(v)
is then an “ideal simplex” in X. There is also a connection between ∆(v)
and torus orbits in X; we refer to [Ash86] for a related discussion.

A.4.5. Now we need a generalization of the Manin trick (Section 3.3.1).
This is known in the literature as the modular symbols algorithm.

We can define a kind of norm function on S0 as follows. Let v =
[v1, . . . , vn] be a modular symbol. For each vi, choose λi ∈ Q× such that
λivi is primitive. Then we define

‖v‖ := |det(λ1v1, . . . , λnvn)| ∈ Z.

Note that ‖v‖ is well defined, since the λi are unique up to sign, and per-
muting the vi only changes the determinant by a sign. We extend ‖ ‖ to
all of S0 by taking the maximum of ‖ ‖ over the support of any η ∈ S0: if

230 A. Computing in Higher Rank

η =
∑

q(v)v, where q(v) ∈ Q and almost all q(v) vanish, then we put

‖η‖ = Max
q(v) 6=0

‖v‖.

We say a modular symbol η is unimodular if ‖η‖ = 1. It is clear that the
images of the unimodular symbols generate a finite-dimensional subspace of
MΓ. The next theorem shows that this subspace is actually all of MΓ.

Theorem A.22 ([AR79, Bar94]). The space MΓ is spanned by the images
of the unimodular symbols. More precisely, given any symbol v ∈ S0 with
‖v‖ > 1,

(1) in S0/B we may write

(A.4.7) v =
∑

q(w)w, q(w) ∈ Z,

where if q(w) 6= 0, then ‖w‖ = 1, and

(2) the number of terms on the right side of (A.4.7) is bounded by a
polynomial in log ‖v‖ that depends only on the dimension n.

Proof. (Sketch) Given a modular symbol v = [v1, . . . , vn], we may assume
that the points vi are primitive. We will show that if ‖v‖ > 1, we can find
a point u such that when we apply the relation (A.4.1) using the points
u, v1, . . . , vn, all terms other than v have norm less than ‖v‖. We call such
a point a reducing point for v.

Let P ⊂ Rn be the open parallelotope

P :=
{∑

λivi

∣∣∣ |λi| < ‖v‖−1/n
}

.

Then P is an n-dimensional centrally symmetric convex body with volume
2n. By Minkowski’s theorem from the geometry of numbers (cf. [FT93,
IV.2.6]), P ∩ Zn contains a nonzero point u. Using (A.4.1), we find

(A.4.8) v =
n∑

i=1

(−1)i−1vi(u),

where vi(u) is the symbol

vi(u) = [v1, . . . , vi−1, u, vi+1, . . . , vn].

Moreover, it is easy to see that the new symbols satisfy

(A.4.9) 0 ≤ ‖vi(u)‖ < ‖v‖(n−1)/n, i = 1, . . . , n.

This completes the proof of the first statement.

To prove the second statement, we must estimate how many times re-
lations of the form (A.4.8) need to be applied to obtain (A.4.7). A nonuni-
modular symbol produces at most n new modular symbols after (A.4.8) is

A.4. Hecke Operators and Modular Symbols 231

performed; we potentially have to apply (A.4.8) again to each of the sym-
bols that result, which in turn could produce as many as n new symbols for
each. Hence we can visualize the process of constructing (A.4.7) as building
a rooted tree, where the root is v, the leaves are the symbols w, and where
each node has at most n children. It is not hard to see that the bound
(A.4.9) implies that the depth of this tree (i.e., the longest length of a path
from the root to a leaf) is O(log log ‖v‖). From this the second statement
follows easily. ¤

Statement (1) of Theorem A.22 is due to Ash and Rudolph [AR79].
Instead of P , they used the larger parallelotope P ′ defined by

P ′ :=
{∑

λivi

∣∣∣ |λi| < 1
}

,

which has volume 2n‖v‖. The observation that P ′ can be replaced by P
and the proof of (2) are both due to Barvinok [Bar94].

A.4.6. The relationship between Theorem A.22 and Manin’s trick should
be clear. For Γ ⊂ SL2(Z), the Manin symbols correspond exactly to the
unimodular symbols mod Γ. So Theorem A.22 implies that every modular
symbol (in the language of Section 8.1) is a linear combination of Manin
symbols. This is exactly the conclusion of Proposition 8.3.

In higher rank the relationship between Manin symbols and unimodular
symbols is more subtle. In fact there are two possible notions of “Manin
symbol,” which agree for SL2(Z) but not in general. One possibility is the
obvious one: a Manin symbol is a unimodular symbol.

The other possibility is to define a Manin symbol to be a modular symbol
corresponding to a top-dimensional cell of the retract W . But for n ≥ 5, such
modular symbols need not be unimodular. In particular, for n = 5 there
are two equivalence classes of top-dimensional cells. One class corresponds
to the unimodular symbols, the other to a set of modular symbols of norm
2. However, Theorems A.21 and A.22 show that Hν(Γ; Q) is spanned by
unimodular symbols. Thus as far as this cohomology group is concerned,
the second class of symbols is in some sense unnecessary.

A.4.7. We return to the setting of Section A.3.8 and give examples of
Hecke eigenclasses in the cusp cohomology of Γ = Γ0(p) ⊂ SL3(Z). We
closely follow [AGG84, vGvdKTV97]. Note that since the top of the
cuspidal range for SL3 is the same as the virtual cohomological dimension
ν, we can use modular symbols to compute the Hecke action on cuspidal
classes.

Given a prime l coprime to p, there are two Hecke operators of inter-
est T (l, 1) and T (l, 2). We can compute the action of these operators on

232 A. Computing in Higher Rank

H3
cusp(Γ; C) as follows. Recall that H3

cusp(Γ; C) can be identified with a cer-

tain space of functions f : P2(Fp) → C (Theorem A.16). Given x ∈ P2(Fp),
let Qx ∈ SL3(Z) be a matrix such that Qx 7→ x under the identification

P2(Fp)
∼−→ Γ\SL3(Z). Then Qx determines a unimodular symbol [Qx] by

taking the vi to be the columns of Qx. Given any Hecke operator Tg, we can
find coset representatives hi such that ΓgΓ =

∐
Γhi (explicit representatives

for Γ = Γ0(p) and Tg = T (l, k) are given in [AGG84, vGvdKTV97]). The
modular symbols [hiQx] are no longer unimodular in general, but we can
apply Theorem A.22 to write

[hiQx] =
∑

j

[Rij], Rij ∈ SL3(Z).

Then for f : P2(Fp) → C as in Theorem A.16, we have

(Tgf)(x) =
∑

i,j

f(Rij),

where Rij is the class of Rij in P2(Fp).

Now let ξ ∈ H3
cusp(Γ; C) be a simultaneous eigenclass for all the Hecke

operators T (l, 1), T (l, 2), as l ranges over all primes coprime with p. General
considerations from the theory of automorphic forms imply that the eigen-
values a(l, 1), a(l, 2) are complex conjugates of one other. Hence it suffices
to compute a(l, 1). We give two examples of cuspidal eigenclasses for two
different prime levels.

Example A.23. Let p = 53. Then H3
cusp(Γ0(53); C) is 2-dimensional. Let

η = (1 +
√
−11)/2. One eigenclass is given by the data

l 2 3 5 7 11 13

a(l, 1) −1 − 2η −2 + 2η 1 −3 1 −2 − 12η

and the other is obtained by complex conjugation.

Example A.24. Let p = 61. Then H3
cusp(Γ0(61); C) is 2-dimensional. Let

ω = (1 +
√
−3)/2. One eigenclass is given by the data

l 2 3 5 7 11 13

a(l, 1) 1 − 2ω −5 + 4ω −2 + 4ω −6ω −2 + 2ω −2 − 4ω

and the other is obtained by complex conjugation.

A.5. Other Cohomology Groups

A.5.1. In Section A.4 we saw how to compute the Hecke action on the
top cohomology group Hν(Γ; C). Unfortunately for n ≥ 4, this cohomology
group does not contain any cuspidal cohomology. The first case is Γ ⊂
SL4(Z); we have vcd(Γ) = 6, and the cusp cohomology lives in degrees 4

A.5. Other Cohomology Groups 233

and 5. One can show that the cusp cohomology in degree 4 is dual to that
in degree 5, so for computational purposes it suffices to be able to compute
the Hecke action on H5(Γ; C). But modular symbols do not help us here.

In this section we describe a technique to compute the Hecke action
on Hν−1(Γ; C), following [Gun00a]. The technique is an extension of the
modular symbol algorithm to these cohomology groups. In principle the
ideas in this section can be modified to compute the Hecke action on other
cohomology groups Hν−k(Γ; C), k > 1, although this has not been investi-
gated9. For n = 4, we have applied the algorithm in joint work with Ash and
McConnell to investigate computationally the cohomology H5(Γ; C), where
Γ0(N) ⊂ SL4(Z) [AGM02].

A.5.2. To begin, we need an analogue of Theorem A.21 for lower degree
cohomology groups. In other words, we need a generalization of the mod-
ular symbols for other cohomology groups. This is achieved by the sharbly
complex S∗:

Definition A.25 ([Ash94]). Let {S∗, ∂} be the chain complex given by the
following data:

(1) For k ≥ 0, Sk is the Q-vector space generated by the symbols
u = [v1, . . . , vn+k], where vi ∈ Qn r {0}, modulo the relations:
(a) If τ is a permutation on (n + k) letters, then

[v1, . . . , vn+k] = sign(τ)[τ(v1), . . . , τ(vn+k)],

where sign(τ) is the sign of τ .
(b) If q ∈ Q×, then

[qv1, v2 . . . , vn+k] = [v1, . . . , vn+k].

(c) If the rank of the matrix (v1, . . . , vn+k) is less than n, then
u = 0.

(2) For k > 0, the boundary map ∂ : Sk → Sk−1 is

[v1, . . . , vn+k] 7−→
n+k∑

i=1

(−1)i[v1, . . . , v̂i, . . . , vn+k].

We define ∂ to be identically zero on S0.

The elements

u = [v1, . . . , vn+k]

9The first interesting case is n = 5, for which the cuspidal cohomology lives in Hν−2.

234 A. Computing in Higher Rank

are called k-sharblies10. The 0-sharblies are exactly the modular symbols
from Definition A.20, and the subspace B ⊂ S0 is the image of the boundary
map ∂ : S1 → S0.

There is an obvious left action of Γ on S∗ commuting with ∂. For any
k ≥ 0, let Sk,Γ be the space of Γ-coinvariants. Since the boundary map ∂
commutes with the Γ-action, we obtain a complex (S∗,Γ, ∂Γ). The following
theorem shows that this complex computes the cohomology of Γ:

Theorem A.26 ([Ash94]). There is a natural isomorphism

Hν−k(Γ; C)
∼−→ Hk(S∗,Γ ⊗ C).

A.5.3. We can extend our norm function ‖ ‖ from modular symbols to
all of Sk as follows. Let u = [v1, . . . , vn+k] be a k-sharbly, and let Z(u) be
the set of all submodular symbols determined by u. In other words, Z(u)
consists of the modular symbols of the form [vi1 , . . . , vin], where {i1, . . . , in}
ranges over all n-fold subsets of {1, . . . , n + k}. Define ‖u‖ by

‖u‖ = Max
v∈Z(u)

‖v‖.

Note that ‖u‖ is well defined modulo the relations in Definition A.25. As
for modular symbols, we extend the norm to sharbly chains ξ =

∑
q(u)u

taking the maximum norm over the support. Formally, we let supp(ξ) =
{u | q(u) 6= 0} and Z(ξ) =

⋃
u∈supp(ξ) Z(u), and then we define ‖ξ‖ by

‖ξ‖ = Max
v∈Z(ξ)

‖v‖.

We say that ξ is reduced if ‖ξ‖ = 1. Hence ξ is reduced if and only if
all its submodular symbols are unimodular or have determinant 0. Clearly
there are only finitely many reduced k-sharblies modulo Γ for any k.

In general the cohomology groups H∗(Γ; C) are not spanned by reduced
sharblies. However, it is known (cf. [McC91]) that for Γ ⊂ SL4(Z), the
group H5(Γ; C) is spanned by reduced 1-sharbly cycles. The best one can
say in general is that for each pair n, k, there is an integer N = N(n, k) such
that for Γ ⊂ SLn(Z), Hν−k(Γ; C) is spanned by k-sharblies of norm ≤ N .
This set of sharblies is also finite modulo Γ, although it is not known how
large N must be for any given pair n, k.

A.5.4. Recall that the cells of the well-rounded retract W are indexed by
sets of primitive vectors in Zn. Since any primitive vector determines a point
in Qnr{0} and since sets of such points index sharblies, it is clear that there
is a close relationship between S∗ and the chain complex associated to W ,

10The terminology for S∗ is due to Lee Rudolph, in honor of Lee and Szczarba. They
introduced a very similar complex in [LS76] for SL3(Z).

A.5. Other Cohomology Groups 235

although of course S∗ is much bigger. In any case, both complexes compute
H∗(Γ; C).

The main benefit of using the sharbly complex to compute cohomology
is that it admits a Hecke action. Suppose ξ =

∑
q(u)u is a sharbly cycle

mod Γ, and consider a Hecke operator Tg. Then we have

(A.5.1) Tg(ξ) =
∑

h∈Ω,u

n(u)h · u,

where Ω is a set of coset representatives as in (A.4.3). Since Ω 6⊂ SLn(Z) in
general, the Hecke image of a reduced sharbly is not usually reduced.

A.5.5. We are now ready to describe our algorithm for the computation
of the Hecke operators on Hν−1(Γ; C). It suffices to describe an algorithm
that takes as input a 1-sharbly cycle ξ and produces as output a cycle ξ′

with

(a) the classes of ξ and ξ′ in Hν−1(Γ; C) the same, and

(b) ‖ξ′‖ < ‖ξ‖ if ‖ξ‖ > 1.

Below, we will present an algorithm satisfying (a). In [Gun00a], we
conjectured (and presented evidence) that the algorithm satisfies (b) for
n ≤ 4. Further evidence is provided by the computations in [AGM02],
which relied on the algorithm to compute the Hecke action on H5(Γ; C),
where Γ = Γ0(N) ⊂ SL4(Z).

The idea behind the algorithm is simple: given a 1-sharbly cycle ξ that is
not reduced, (i) simultaneously apply the modular symbol algorithm (The-
orem A.22) to each of its submodular symbols, and then (ii) package the
resulting data into a new 1-sharbly cycle. Our experience in presenting this
algorithm is that most people find the geometry involved in (ii) daunting.
Hence we will give details only for n = 2 and will provide a sketch for n > 2.
Full details are contained in [Gun00a]. Note that n = 2 is topologically
and arithmetically uninteresting, since we are computing the Hecke action
on H0(Γ; C); nevertheless, the geometry faithfully represents the situation
for all n.

A.5.6. Fix n = 2, let ξ ∈ S1 be a 1-sharbly cycle mod Γ for some Γ ⊂
SL2(Z), and suppose ξ is not reduced. Assume Γ is torsion-free to simplify
the presentation.

Suppose first that all submodular symbols v ∈ Z(ξ) are nonunimod-
ular. Select reducing points for each v ∈ Z(ξ) and make these choices
Γ-equivariantly. This means the following. Suppose u,u′ ∈ supp ξ and
v ∈ supp(∂u) and v′ ∈ supp(∂u′) are modular symbols such that v = γ · v′

for some γ ∈ Γ. Then we select reducing points w for v and w′ for v′ such

236 A. Computing in Higher Rank

that w = γ · w′. (Note that since Γ is torsion-free, no modular symbol can
be identified to itself by an element of Γ; hence v 6= v′.) This is possible
since if v is a modular symbol and w is a reducing point for v, then γ ·w is a
reducing point for γ · v for any γ ∈ Γ. Because there are only finitely many
Γ-orbits in Z(ξ), we can choose reducing points Γ-equivariantly by selecting
them for some set of orbit representatives.

It is important to note that Γ-equivariance is the only global criterion we
use when selecting reducing. In particular, there is a priori no relationship
among the three reducing points chosen for any u ∈ supp ξ.

A.5.7. Now we want to use the reducing points and the 1-sharblies in ξ to
build ξ′. Choose u = [v1, v2, v3] ∈ supp ξ, and denote the reducing point for
[vi, vj] by wk, where {i, j, k} = {1, 2, 3}. We use the vi and the wi to build
a 2-sharbly chain η(u) as follows.

Let P be an octahedron in R3. Label the vertices of P with the vi

and wi such that the vertex labeled vi is opposite the vertex labeled wi

(Figure A.5.1). Subdivide P into four tetrahedra by connecting two opposite
vertices, say v1 and w1, with an edge (Figure A.5.2). For each tetrahedron
T , take the labels of four vertices and arrange them into a quadruple. If we
orient P , then we can use the induced orientation on T to order the four
primitive points. In this way, each T determines a 2-sharbly, and η(u) is
defined to be the sum. For example, if we use the decomposition in Figure
A.5.2, we have
(A.5.2)

η(u) = [v1, v3, v2, w1] + [v1, w2, v3, w1] + [v1, w3, w2, w1] + [v1, v2, w3, w1].

Repeat this construction for all u ∈ supp ξ, and let η =
∑

q(u)η(u). Finally,
let ξ′ = ξ + ∂η.

v1

v2v3

w1
w2 w3

Figure A.5.1.

A.5.8. By construction, ξ′ is a cycle mod Γ in the same class as ξ. We
claim in addition that no submodular symbol from ξ appears in ξ′. To see
this, consider ∂η(u). From (A.5.2), we have

(A.5.3) ∂η(u) = −[v1, v2, v3] + [v1, v2, w3] + [v1, w2, v3] + [w1, v2, v3]

− [v1, w2, w3] − [w1, v2, w3] − [w1, w2, v3] + [w1, w2, w3].

A.5. Other Cohomology Groups 237

Figure A.5.2.

Note that this is the boundary in S∗, not in S∗,Γ. Furthermore, ∂η(u) is
independent of which pair of opposite vertices of P we connected to build
η(u).

From (A.5.3), we see that in ξ + ∂η the 1-sharbly −[v1, v2, v3] is can-
celed by u ∈ supp ξ. We also claim that 1-sharblies in (A.5.3) of the form
[vi, vj , wk] vanish in ∂Γη.

To see this, let u,u′ ∈ supp ξ, and suppose v = [v1, v2] ∈ supp ∂u equals
γ · v′ for some v′ = [v′1, v

′
2] ∈ supp ∂u′. Since the reducing points were

chosen Γ-equivariantly, we have w = γ · w′. This means that the 1-sharbly
[v1, v2, w] ∈ ∂η(u) will be canceled mod Γ by [v′1, v

′
2, w

′] ∈ ∂η(u′). Hence, in
passing from ξ to ξ′, the effect in (S∗)Γ is to replace u with four 1-sharblies
in supp ξ′:

(A.5.4) [v1, v2, v3] 7−→ −[v1, w2, w3]−[w1, v2, w3]−[w1, w2, v3]+[w1, w2, w3].

Note that in (A.5.4), there are no 1-sharblies of the form [vi, vj , wk].

Remark A.27. For implementation purposes, it is not necessary to explic-
itly construct η. Rather, one may work directly with (A.5.4).

A.5.9. Why do we expect ξ′ to satisfy ‖ξ′‖ < ‖ξ‖? First of all, in the right
hand side of (A.5.4) there are no submodular symbols of the form [vi, vj].
In fact, any submodular symbol involving a point vi also includes a reducing
point for [vi, vj].

On the other hand, consider the submodular symbols in (A.5.4) of the
form [wi, wj]. Since there is no relationship among the wi, one has no reason
to believe that these modular symbols are closer to unimodularity than
those in u. Indeed, for certain choices of reducing points it can happen that
‖[wi, wj]‖ ≥ ‖u‖.

The upshot is that some care must be taken in choosing reducing points.
In [Gun00a, Conjectures 3.5 and 3.6] we describe two methods for finding
reducing points for modular symbols, one using Voronǒı reduction and one
using LLL-reduction. Our experience is that if one selects reducing points
using either of these conjectures, then ‖[wi, wj]‖ < ‖u‖ for each of the new
modular symbols [wi, wj]. In fact, in practice these symbols are trivial or
satisfy ‖[wi, wj]‖ = 1.

238 A. Computing in Higher Rank

A.5.10. In the previous discussion we assumed that no submodular sym-
bols of any u ∈ supp ξ were unimodular. Now we say what to do if some
are. There are three cases to consider.

First, all submodular symbols of u may be unimodular. In this case
there are no reducing points, and (A.5.4) becomes

(A.5.5) [v1, v2, v3] 7−→ [v1, v2, v3].

Second, one submodular symbol of u may be nonunimodular, say the
symbol [v1, v2]. In this case, to build η, we use a tetrahedron P ′ and put
η(u) = [v1, v2, v3, w3] (Figure A.5.3). Since [v1, v2, w3] vanishes in the bound-
ary of η mod Γ, (A.5.4) becomes

(A.5.6) [v1, v2, v3] 7→ −[v1, v3, w3] + [v2, v3, w3].

v1

v2v3

w3

Figure A.5.3.

Finally, two submodular symbols of u may be nonunimodular, say [v1, v2]
and [v1, v3]. In this case we use the cone on a square P ′′ (Figure A.5.4).
To construct η(u), we must choose a decomposition of P ′′ into tetrahedra.
Since P ′′ has a nonsimplicial face, this choice affects ξ′ (in contrast to the
previous cases). If we subdivide P ′′ by connecting the vertex labelled v2

with the vertex labelled w2, we obtain

(A.5.7) [v1, v2, v3] 7−→ [v2, w2, w3] + [v2, v3, w2] + [v1, v3, w2].

v1

v2v3

w2 w3

Figure A.5.4.

A.5.11. Now consider general n. The basic technique is the same, but
the combinatorics become more complicated. Suppose u = [v1, . . . , vn+1]
satisfies q(u) 6= 0 in a 1-sharbly cycle ξ, and for i = 1, . . . , n + 1 let vi

be the submodular symbol [v1, . . . , v̂i, . . . , vn+1]. Assume that all vi are
nonunimodular, and for each i let wi be a reducing point for vi.

A.5. Other Cohomology Groups 239

For any subset I ⊂ {1, . . . , n+1}, let uI be the 1-sharbly [u1, . . . , un+1],
where ui = wi if i ∈ I, and ui = vi otherwise. The polytope P used to
build η(u) is the cross polytope, which is the higher-dimensional analogue of
the octahedron [Gun00a, §4.4]. We suppress the details and give the final
answer: (A.5.4) becomes

(A.5.8) u 7−→ −
∑

I

(−1)#IuI ,

where the sum is taken over all subsets I ⊂ {1, . . . , n + 1} of cardinality at
least 2.

More generally, if some vi happen to be unimodular, then the polytope
used to build η is an iterated cone on a lower-dimensional cross polytope.
This is already visible for n = 2:

• The 2-dimensional cross polytope is a square, and the polytope P ′′

is a cone on a square.

• The 1-dimensional cross polytope is an interval, and the polytope
P ′ is a double cone on an interval.

Altogether there are n + 1 relations generalizing (A.5.5)–(A.5.7).

A.5.12. Now we describe how these computations are carried out in prac-
tice, focusing on Γ = Γ0(N) ⊂ SL4(Z) and H5(Γ; C). Besides discussing
technical details, we also have to slightly modify some aspects of the con-
struction in Section A.5.6, since Γ is not torsion-free.

Let W be the well-rounded retract. We can represent a cohomology class
β ∈ H5(Γ; C) as β =

∑
q(σ)σ, where σ denotes a codimension 1 cell in W .

In this case there are three types of codimension 1 cells in W . Under the
bijection W ↔ C , these cells correspond to the Voronǒı cells indexed by the
columns of the matrices
(A.5.9)



1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1


 ,




1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 0


 ,




1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0


 .

Thus each σ in W modulo Γ corresponds to an SL4(Z)-translate of one
of the matrices in (A.5.9). These translates determine basis 1-sharblies u

(by taking the points ui to be the columns), and hence we can represent β
by a 1-sharbly chain ξ =

∑
q(u)u ∈ S1 that is a cycle in the complex of

coinvariants (S∗,Γ, ∂Γ).

To make later computations more efficient, we precompute more data
attached to ξ. Given a 1-sharbly u = [u1, . . . , un+1], a lift M(u) of u is
defined to be an integral matrix with primitive columns Mi such that u =

240 A. Computing in Higher Rank

[M1, . . . , Mn+1]. Then we encode ξ, once and for all, by a finite collection Φ
of 4-tuples

(u, n(u), {v}, {M(v)}),
where

(1) u ranges over the support of ξ,

(2) n(u) ∈ C is the coefficient of u in ξ,

(3) {v} is the set of submodular symbols appearing in the boundary
of u, and

(4) {M(v)} is a set of lifts for {v}.
Moreover, the lifts in (4) are chosen to satisfy the following Γ-equivariance
condition. Suppose that for u,u′ ∈ supp ξ we have v ∈ supp(∂u) and
v′ ∈ supp(∂u′) satisfying v = γ · v′ for some γ ∈ Γ. Then we require
M(v) = γM(v′). This is possible since ξ is a cycle modulo Γ, although
there is one complication since Γ has torsion: it can happen that some
submodular symbol v of a 1-sharbly u is identified to itself by an element of
Γ. This means that in constructing {M(v)} for u, we must somehow choose
more than one lift for v. To deal with this, let M(v) be any lift of v, and
let Γ(v) ⊂ Γ be the stabilizer of v. Then in ξ, we replace q(u)u by

1

#Γ(v)

∑

γ∈Γ(v)

q(u)uγ ,

where uγ has the same data as u, except11 that we give v the lift γM(v).

Next we compute and store the 1-sharbly transformation laws general-
izing (A.5.5)–(A.5.7). As a part of this we fix triangulations of certain cross
polytopes as in (A.5.7).

We are now ready to begin the actual reduction algorithm. We take a
Hecke operator T (l, k) and build the coset representatives Ω as in (A.5.1).
For each h ∈ Ω and each 1-sharbly u in the support of ξ, we obtain a non-
reduced 1-sharbly uh := h · u. Here h acts on all the data attached to u in
the list Φ. In particular, we replace each lift M(v) with h ·M(v), where the
dot means matrix multiplication.

Now we check the submodular symbols of uh and choose reducing points
for the nonunimodular symbols. This is where the lifts come in handy. Recall
that reduction points must be chosen Γ-equivariantly over the entire cycle.
Instead of explicitly keeping track of the identifications between modular
symbols, we do the following trick:

11In fact, we can be slightly more clever than this and only introduce denominators that are
powers of 2.

A.5. Other Cohomology Groups 241

(1) Construct the Hermite normal form Mher(v) of the lift M(v) (see
[Coh93, §2.4] and Exercise 7.5). Record the transformation matrix
U ∈ GL4(Z) such that UM(v) = Mher(v).

(2) Choose a reducing point u for Mher(v).

(3) Then the reducing point for M(v) is U−1u.

This guarantees Γ-equivariance: if v, v′ are submodular symbols of ξ with
γ ·v = v′ and with reducing points u, u′, we have γu = u′. The reason is that
the Hermite normal form Mher(v) is a uniquely determined representative
of the GL4(Z)-orbit of M(v) [Coh93]. Hence if γM(v) = M(v′), then
Mher(v) = Mher(v

′).

After computing all reducing points, we apply the appropriate trans-
formation law. The result will be a chain of 1-sharblies, each of which has
(conjecturally) smaller norm than the original 1-sharbly u. We output these
1-sharblies if they are reduced; otherwise they are fed into the reduction algo-
rithm again. Eventually we obtain a reduced 1-sharbly cycle ξ′ homologous
to the original cycle ξ.

The final step of the algorithm is to rewrite ξ′ as a cocycle on W . This
is easy to do since the relevant cells of W are in bijection with the reduced
1-sharblies. There are some nuisances in keeping orientations straight, but
the computation is not difficult. We refer to [AGM02] for details.

A.5.13. We now give some examples, taken from [AGM02], of Hecke
eigenclasses in H5(Γ0(N); C) for various levels N . Instead of giving a table
of eigenvalues, we give the Hecke polynomials. If β is an eigenclass with
T (l, k)(β) = a(l, k)β, then we define

H(β, l) =
∑

k

(−1)klk(k−1)/2a(l, k)Xk ∈ C[X].

For almost all l, after putting X = l−s where s is a complex variable, the
function H(β, s) is the inverse of the local factor at l of the automorphic
representation attached to β.

Example A.28. Suppose N = 11. Then the cohomology H5(Γ0(11); C) is
2-dimensional. There are two Hecke eigenclasses u1, u2, each with rational
Hecke eigenvalues.

242 A. Computing in Higher Rank

u1 T2 (1 − 4X)(1 − 8X)(1 + 2X + 2X2)
T3 (1 − 9X)(1 − 27X)(1 + X + 3X2)
T5 (1 − 25X)(1 − 125X)(1 − X + 5X2)
T7 (1 − 49X)(1 − 343X)(1 + 2X + 7X2)

u2 T2 (1 − X)(1 − 2X)(1 + 8X + 32X2)
T3 (1 − X)(1 − 3X)(1 + 9X + 243X2)
T5 (1 − X)(1 − 5X)(1 − 25X + 3125X2)
T7 (1 − X)(1 − 7X)(1 + 98X + 16807X2)

Example A.29. Suppose N = 19. Then the cohomology H5(Γ0(19); C)
is 3-dimensional. There are three Hecke eigenclasses u1, u2, u3, each with
rational Hecke eigenvalues.

u1 T2 (1 − 4X)(1 − 8X)(1 + 2X2)
T3 (1 − 9X)(1 − 27X)(1 + 2X + 3X2)
T5 (1 − 25X)(1 − 125X)(1 − 3X + 5X2)

u2 T2 (1 − X)(1 − 2X)(1 + 32X2)
T3 (1 − X)(1 − 3X)(1 + 18X + 243X2)
T5 (1 − X)(1 − 5X)(1 − 75X + 3125X2)

u3 T2 (1 − 2X)(1 − 4X)(1 + 3X + 8X2)
T3 (1 − 3X)(1 − 9X)(1 + 5X + 27X2)
T5 (1 − 5X)(1 − 25X)(1 + 12X + 125X2)

In these examples, the cohomology is completely accounted for by the
Eisenstein summand of (A.2.8). In fact, let Γ′

0(N) ⊂ SL2(Z) be the usual
Hecke congruence subgroup of matrices upper-triangular modulo N . Then
the cohomology classes above actually come from classes in H1(Γ′

0(N)), that
is from holomorphic modular forms of level N .

For N = 11, the space of weight two cusp forms S2(11) is 1-dimensional.
This cusp form f lifts in two different ways to H5(Γ0(11); C), which can be
seen from the quadratic part of the Hecke polynomials for the ui. Indeed,
for ui the quadratic part is exactly the inverse of the local factor for the L-
function attached to f , after the substitution X = l−s. For u2, we see that
the lift is also twisted by the square of the cyclotomic character. (In fact the
linear terms of the Hecke polynomials come from powers of the cyclotomic
character.)

For N = 19, the space of weight two cusp forms S2(19) is again 1-
dimensional. The classes u1 and u2 are lifts of this form, exactly as for
N = 11. The class u3, on the other hand, comes from S4(19), the space of
weight 4 cusp forms on Γ′

0(19). In fact, dimS4(19) = 4, with one Hecke
eigenform defined over Q and another defined over a totally real cubic
extension of Q. Only the rational weight four eigenform contributes to
H5(Γ0(19); C). One can show that whether or not a weight four cuspidal

A.5. Other Cohomology Groups 243

eigenform f contributes to the cohomology of Γ0(N) depends only on the
sign of the functional equation of L(f, s) [Wes]. This phenomenon is typical
of what one encounters when studying Eisenstein cohomology.

In addition to the lifts of weight 2 and weight 4 cusp forms, for other
levels one finds lifts of Eisenstein series of weights 2 and 4 and lifts of cus-
pidal cohomology classes from subgroups of SL3(Z). For some levels one
finds cuspidal classes that appear to be lifts from the group of symplectic
similitudes GSp(4). More details can be found in [AGM02, AGM].

A.5.14. Here are some notes on the reduction algorithm and its imple-
mentation:

• Some additional care must be taken when selecting reducing points
for the submodular symbols of u. In particular, in practice one
should choose w for v such that

∑ ‖vi(w)‖ is minimized. Similar
remarks apply when choosing a subdivision of the crosspolytopes
in Section A.5.10.

• In practice, the reduction algorithm has always terminated with
a reduced 1-sharbly cycle ξ′ homologous to ξ. However, at the
moment we cannot prove that this will always happen.

• Experimentally, the efficiency of the reduction step appears to be
comparable to that of Theorem A.22. In other words the depth
of the “reduction tree” associated to a given 1-sharbly u seems to
be bounded by a polynomial in log log ‖u‖. Hence computing the
Hecke action using this algorithm is extremely efficient.

On the other hand, computing Hecke operators on SL4 is still a
much bigger computation—relative to the level—than on SL2 and
SL3. For example, the size of the full retract W modulo Γ0(p) is
roughly O(p6), which grows rapidly with p. The portion of the
retract corresponding to H5 is much smaller, around p3/10, but
this still grows quite quickly. This makes computing with p > 100
out of reach at the moment.

The number of Hecke cosets grows rapidly as well, e.g., the
number of coset representatives of T (l, 2) is l4 + l3 + 2l2 + l + 1.
Hence it is only feasible to compute Hecke operators for small l; for
large levels only l = 2 is possible.

Here are some numbers to give an idea of the size of these
computations. For level 73, the rank of H5 is 20. There are 39504
cells of codimension 1 and 4128 top-dimensional cells in W modulo
Γ0(73). The computational techniques in [AGM02] used at this
level (a Lanczos scheme over a large finite field) tend to produce
sharbly cycles supported on almost all the cells. Computing T (2, 1)

244 A. Computing in Higher Rank

requires a reduction tree of depth 1 and produces as many as 26
reduced 1-sharblies for each of the 15 nonreduced Hecke images.
Thus one cycle produces a cycle supported on as many as 15406560
1-sharblies, all of which must be converted to an appropriate cell
of W modulo Γ. Also this is just what needs to be done for one
cycle; do not forget that the rank of H5 is 20.

In practice the numbers are slightly better, since the reduction
step produces fewer 1-sharblies on average and since the support of
the initial cycle has size less than 39504. Nevertheless the orders
of magnitude are correct.

• Using lifts is a convenient way to encode the global Γ-identifications
in the cycle ξ, since it means we do not have to maintain a big data
structure keeping track of the identifications on ∂ξ. However, there
is a certain expense in computing the Hermite normal form. This is
balanced by the benefit that working with the data Φ associated to
ξ allows us to reduce the supporting 1-sharblies u independently.
This means we can cheaply parallelize our computation: each 1-
sharbly, encoded as a 4-tuple (u, n(u), {v}, {M(v)}), can be han-
dled by a separate computer. The results of all these individual
computations can then be collated at the end, when producing a
W -cocycle.

A.6. Complements and Open Problems

A.6.1. We conclude this appendix by giving some complements and de-
scribing some possible directions for future work, both theoretical and com-
putational. Since a full explanation of the material in this section would
involve many more pages, we will be brief and will provide many references.

A.6.2. Perfect Quadratic Forms over Number Fields and Retracts.

Since Voronǒı’s pioneering work [Vor08], it has been the goal of many to
extend his results from Q to a general algebraic number field F . Recently
Coulangeon [Cou01], building on work of Icaza and Baeza [Ica97, BI97],
has found a good notion of perfection for quadratic forms over number
fields12. One of the key ideas in [Cou01] is that the correct notion of equiv-
alence between Humbert forms involves not only the action of GLn(OF),
where OF is the ring of integers of F , but also the action of a certain con-
tinuous group U related to the units O

×
F . One of Coulangeon’s basic results

is that there are finitely many equivalence classes of perfect Humbert forms
modulo these actions.

12Such forms are called Humbert forms in the literature.

A.6. Complements and Open Problems 245

On the other hand, Ash’s original construction of retracts [Ash77] intro-
duces a geometric notion of perfection. Namely he generalizes the Voronǒı
polyhedron Π and defines a quadratic form to be perfect if it naturally in-
dexes a facet of Π. What is the connection between these two notions? Can
one use Coulangeon’s results to construct cell complexes to be used in coho-
mology computations? One tempting possibility is to try to use the group
U to collapse the Voronǒı cells of [Ash77] into a cell decomposition of the
symmetric space associated to SLn(F).

A.6.3. The Modular Complex. In his study of multiple ζ-values, Gon-
charov has recently defined the modular complex M∗ [Gon97, Gon98]. This
is an n-step complex of GLn(Z)-modules closely related both to the proper-
ties of multiple polylogarithms evaluated at µN , the Nth roots of unity, and
to the action of GQ on π1,N = πl

1(P
1 r {0,∞, µN}), the pro-l completion of

the algebraic fundamental group of P1 r {0,∞, µN}.
Remarkably, the modular complex is very closely related to the Voronǒı

decomposition V . In fact, one can succinctly describe the modular com-
plex by saying that it is the chain complex of the cells coming from the
top-dimensional Voronǒı cone of type An. This is all of the Voronǒı de-
composition for n = 2, 3, and Goncharov showed that the modular complex
is quasi-isomorphic to the full Voronǒı complex for n = 4. Hence there is
a precise relationship among multiple polylogarithms, the Galois action on
π1,N , and the cohomology of level N congruence subgroups of SLn(Z).

The question then arises, how much of the cohomology of congruence
subgroups is captured by the modular complex for all n? Table A.3.2 in-
dicates that asymptotically very little of the Voronǒı decomposition comes
from the An cone, but this says nothing about the cohomology. The first
interesting case to consider is n = 5.

A.6.4. Retracts for Other Groups. The most general construction of
retracts W known [Ash84] applies only to linear symmetric spaces. The
most familiar example of such a space is SLn(R)/ SO(n); other examples
are the symmetric spaces associated to SLn over number fields and division
algebras.

Now let Γ ⊂ G(Q) be an arithmetic group, and let X = G/K be the
associated symmetric space. What can one say about cell complexes that
can be used to compute H∗(Γ; M)? The theorem of Borel–Serre mentioned
in Section A.3.3 implies the vanishing of Hk(Γ; M) for k > ν := dimX − q,
where q is the Q-rank of Γ. For example, for the split form of SLn, the
Q-rank is n − 1. For the split symplectic group Sp2n, the Q-rank is n.
Moreover, this bound is sharp: there will be coefficient modules M for

246 A. Computing in Higher Rank

which Hν(Γ; M) 6= 0. Hence any minimal cell complex used to compute the
cohomology of Γ should have dimension ν.

Ideally one would like to see such a complex realized as a subspace
of X and would like to be able to treat all finite index subgroups of Γ
simultaneously. This leads to the following question: is there a Γ-equivariant
deformation retraction of X onto a regular cell complex W of dimension ν?

For G = Sp4, McConnell and MacPherson showed that the answer is yes.
Their construction begins by realizing the symplectic symmetric space XSp

as a subspace of the special linear symmetric space XSL. They then construct
subsets of XSp by intersecting the Voronǒı cells in XSL with XSp. Through
explicit computations in coordinates they prove that these intersections are
cells and give a cell decomposition of XSp. By taking an appropriate dual
complex (as suggested by Figures A.3.2 and A.3.3 and as done in [Ash77]),
they construct the desired cell complex W .

Other progress has been recently made by Bullock [Bul00], Bullock and
Connell [BC06], and Yasaki [Yas05b, Yas05a] in the case of groups of Q-
rank 1. In particular, Yasaki uses the tilings of Saper [Sap97] to construct an
explicit retract for the unitary group SU(2, 1) over the Gaussian integers. His
method also works for Hilbert modular groups, although further refinement
may be needed to produce a regular cell complex. Can one generalize these
techniques to construct retracts for groups of arbitrary Q-rank? Is there an
analogue of the Voronǒı decomposition for these retracts (i.e., a dual cell
decomposition of the symmetric space)? If so, can one generalize ideas in
Sections A.4–A.5 and use that generalization to compute the action of the
Hecke operators on the cohomology?

A.6.5. Deeper Cohomology Groups. The algorithm in Section A.5 can
be used to compute the Hecke action on Hν−1(Γ). For n > 4, this group
no longer contains cuspidal cohomology classes. Can one generalize this
algorithm to compute the Hecke action on deeper cohomology groups? The
first practical case is n = 5. Here ν = 10, and the highest degree in which
cuspidal cohomology can live is 8. This case is also interesting since the
cohomology of full level has been studied [EVGS02].

Here are some indications of what one can expect. The general strategy
is the same: for a k-sharbly ξ representing a class in Hν−k(Γ), begin by Γ-
equivariantly choosing reducing points for the nonunimodular submodular
symbols of ξ. This data can be packaged into a new k-sharbly cycle as in
Section A.5.7ff, but the crosspolytopes must be replaced with hypersimplices.
By definition, the hypersimplex ∆(n, k) is the convex hull in Rn of the points
{∑i∈I ei}, where I ranges over all order k subsets of {1, . . . , n} and e1, . . . , en

denotes the standard basis of Rn.

A.6. Complements and Open Problems 247

The simplest example is n = 2, k = 2. From the point of view of
cohomology, this is even less interesting than n = 2, k = 1, since now we are
computing the Hecke action on H−1(Γ)! Nevertheless, the geometry here
illustrates what one can expect in general.

Each 2-sharbly in the support of ξ can be written as [v1, v2, v3, v4] and
determines six submodular symbols, of the form [vi, vj], i 6= j. Assume for
simplicity that all these submodular symbols are nonunimodular. Let wij

be the reducing point for [vi, vj]. Then use the ten points vi, wij to label the
vertices of the hypersimplex ∆(5, 2) as in Figure A.6.1 (note that ∆(5, 2) is
4-dimensional).

v1

v2

v3

v4

w12

w13

w14

w23

w24
w34

Figure A.6.1.

The boundary of this hypersimplex gives the analogue of (A.5.4). Which
2-sharblies will appear in ξ′? The boundary ∂∆(5, 2) is a union of five
tetrahedra and five octahedra. The outer tetrahedron will not appear in ξ′,
since that is the analogue of the left side of (A.5.4). The four octahedra
sharing a triangular face with the outer tetrahedron also will not appear,
since they disappear when considering ξ′ modulo Γ. The remaining four
tetrahedra and the central octahedron survive to ξ′ and constitute the right
side of the analogue of (A.5.4). Note that we must choose a simplicial
subdivision of the central octahedron to write the result as a 2-sharbly cycle
and that this must be done with care since it introduces a new submodular
symbol.

If some submodular symbols are unimodular, then again one must con-
sider iterated cones on hypersimplices, just as in Section A.5.10. The ana-
logues of these steps become more complicated, since there are now many

248 A. Computing in Higher Rank

simplicial subdivisions of a hypersimplex13. There is one final complication:
in general we cannot use reduced k-sharblies alone to represent cohomology
classes. Thus one must terminate the algorithm when ‖ξ‖ is less than some
predetermined bound.

A.6.6. Other Linear Groups. Let F be a number field, and let G =
RF/Q(SLn) (Example A.2). Let Γ ⊂ G(Q) be an arithmetic subgroup. Can
one compute the action of the Hecke operators on H∗(Γ)?

There are two completely different approaches to this problem. The first
involves the generalization of the modular symbols method. One can define
the analogue of the sharbly complex, and can try to extend the techniques
of Sections A.4–A.5.

This technique has been extensively used when F is imaginary qua-
dratic and n = 2. We have X = SL2(C)/ SU(2), which is isomorphic to
3-dimensional hyperbolic space h3. The arithmetic groups Γ ⊂ SL2(OF)
are known as Bianchi groups. The retracts and cohomology of these groups
have been well studied; as a representative sample of works we mention
[Men79, EGM98, Vog85, GS81].

Such groups have Q-rank 1 and thus have cohomological dimension 2.
One can show that the cuspidal classes live in degrees 1 and 2. This means
that we can use modular symbols to investigate the Hecke action on cuspidal
cohomology. This was done by Cremona [Cre84] for euclidean fields F . In
that case Theorem A.22 works with no trouble (the euclidean algorithm is
needed to construct reducing points). For noneuclidean fields further work
has been done by Whitley [Whi90], Cremona and Whitely [CW94] (both
for principal ideal domains), Bygott [Byg99] (for F = Q(

√
−5) and any

field with class group an elementary abelian 2-group), and Lingham [Lin05]
(any field with odd class number). Putting all these ideas together allows
one to generalize the modular symbols method to any imaginary quadratic
field [Cre].

For F imaginary quadratic and n > 2, very little has been studied.
The only related work to the best of our knowledge is that of Staffeldt
[Sta79]. He determined the structure of the Voronǒı polyhedron in detail
for RF/Q(SL3), where F = Q(

√
−1). We have dimX = 8 and ν = 6. The

cuspidal cohomology appears in degrees 3, 4, 5, so one could try to use the
techniques of Section A.5 to investigate it.

Similar remarks apply to F real quadratic and n = 2. The symmetric
space X ≃ h × h has dimension 4 and the Q-rank is 1, which means ν = 3.
Unfortunately the cuspidal cohomology appears only in degree 2, which

13Indeed, computing all simplicial subdivisions of ∆(n, k) is a difficult problem in convex
geometry.

A.6. Complements and Open Problems 249

means modular symbols cannot see it. On the other hand, 1-sharblies can see
it, and so one can try to use ideas in Section A.5 here to compute the Hecke
operators. The data needed to build the retract W already (essentially)
appears in the literature for certain fields; see for example [Ong86].

The second approach shifts the emphasis from modular symbols and the
sharbly complex to the Voronǒı fan and its cones. For this approach we must
assume that the group Γ is associated to a self-adjoint homogeneous cone
over Q. (cf. [Ash77]). This class of groups includes arithmetic subgroups
of RF/Q(SLn), where F is a totally real or CM field. Such groups have all
the nice structures in Section A.3.2. For example, we have a cone C with a
G-action. We also have an analogue of the Voronǒı polyhedron Π. There is
a natural compactification C̃ of C obtained by adjoining certain self-adjoint
homogeneous cones of lower rank. The quotient Γ\C̃ is singular in general,
but it can still be used to compute H∗(Γ; C). The polyhedron Π can be
used to construct a fan V that gives a Γ-equivariant decomposition of all
of C̃. But the most important structure we have is the Voronǒı reduction
algorithm: given any point x ∈ C̃, we can determine the unique Voronǒı
cone containing x.

Here is how this setup can be used to compute the Hecke action. Full
details are in [Gun99, GM03]. We define two chain complexes CV

∗ and
CR

∗ . The latter is essentially the chain complex generated by all simplicial

rational polyhedral cones in C̃; the former is the subcomplex generated by
the Voronǒı cones. These are the analogues of the sharbly complex and the
chain complex associated to the retract W , and one can show that either
can be used to compute H∗(Γ; C). Take a cycle ξ ∈ CV

∗ representing a
cohomology class in H∗(Γ; C) and act on it by a Hecke operator T . We have
T (ξ) ∈ CR

∗ , and we must push T (ξ) back to CV
∗ .

To do this, we use the linear structure on C̃ to subdivide T (ξ) very finely

into a chain ξ′. For each 1-cone τ in supp ξ′, we choose a 1-cone ρτ ∈ C̃ r C
and assemble them using the combinatorics of ξ′ into a polyhedral chain ξ′′

homologous to ξ′. Under certain conditions involved in the construction of
ξ′, this chain ξ′′ will lie in CV

∗ .

We illustrate this process for the split group SL2; more details can
be found in [Gun99]. We work modulo homotheties, so that the three-

dimensional cone C̃ becomes the extended upper half plane h∗ := h∪Q∪{∞},
with ∂C̃ passing to the cusps h∗ r h. As usual top-dimensional Voronǒı
cones become the triangles of the Farey tessellation, and the cones ρτ be-
come cusps. Given any x ∈ h, let R(x) be the set of cusps of the unique
triangle or edge containing x (this can be computed using the Voronǒı re-
duction algorithm). Extend R to a function on h∗ by putting R(u) = {u}
for any cusp u.

250 A. Computing in Higher Rank

In h, the support of T (ξ) becomes a geodesic µ between two cusps u,
u′, in other words the support of a modular symbol [u, u′] (Figure A.6.2).
Subdivide µ by choosing points x0, . . . , xn such that x0 = u, xn = u′,
and R(xi) ∩ R(xi+1) 6= ∅. (This is easily done, for example by repeat-
edly barycentrically subdividing µ.) For each i < n choose a cusp qi ∈
R(xi) ∩ R(xi+1), and put qn = u′. Then we have a relation in H1:

(A.6.1) [u, u′] = [q0, q1] + · · · + [qn−1, qn].

Moreover, each [qi, qi+1] is unimodular, since qi and qi+1 are both vertices
of a triangle containing xi+1. Upon lifting (A.6.1) back to CR

∗ , the cusps qi

become the 1-cones ρτ and give us a relation T (ξ) = ξ′′ ∈ CV
∗ .

µ

u u′

Figure A.6.2. A subdivision of µ; the solid dots are the xi. Since the
xi lie in the same or adjacent Voronǒı cells, we can assign cusps to them
to construct a homology to a cycle in CV

∗ .

A.6.7. The Sharbly Complex for General Groups. In [Gun00b] we
generalized Theorem A.22 (without the complexity statement) to the sym-
plectic group Sp2n. Using this algorithm and the symplectic retract [MM93,

MM89], one can compute the action of the Hecke operators on the top-
degree cohomology of subgroups of Sp4(Z).

More recently, Toth has investigated modular symbols for other groups.
He showed that the unimodular symbols generate the top-degree cohomology
groups for Γ an arithmetic subgroup of a split classical group or a split group
of type E6 or E7 [Tot05]. His technique of proof is completely different from
that of [Gun00b]. In particular he does not give an analogue of the Manin
trick. Can one extract an algorithm from Toth’s proof that can be used to
explicitly compute the action of the Hecke operators on cohomology?

The proof of the main result of [Gun00b] uses a description of the re-
lations among the modular symbols. These relations were motivated by the
structure of the cell complex in [MM93, MM89]. The modular symbols
and these relations are analogues of the groups S0 and S1 in the sharbly com-
plex. Can one extend these combinatorial constructions to form a symplectic
sharbly complex? What about for general groups G?

Already for Sp4, resolution of this question would have immediate arith-
metic applications. Indeed, Harder has a beautiful conjecture about certain

A.6. Complements and Open Problems 251

congruences between holomorphic modular forms and Siegel modular forms
of full level [Hara]. Examples of these congruences were checked numerically
in [Hara] using techniques of [FvdG] to compute the Hecke action.

However, to investigate higher levels, one needs a different technique.
The relevant cohomology classes live in Hν−1(Γ; M), so one only needs
to understand the first three terms of the complex S0 ← S1 ← S2. We
understand S0, S1 from [Gun00b]; the key is understanding S2, which
should encode relations among elements of S1. If one could do this and
then could generalize the techniques of [Gun00a], one would have a way to
investigate Harder’s conjecture.

A.6.8. Generalized Modular Symbols. We conclude this appendix by
discussing a geometric approach to modular symbols. This complements
the algebraic approaches presented in this book and leads to many new
interesting phenomena and problems.

Suppose H and G are connected semisimple algebraic groups over Q with
an injective map f : H → G. Let KH be a maximal compact subgroup of
H = H(R), and suppose K ⊂ G is a maximal compact subgroup containing
f(KH). Let X = G/K and Y = H/KH .

Now let Γ ⊂ G(Q) be a torsion-free arithmetic subgroup. Let ΓH =
f−1(Γ). We get a map ΓH\Y → Γ\X, and we denote the image by S(H, Γ).
Any compactly supported cohomology class ξ ∈ Hdim Y

c (Γ\X; C) can be
pulled back via f to ΓH\Y and integrated to obtain a complex number.
Hence S(H, Γ) defines a linear form on Hdim Y

c (Γ\X; C). By Poincaré du-
ality, this linear form determines a class [S(H, Γ)] ∈ Hdim X−dim Y (Γ\X; C),
called a generalized modular symbol. Such classes have been considered by
many authors, for example [AB90, SV03, Har05, AGR93].

As an example, we can take G to be the split form of SL2, and we can
take f : H → G to be the inclusion of connected component of the diagonal
subgroup. Hence H ≃ R>0. In this case KH is trivial. The image of Y in
X is the ideal geodesic from 0 to ∞. One way to vary f is by taking an
SL2(Q)-translate of this geodesic, which gives a geodesic between two cusps.
Hence we can obtain the support of any modular symbol this way. This
example generalizes to SLn to yield the modular symbols in Section A.4.
Here H ≃ (R > 0)n−1. Note that dimY = n − 1, so the cohomology classes
we have constructed live in the top degree Hν(Γ\X; C).

Another family of examples is provided by taking H to be a Levi factor
of a parabolic subgroup; these are the modular symbols studied in [AB90].

There are many natural questions to study for such objects. Here are
two:

252 A. Computing in Higher Rank

• Under what conditions on G,H, Γ is [S(H, Γ)] nonzero? This ques-
tion is connected to relations between periods of automorphic forms
and functoriality lifting. There are a variety of partial results
known; see for example [SV03, AGR93].

• We know the usual modular symbols span the top-degree cohomol-
ogy for any arithmetic group Γ. Fix a class of generalized modular
symbols by fixing the pair G,H and fixing some class of maps f .
How much of the cohomology can one span for a general arithmetic
group Γ ⊂ G(Q)?

A simple example is given by the Ash–Borel construction for
G = SL3 and H a Levi factor of a rational parabolic subgroup P

of type (2, 1). In this case H ≃ SL2(R)×R>0 and sits inside G via

g

(
α−1M 0

0 α

)
g−1, M ∈ SL2(R), α ∈ R>0, g ∈ SL3(Q).

For Γ ⊂ SL3(Z) these symbols define a subspace

S(2,1) ⊂ H2(Γ\X; C).

Are there Γ for which S(2,1) equals the full cohomology space? For
general Γ how much is captured? Is there a nice combinatorial way
to write down the relations among these classes? Can one cook
up a generalization of Theorem A.22 for these classes and use it to
compute Hecke eigenvalues?

Bibliography

[AB90] A. Ash and A. Borel, Generalized modular symbols, Cohomology of arith-
metic groups and automorphic forms (Luminy-Marseille, 1989), Springer,
Berlin, 1990, pp. 57–75.

[ADT04] Nadia Ben Atti and Gema M. Dı́az-Toca, http://hlombardi.free.fr/

publis/ABMAvar.html (2004).

[AG00] Avner Ash and Robert Gross, Generalized non-abelian reciprocity laws: a
context for Wiles’ proof, Bull. London Math. Soc. 32 (2000), no. 4, 385–
397. MR 1760802 (2001h:11142)

[Aga00] A. Agashe, The Birch and Swinnerton-Dyer formula for modular abelian
varieties of analytic rank 0, Ph.D. thesis, University of California, Berkeley
(2000).

[AGG84] Avner Ash, Daniel Grayson, and Philip Green, Computations of cuspidal
cohomology of congruence subgroups of SL(3,Z), J. Number Theory 19

(1984), no. 3, 412–436. MR 769792 (86g:11032)

[AGM] Avner Ash, Paul E. Gunnells, and Mark McConnell, Cohomology of con-
gruence subgroups of SL4(Z) II, in preparation.

[AGM02] , Cohomology of congruence subgroups of SL4(Z), J. Number The-
ory 94 (2002), no. 1, 181–212. MR 1904968 (2003f:11072)

[AGR93] Avner Ash, David Ginzburg, and Steven Rallis, Vanishing periods of cusp
forms over modular symbols, Math. Ann. 296 (1993), no. 4, 709–723.
MR 1233493 (94f:11044)

[Ahl78] Lars V. Ahlfors, Complex analysis, third ed., McGraw-Hill Book Co., New
York, 1978, An introduction to the theory of analytic functions of one
complex variable, International Series in Pure and Applied Mathematics.
MR 510197 (80c:30001)

[AL70] A. O. L. Atkin and J. Lehner, Hecke operators on Γ0(m), Math. Ann. 185

(1970), 134–160.

[AO01] Scott Ahlgren and Ken Ono, Addition and counting: the arithmetic of par-
titions, Notices Amer. Math. Soc. 48 (2001), no. 9, 978–984. MR 1854533
(2002e:11136)

253

254 Bibliography

[AR79] Avner Ash and Lee Rudolph, The modular symbol and continued fractions
in higher dimensions, Invent. Math. 55 (1979), no. 3, 241–250. MR 553998
(82g:12011)

[Art79] James Arthur, Eisenstein series and the trace formula, Automorphic forms,
representations and L-functions (Proc. Sympos. Pure Math., Oregon State
Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII,
Amer. Math. Soc., Providence, R.I., 1979, pp. 253–274. MR 546601
(81b:10020)

[Ash77] Avner Ash, Deformation retracts with lowest possible dimension of arith-
metic quotients of self-adjoint homogeneous cones, Math. Ann. 225 (1977),
no. 1, 69–76. MR 0427490 (55 #522)

[Ash80] , Cohomology of congruence subgroups SL(n, Z), Math. Ann. 249

(1980), no. 1, 55–73. MR 82f:22010

[Ash84] , Small-dimensional classifying spaces for arithmetic subgroups of
general linear groups, Duke Math. J. 51 (1984), no. 2, 459–468. MR 747876
(85k:22027)

[Ash86] , A note on minimal modular symbols, Proc. Amer. Math. Soc. 96

(1986), no. 3, 394–396. MR 822426 (87e:22024)

[Ash94] , Unstable cohomology of SL(n,O), J. Algebra 167 (1994), no. 2,
330–342. MR 1283290 (95g:20050)

[Bar57] E. S. Barnes, The perfect and extreme senary forms, Canad. J. Math. 9

(1957), 235–242. MR 0086834 (19,251e)

[Bar94] A. Barvinok, A polynomial time algorithm for counting integral points in
polyhedra when the dimension is fixed, Math. Oper. Res. 19 (1994), no. 4,
769–779.

[Bas96] Jacques Basmaji, Ein Algorithmus zur Berechnung von Hecke-Operatoren
und Anwendungen auf modulare Kurven,
http://modular.math.washington.edu/scans/papers/basmaji/, 1996.

[BC06] S. S. Bullock and C. Connell, Equivariant retracts of geometrically finite
discrete groups acting on negatively pinched Hadamard manifolds, in prepa-
ration, 2006.

[BCDT01] C. Breuil, B. Conrad, Fred Diamond, and R. Taylor, On the modularity
of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14

(2001), no. 4, 843–939 (electronic). MR 2002d:11058

[BCP97] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I.
The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265,
Computational algebra and number theory (London, 1993). MR 1 484 478

[BCS92] J. P. Buhler, R. E. Crandall, and R. W. Sompolski, Irregular primes to
one million, Math. Comp. 59 (1992), no. 200, 717–722. MR 1134717
(93a:11106)

[BHKS06] K. Belebas, M. Van Hoeij, J. Klüners, and A. Steel, Factoring polynomials
over global fields, preprint at
http://www.math.fsu.edu/~hoeij/papers.html (2006).

[BI97] R. Baeza and M. I. Icaza, On Humbert-Minkowski’s constant for a number
field, Proc. Amer. Math. Soc. 125 (1997), no. 11, 3195–3202. MR 1403112
(97m:11092)

[Bir71] B. J. Birch, Elliptic curves over Q: A progress report, 1969 Number The-
ory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York,

Bibliography 255

Stony Brook, N.Y., 1969), Amer. Math. Soc., Providence, R.I., 1971,
pp. 396–400.

[BK90] S. Bloch and K. Kato, L-functions and Tamagawa numbers of motives, The
Grothendieck Festschrift, Vol. I, Birkhäuser Boston, Boston, MA, 1990,
pp. 333–400.

[BMS06] Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Classical and mod-
ular approaches to exponential Diophantine equations. II. The Lebesgue-
Nagell equation, Compos. Math. 142 (2006), no. 1, 31–62. MR 2196761

[Bro94] Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics,
vol. 87, Springer-Verlag, New York, 1994, corrected reprint of the 1982
original. MR 1324339 (96a:20072)

[BS73] A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment. Math.
Helv. 48 (1973), 436–491, avec un appendice: Arrondissement des variétés
à coins, par A. Douady et L. Hérault. MR 0387495 (52 #8337)

[BS02] K. Buzzard and W. A. Stein, A mod five approach to modularity of icosa-
hedral Galois representations, Pacific J. Math. 203 (2002), no. 2, 265–282.
MR 2003c:11052

[BT82] Raoul Bott and Loring W. Tu, Differential forms in algebraic topology,
Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York, 1982.
MR 658304 (83i:57016)

[Bul00] S. S. Bullock, Well-rounded retracts of rank one symmetric spaces,
preprint, 2000.

[Bum84] Daniel Bump, Automorphic forms on GL(3,R), Lecture Notes in Mathe-
matics, vol. 1083, Springer-Verlag, Berlin, 1984. MR 765698 (86g:11028)

[Bum97] , Automorphic forms and representations, Cambridge Studies in
Advanced Mathematics, vol. 55, Cambridge University Press, Cambridge,
1997. MR 1431508 (97k:11080)

[Buz96] Kevin Buzzard, On the eigenvalues of the Hecke operator T2, J. Number
Theory 57 (1996), no. 1, 130–132. MR 96m:11033

[BW00] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and
representations of reductive groups, second ed., Mathematical Surveys and
Monographs, vol. 67, American Mathematical Society, Providence, RI,
2000. MR 1721403 (2000j:22015)

[Byg99] J. Bygott, Modular forms and modular symbols over imaginary quadratic
fields, Ph.D. thesis, Exeter University, 1999.

[Car59a] L. Carlitz, Arithmetic properties of generalized Bernoulli numbers, J. Reine
Angew. Math. 202 (1959), 174–182. MR 0109132 (22 #20)

[Car59b] , Some arithmetic properties of generalized Bernoulli numbers, Bull.
Amer. Math. Soc. 65 (1959), 68–69. MR 0104630 (21 #3383)

[CDT99] Brian Conrad, Fred Diamond, and Richard Taylor, Modularity of certain
potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc. 12

(1999), no. 2, 521–567. MR 1639612 (99i:11037)

[CF67] George E. Cooke and Ross L. Finney, Homology of cell complexes, Based
on lectures by Norman E. Steenrod, Princeton University Press, Princeton,
N.J., 1967. MR 0219059 (36 #2142)

[Che05] Imin Chen, A Diophantine equation associated to X0(5), LMS J. Comput.
Math. 8 (2005), 116–121 (electronic). MR 2153792 (2006b:11052)

256 Bibliography

[CL04] J. Cremona and M. P. Lingham, Finding all elliptic curves with good re-
duction outside a given set of primes, in progress (2004).

[CO77] H. Cohen and J. Oesterlé, Dimensions des espaces de formes modulaires,
69–78. Lecture Notes in Math., Vol. 627. MR 57 #12396

[Coh93] H. Cohen, A course in computational algebraic number theory, Springer-
Verlag, Berlin, 1993. MR 94i:11105

[Cou01] Renaud Coulangeon, Voronöı theory over algebraic number fields, Réseaux
euclidiens, designs sphériques et formes modulaires, Monogr. Enseign.
Math., vol. 37, Enseignement Math., Geneva, 2001, pp. 147–162.
MR 1878749 (2002m:11064)

[Cre] J. E. Cremona, personal communication.

[Cre84] , Hyperbolic tessellations, modular symbols, and elliptic curves over
complex quadratic fields, Compositio Math. 51 (1984), no. 3, 275–324.

[Cre92] , Modular symbols for Γ1(N) and elliptic curves with everywhere
good reduction, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 2,
199–218.

[Cre97a] , Algorithms for modular elliptic curves, second ed., Cambridge
University Press, Cambridge, 1997,
http://www.maths.nott.ac.uk/personal/jec/book/.

[Cre97b] , Computing periods of cusp forms and modular elliptic curves, Ex-
periment. Math. 6 (1997), no. 2, 97–107.

[Cre06] , Proceedings of the 7th International Symposium (ANTS-VII)
(2006).

[CS88] J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. III. Per-
fect forms, Proc. Roy. Soc. London Ser. A 418 (1988), no. 1854, 43–80.
MR 953277 (90a:11073)

[CW94] J. E. Cremona and E. Whitley, Periods of cusp forms and elliptic curves
over imaginary quadratic fields, Math. Comp. 62 (1994), no. 205, 407–429.

[CWZ01] Janos A. Csirik, Joseph L. Wetherell, and Michael E. Zieve, On the genera
of X0(N), http://www.csirik.net/papers.html (2001).

[Dar97] H. Darmon, Faltings plus epsilon, Wiles plus epsilon, and the generalized
Fermat equation, C. R. Math. Rep. Acad. Sci. Canada 19 (1997), no. 1,
3–14. MR 1479291 (98h:11034a)

[Dem04] L. Dembélé, Quaternionic Manin symbols, Brandt matrices and Hilbert
modular forms, preprint, 2004.

[Dem05] L. Dembélé, Explicit computations of Hilbert modular forms on Q(
√

5),
Experiment. Math. 14 (2005), no. 4, 457–466. MR 2193808

[DI95] F. Diamond and J. Im, Modular forms and modular curves, Seminar on
Fermat’s Last Theorem, Providence, RI, 1995, pp. 39–133.

[Dia96] F. Diamond, On deformation rings and Hecke rings, Ann. of Math. (2)
144 (1996), no. 1, 137–166. MR 1405946 (97d:11172)

[Dix82] John D. Dixon, Exact solution of linear equations using p-adic expansions,
Numer. Math. 40 (1982), no. 1, 137–141. MR 681819 (83m:65025)

[Dok04] Tim Dokchitser, Computing special values of motivic L-functions, Experi-
ment. Math. 13 (2004), no. 2, 137–149.

[DP04] H. Darmon and R. Pollack, The efficient calculation of Stark-Heegner
points via overconvergent modular symbols.

Bibliography 257

[DS05] Fred Diamond and Jerry Shurman, A first course in modular forms, Grad-
uate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005.

[DVS05] M. Dutour, F. Vallentin, and A. Schürmann, Classification of perfect forms
in dimension 8, talk at Oberwolfach meeting Sphere packings: Exceptional
structures and relations to other fields, November 2005.

[Ebe02] Wolfgang Ebeling, Lattices and codes, revised ed., Advanced Lectures in
Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 2002, a course par-
tially based on lectures by F. Hirzebruch.

[ECdJ+06] Bas Edixhoven, Jean-Marc Couveignes, Robin de Jong, Franz Merkl,
and Johan Bosman, On the computation of coefficients of modular form,
http://www.arxiv.org/abs/math.NT/0605244 (2006).

[EGM98] J. Elstrodt, F. Grunewald, and J. Mennicke, Groups acting on hyper-
bolic space, Springer Monographs in Mathematics, Springer-Verlag, Berlin,
1998, Harmonic analysis and number theory. MR 1483315 (98g:11058)

[Eil47] Samuel Eilenberg, Homology of spaces with operators. I, Trans. Amer.
Math. Soc. 61 (1947), 378–417; errata, 62, 548 (1947). MR 0021313 (9,52b)

[Elk98] Noam D. Elkies, Elliptic and modular curves over finite fields and re-
lated computational issues, Computational perspectives on number theory
(Chicago, IL, 1995), AMS/IP Stud. Adv. Math., vol. 7, Amer. Math. Soc.,
Providence, RI, 1998, pp. 21–76. MR 1486831 (99a:11078)

[EVGS02] Philippe Elbaz-Vincent, Herbert Gangl, and Christophe Soulé, Quelques
calculs de la cohomologie de GLN (Z) et de la K-théorie de Z, C. R. Math.
Acad. Sci. Paris 335 (2002), no. 4, 321–324. MR 1931508 (2003h:19002)

[FH91] William Fulton and Joe Harris, Representation theory, Graduate Texts in
Mathematics, vol. 129, Springer-Verlag, New York, 1991, A first course,
Readings in Mathematics. MR 1153249 (93a:20069)

[FJ02] D. W. Farmer and K. James, The irreducibility of some level 1 Hecke
polynomials, Math. Comp. 71 (2002), no. 239, 1263–1270 (electronic).
MR 2003e:11046

[FL] D. W. Farmer and Stefan Lemurell, Maass forms and their L-functions,
AIM 2005-15, arXiv:math.NT/0506102.

[FM99] G. Frey and M. Müller, Arithmetic of modular curves and applications, Al-
gorithmic algebra and number theory (Heidelberg, 1997), Springer, Berlin,
1999, pp. 11–48.

[Fra98] J. Franke, Harmonic analysis in weighted L2-spaces, Ann. Sci. École Norm.
Sup. (4) 31 (1998), no. 2, 181–279.

[FT93] A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Uni-
versity Press, Cambridge, 1993.

[FvdG] C. Faber and G. van der Geer, Sur la cohomologie des Systémes Locaux
sur les Espaces des Modules des Courbes de Genus 2 and des Surfaces
Abéliennes, arXiv:math.AG/0305094.

[Gel75] Stephen S. Gelbart, Automorphic forms on adèle groups, Princeton Uni-
versity Press, Princeton, N.J., 1975, Annals of Mathematics Studies, No.
83. MR 0379375 (52 #280)

[GH81] M. J. Greenberg and J. R. Harper, Algebraic topology, Ben-
jamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading,
Mass., 1981, A first course. MR 83b:55001

258 Bibliography

[GLQ04] Josep González, Joan-Carles Lario, and Jordi Quer, Arithmetic of Q-
curves, Modular curves and abelian varieties, Progr. Math., vol. 224,
Birkhäuser, Basel, 2004, pp. 125–139. MR 2058647 (2005c:11068)

[GM03] P. E. Gunnells and M. McConnell, Hecke operators and Q-groups associated
to self-adjoint homogeneous cones, J. Number Theory 100 (2003), no. 1,
46–71.

[Gol05] Dorian Goldfeld, Automorphic forms and L-functions on the general linear
group, to appear, 2005.

[Gon97] A. B. Goncharov, The double logarithm and Manin’s complex for modular
curves, Math. Res. Lett. 4 (1997), no. 5, 617–636.

[Gon98] , Multiple polylogarithms, cyclotomy and modular complexes, Math.
Res. Lett. 5 (1998), no. 4, 497–516.

[Gor93] D. Gordon, Discrete logarithms in GF(p) using the number field sieve,
SIAM J. Discrete Math. 6 (1993), no. 1, 124–138. MR 94d:11104

[Gor04] , Discrete logarithm problem,
http://www.win.tue.nl/~henkvt/content.html.

[GP05] Benedict H. Gross and David Pollack, On the Euler characteristic of
the discrete spectrum, J. Number Theory 110 (2005), no. 1, 136–163.
MR 2114678 (2005k:11100)

[Gre83] Ralph Greenberg, On the Birch and Swinnerton-Dyer conjecture, Invent.
Math. 72 (1983), no. 2, 241–265. MR 700770 (85c:11052)

[Gri05] G. Grigorov, Kato’s Euler System and the Main Conjecture, Harvard Ph.D.
Thesis (2005).

[Gro98] Benedict H. Gross, On the Satake isomorphism, Galois representations in
arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lecture
Note Ser., vol. 254, Cambridge Univ. Press, Cambridge, 1998, pp. 223–237.
MR 1696481 (2000e:22008)

[GS81] F. Grunewald and J. Schwermer, A nonvanishing theorem for the cuspidal
cohomology of SL2 over imaginary quadratic integers, Math. Ann. 258

(1981), 183–200.

[GS02] Mark Giesbrecht and Arne Storjohann, Computing rational forms of inte-
ger matrices, J. Symbolic Comput. 34 (2002), no. 3, 157–172. MR 1935075
(2003j:15016)

[Gun99] P. E. Gunnells, Modular symbols for Q-rank one groups and Voronŏı re-
duction, J. Number Theory 75 (1999), no. 2, 198–219.

[Gun00a] , Computing Hecke eigenvalues below the cohomological dimension,
Experiment. Math. 9 (2000), no. 3, 351–367. MR 1 795 307

[Gun00b] , Symplectic modular symbols, Duke Math. J. 102 (2000), no. 2,
329–350.

[Hara] G. Harder, Congruences between modular forms of genus 1 and of genus
2, Arbeitstagung.

[Harb] , Kohomologie arithmetischer Gruppen, lecture notes, Universität
Bonn, 1987–1988.

[Har87] , Eisenstein cohomology of arithmetic groups. The case GL2, Invent.
Math. 89 (1987), no. 1, 37–118. MR 892187 (89b:22018)

Bibliography 259

[Har91] , Eisenstein cohomology of arithmetic groups and its applications to
number theory, Proceedings of the International Congress of Mathemati-
cians, Vol. I, II (Kyoto, 1990) (Tokyo), Math. Soc. Japan, 1991, pp. 779–
790. MR 1159264 (93b:11057)

[Har05] , Modular symbols and special values of automorphic L-functions,
preprint, 2005.

[HC68] Harish-Chandra, Automorphic forms on semisimple Lie groups, Notes by
J. G. M. Mars. Lecture Notes in Mathematics, No. 62, Springer-Verlag,
Berlin, 1968. MR 0232893 (38 #1216)

[Hel01] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric
spaces, Graduate Studies in Mathematics, vol. 34, American Mathemati-
cal Society, Providence, RI, 2001, corrected reprint of the 1978 original.
MR 1834454 (2002b:53081)

[Hij74] H. Hijikata, Explicit formula of the traces of Hecke operators for Γ0(N), J.
Math. Soc. Japan 26 (1974), no. 1, 56–82.

[Hsu96] Tim Hsu, Identifying congruence subgroups of the modular group, Proc.
Amer. Math. Soc. 124 (1996), no. 5, 1351–1359. MR 1343700 (96k:20100)

[HT01] Michael Harris and Richard Taylor, The geometry and cohomology of some
simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Prince-
ton University Press, Princeton, NJ, 2001, with an appendix by Vladimir
G. Berkovich. MR 1876802 (2002m:11050)

[Hum80] James E. Humphreys, Arithmetic groups, Lecture Notes in Mathematics,
vol. 789, Springer, Berlin, 1980. MR 584623 (82j:10041)

[Ica97] M. I. Icaza, Hermite constant and extreme forms for algebraic number
fields, J. London Math. Soc. (2) 55 (1997), no. 1, 11–22. MR 1423282
(97j:11034)

[Jaq91] David-Olivier Jaquet, Classification des réseaux dans R7 (via la notion
de formes parfaites), Astérisque (1991), no. 198-200, 7–8, 177–185 (1992),
Journées Arithmétiques, 1989 (Luminy, 1989). MR 1144322 (93g:11071)

[JBS03] A. Jorza, J. Balakrishna, and W. Stein, The Smallest Conductor for an
Elliptic Curve of Rank Four is Composite,
http://modular.math.washington.edu/rank4/.

[JC93] David-Olivier Jaquet-Chiffelle, Énumération complète des classes de
formes parfaites en dimension 7, Ann. Inst. Fourier (Grenoble) 43 (1993),
no. 1, 21–55. MR 1209694 (94d:11048)

[Kan00] Masanobu Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli num-
bers, J. Integer Seq. 3 (2000), no. 2, Article 00.2.9, 6 pp. (electronic).
MR 1800883 (2001k:11026)

[Kel06] Bernd C. Kellner, Bernoulli numbers, http://www.bernoulli.org (2006).

[Kna92] A. W. Knapp, Elliptic curves, Princeton University Press, Princeton, NJ,
1992.

[Knu] Donald E. Knuth, The art of computer programming. Vol. 2, third ed.,
Addison-Wesley Publishing Co., Reading, Mass., Seminumerical algo-
rithms, Addison-Wesley Series in Computer Science and Information Pro-
cessing.

[Kob84] N. Koblitz, Introduction to elliptic curves and modular forms, Gradu-
ate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1984.
MR 86c:11040

260 Bibliography

[Kri90] Aloys Krieg, Hecke algebras, Mem. Amer. Math. Soc. 87 (1990), no. 435,
x+158. MR 1027069 (90m:16024)

[Laf02] Laurent Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands,
Invent. Math. 147 (2002), no. 1, 1–241. MR 1875184 (2002m:11039)

[Lan66] R. P. Langlands, Eisenstein series, Algebraic Groups and Discontinu-
ous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer.
Math. Soc., Providence, R.I., 1966, pp. 235–252. MR 0249539 (40 #2784)

[Lan76] Robert P. Langlands, On the functional equations satisfied by Eisenstein
series, Springer-Verlag, Berlin, 1976, Lecture Notes in Mathematics, Vol.
544. MR 0579181 (58 #28319)

[Lan95] S. Lang, Introduction to modular forms, Springer-Verlag, Berlin, 1995, with
appendixes by D. Zagier and W. Feit, corrected reprint of the 1976 original.

[Lem01] Dominic Lemelin, Mazur-tate type conjectures for elliptic curves defined
over quadratic imaginary fields.

[Leo58] Heinrich-Wolfgang Leopoldt, Eine Verallgemeinerung der Bernoullischen
Zahlen, Abh. Math. Sem. Univ. Hamburg 22 (1958), 131–140. MR 0092812
(19,1161e)

[Li75] W-C. Li, Newforms and functional equations, Math. Ann. 212 (1975),
285–315.

[Lin05] M. Lingham, Modular forms and elliptic curves over imaginary quadratic
fields, Ph.D. thesis, Nottingham, 2005.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomi-
als with rational coefficients, Math. Ann. 261 (1982), no. 4, 515–534.
MR 682664 (84a:12002)

[LS76] Ronnie Lee and R. H. Szczarba, On the homology and cohomology of con-
gruence subgroups, Invent. Math. 33 (1976), no. 1, 15–53. MR 0422498
(54 #10485)

[LS90] J.-P. Labesse and J. Schwermer (eds.), Cohomology of arithmetic groups
and automorphic forms, Lecture Notes in Mathematics, vol. 1447, Berlin,
Springer-Verlag, 1990. MR 1082959 (91h:11033)

[LS02] Joan-C. Lario and René Schoof, Some computations with Hecke rings and
deformation rings, Experiment. Math. 11 (2002), no. 2, 303–311, with an
appendix by Amod Agashe and William Stein. MR 1959271 (2004b:11072)

[LS04] Jian-Shu Li and Joachim Schwermer, On the Eisenstein cohomology of
arithmetic groups, Duke Math. J. 123 (2004), no. 1, 141–169. MR 2060025
(2005h:11108)

[Lub94] A. Lubotzky, Discrete groups, expanding graphs and invariant measures,
Progress in Mathematics, vol. 125, Birkhäuser Verlag, Basel, 1994, with
an appendix by Jonathan D. Rogawski.

[Man72] J. I. Manin, Parabolic points and zeta functions of modular curves, Izv.
Akad. Nauk SSSR Ser. Mat. 36 (1972), 19–66. MR 47 #3396

[Mar01] François Martin, Périodes de formes modulaires de poids 1.

[Mar03] Jacques Martinet, Perfect lattices in Euclidean spaces, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences], vol. 327, Springer-Verlag, Berlin, 2003. MR 1957723
(2003m:11099)

Bibliography 261

[Mar05] Greg Martin, Dimensions of the spaces of cusp forms and newforms
on Γ0(N) and Γ1(N), J. Number Theory 112 (2005), no. 2, 298–331.
MR 2141534 (2005m:11069)

[Maz73] B. Mazur, Courbes elliptiques et symboles modulaires, Séminaire Bourbaki,
24ème année (1971/1972), Exp. No. 414, Springer, Berlin, 1973, pp. 277–
294. Lecture Notes in Math., Vol. 317. MR 55 #2930

[McC91] M. McConnell, Classical projective geometry and arithmetic groups, Math.
Ann. 290 (1991), no. 3, 441–462. MR 92k:22020

[Men79] Eduardo R. Mendoza, Cohomology of PGL2 over imaginary quadratic inte-
gers, Bonner Mathematische Schriften [Bonn Mathematical Publications],
128, Universität Bonn Mathematisches Institut, Bonn, 1979, Disserta-
tion, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1979. MR 611515
(82g:22012)

[Mer94] L. Merel, Universal Fourier expansions of modular forms, On Artin’s con-
jecture for odd 2-dimensional representations, Springer, 1994, pp. 59–94.

[Mer99] , Arithmetic of elliptic curves and Diophantine equations, J. Théor.
Nombres Bordeaux 11 (1999), no. 1, 173–200, Les XXèmes Journées
Arithmétiques (Limoges, 1997). MR 1730439 (2000j:11084)

[Mes86] J.-F. Mestre, La méthode des graphes. Exemples et applications, Proceed-
ings of the international conference on class numbers and fundamental
units of algebraic number fields (Katata) (1986), 217–242.

[Miy89] T. Miyake, Modular forms, Springer-Verlag, Berlin, 1989, translated from
the Japanese by Yoshitaka Maeda.

[MM89] R. MacPherson and M. McConnell, Classical projective geometry and mod-
ular varieties, Algebraic analysis, geometry, and number theory (Bal-
timore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989,
pp. 237–290. MR 98k:14076

[MM93] , Explicit reduction theory for Siegel modular threefolds, Invent.
Math. 111 (1993), no. 3, 575–625. MR 94a:32052

[MTT86] B. Mazur, J. Tate, and J. Teitelbaum, On p-adic analogues of the con-
jectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1,
1–48.

[MW94] Colette Mœglin and Jean-Loup Waldspurger, Décomposition spectrale et
séries d’Eisenstein, Progress in Mathematics, vol. 113, Birkhäuser Verlag,

Basel, 1994, Une paraphrase de l’Écriture [A paraphrase of Scripture].
MR 1261867 (95d:11067)

[Nec94] V. I. Nechaev, On the complexity of a deterministic algorithm for a discrete
logarithm, Mat. Zametki 55 (1994), no. 2, 91–101, 189. MR 96a:11145

[Ong86] Heidrun E. Ong, Perfect quadratic forms over real-quadratic number fields,
Geom. Dedicata 20 (1986), no. 1, 51–77. MR 823160 (87f:11023)

[PR94] Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number
theory, Pure and Applied Mathematics, vol. 139, Academic Press Inc.,
Boston, MA, 1994, translated from the 1991 Russian original by Rachel
Rowen. MR 1278263 (95b:11039)

[Que06] J. Quer, Dimensions of spaces of modular forms for ΓH(N), Preprint.

[Rib92] K. A. Ribet, Abelian varieties over Q and modular forms, Algebra and
topology 1992 (Taejŏn), Korea Adv. Inst. Sci. Tech., Taejŏn, 1992, pp. 53–
79. MR 94g:11042

262 Bibliography

[Ros86] M. Rosen, Abelian varieties over C, Arithmetic geometry (Storrs, Conn.,
1984), Springer, New York, 1986, pp. 79–101.

[RS01] K. A. Ribet and W. A. Stein, Lectures on Serre’s conjectures, Arithmetic al-
gebraic geometry (Park City, UT, 1999), IAS/Park City Math. Ser., vol. 9,
Amer. Math. Soc., Providence, RI, 2001, pp. 143–232. MR 2002h:11047

[Sap97] Leslie Saper, Tilings and finite energy retractions of locally symmetric
spaces, Comment. Math. Helv. 72 (1997), no. 2, 167–202. MR 1470087
(99a:22019)

[Sar03] Peter Sarnak, Spectra of hyperbolic surfaces, Bull. Amer. Math. Soc. (N.S.)
40 (2003), no. 4, 441–478 (electronic). MR 1997348 (2004f:11107)

[SC03] Samir Siksek and John E. Cremona, On the Diophantine equation x2 +7 =
ym, Acta Arith. 109 (2003), no. 2, 143–149. MR 1980642 (2004c:11109)

[Sch86] Joachim Schwermer, Holomorphy of Eisenstein series at special points and
cohomology of arithmetic subgroups of SLn(Q), J. Reine Angew. Math.
364 (1986), 193–220. MR 817646 (87h:11048)

[Sch90] A. J. Scholl, Motives for modular forms, Invent. Math. 100 (1990), no. 2,
419–430.

[Sch95] R. Schoof, Counting points on elliptic curves over finite fields, J. Théor.
Nombres Bordeaux 7 (1995), no. 1, 219–254, Les Dix-huitièmes Journées
Arithmétiques (Bordeaux, 1993). MR 1413578 (97i:11070)

[Ser73] J-P. Serre, A Course in Arithmetic, Springer-Verlag, New York, 1973,
Translated from the French, Graduate Texts in Mathematics, No. 7.

[Ser87] , Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke
Math. J. 54 (1987), no. 1, 179–230.

[Shi59] G. Shimura, Sur les intégrales attachées aux formes automorphes, J. Math.
Soc. Japan 11 (1959), 291–311.

[Shi94] , Introduction to the arithmetic theory of automorphic functions,
Princeton University Press, Princeton, NJ, 1994, reprint of the 1971 orig-
inal, Kan Memorial Lectures, 1.

[Sho80a] V. V. Shokurov, Shimura integrals of cusp forms, Izv. Akad. Nauk SSSR
Ser. Mat. 44 (1980), no. 3, 670–718, 720. MR 582162 (82b:10029)

[Sho80b] , A study of the homology of Kuga varieties, Izv. Akad. Nauk SSSR
Ser. Mat. 44 (1980), no. 2, 443–464, 480. MR 571104 (82f:14023)

[Sho97] Victor Shoup, Lower bounds for discrete logarithms and related problems,
Advances in cryptology—EUROCRYPT ’97 (Konstanz), Lecture Notes in
Comput. Sci., vol. 1233, Springer, Berlin, 1997, pp. 256–266. MR 98j:94023

[Sil92] J. H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, New
York, 1992, corrected reprint of the 1986 original.

[Sou75] Christophe Soulé, Cohomologie de SL3(Z), C. R. Acad. Sci. Paris Sér. A-B
280 (1975), no. 5, Ai, A251–A254. MR 0396849 (53 #709)

[Sta79] R. E. Staffeldt, Reduction theory and K3 of the Gaussian integers, Duke
Math. J. 46 (1979), no. 4, 773–798. MR 552526 (80m:22014)

[Ste] Allan Steel, Advanced matrix algorithms, Seminar Talk at Harvard Univer-
sity.

[Ste97] , A new algorithm for the computation of canonical forms of ma-
trices over fields, J. Symbolic Comput. 24 (1997), no. 3-4, 409–432, Com-
putational algebra and number theory (London, 1993). MR 1484489
(98m:65070)

Bibliography 263

[Ste99a] Norman Steenrod, The topology of fibre bundles, Princeton Landmarks in
Mathematics, Princeton University Press, Princeton, NJ, 1999, reprint of
the 1957 edition, Princeton Paperbacks. MR 1688579 (2000a:55001)

[Ste99b] W. A. Stein, HECKE: The Modular Symbols Calculator, software (available
online) (1999).

[Ste00] , Explicit approaches to modular abelian varieties, Ph.D. thesis, Uni-
versity of California, Berkeley (2000).

[Ste06] , SAGE: Software for Algebra and Geometry
Experimentation, http://sage.scipy.org/sage.

[Str69] Volker Strassen, Gaussian elimination is not optimal, Numerische Mathe-
matik 13 (1969), 354–356.

[Stu87] J. Sturm, On the congruence of modular forms, Number theory (New York,
1984–1985), Springer, Berlin, 1987, pp. 275–280.

[SV01] W. A. Stein and H. A. Verrill, Cuspidal modular symbols are transportable,
LMS J. Comput. Math. 4 (2001), 170–181 (electronic). MR 1 901 355

[SV03] B. Speh and T. N. Venkataramana, Construction of some generalised mod-
ular symbols, preprint, 2003.

[SW02] William A. Stein and Mark Watkins, A database of elliptic curves—first
report, Algorithmic number theory (Sydney, 2002), Lecture Notes in Com-
put. Sci., vol. 2369, Springer, Berlin, 2002, pp. 267–275. MR 2041090
(2005h:11113)

[SW05] Jude Socrates and David Whitehouse, Unramified Hilbert modular forms,
with examples relating to elliptic curves, Pacific J. Math. 219 (2005), no. 2,
333–364. MR 2175121

[Tat75] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic
pencil, Modular functions of one variable, IV (Proc. Internat. Summer
School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1975, pp. 33–52.
Lecture Notes in Math., Vol. 476. MR 52 #13850

[Tho89] J. G. Thompson, Hecke operators and noncongruence subgroups, Group
theory (Singapore, 1987), de Gruyter, Berlin, 1989, including a letter from
J.-P. Serre, pp. 215–224. MR 981844 (90a:20105)

[Tot05] A. Toth, On the Steinberg module of Chevalley groups, Manuscripta Math.
116 (2005), no. 3, 277–295.

[TW95] R. Taylor and A. J. Wiles, Ring-theoretic properties of certain Hecke alge-
bras, Ann. of Math. (2) 141 (1995), no. 3, 553–572.

[vdG] Gerard van der Geer, Siegel Modular Forms, arXiv:math.AG/0605346.

[vGvdKTV97] Bert van Geemen, Wilberd van der Kallen, Jaap Top, and Alain Ver-
berkmoes, Hecke eigenforms in the cohomology of congruence subgroups
of SL(3,Z), Experiment. Math. 6 (1997), no. 2, 163–174. MR 1474576
(99a:11059)

[Vig77] Marie-France Vignéras, Séries thêta des formes quadratiques indéfinies,
Séminaire Delange-Pisot-Poitou, 17e année (1975/76), Théorie des nom-
bres: Fasc. 1, Exp. No. 20, Secrétariat Math., Paris, 1977, p. 3.
MR 0480352 (58 #521)

[Vog85] K. Vogtmann, Rational homology of Bianchi groups, Math. Ann. 272

(1985), no. 3, 399–419.

264 Bibliography

[Vog97] David A. Vogan, Jr., Cohomology and group representations, Represen-
tation theory and automorphic forms (Edinburgh, 1996), Proc. Sympos.
Pure Math., vol. 61, Amer. Math. Soc., Providence, RI, 1997, pp. 219–243.
MR 1476500 (98k:22064)

[Vor08] G. Voronǒı, Nouvelles applications des paramétres continus à la théorie des
formes quadratiques, I. Sur quelques propriétés des formes quadratiques
positives parfaites, J. Reine Angew. Math. 133 (1908), 97–178.

[VZ84] David A. Vogan, Jr. and Gregg J. Zuckerman, Unitary representations
with nonzero cohomology, Compositio Math. 53 (1984), no. 1, 51–90.
MR 762307 (86k:22040)

[Wan82] Kai Wang, A proof of an identity of the Dirichlet L-function, Bull. Inst.
Math. Acad. Sinica 10 (1982), no. 3, 317–321. MR 679019 (84c:10040)

[Wan95] Xiang Dong Wang, 2-dimensional simple factors of J0(N), Manuscripta
Math. 87 (1995), no. 2, 179–197. MR 1334940 (96h:11059)

[Wes] U. Weselman, personal communication.

[Whi90] E. Whitley, Modular symbols and elliptic curves over imaginary quadratic
number fields, Ph.D. thesis, Exeter University, 1990.

[Wie05] Gabor Wiese, Modular Forms of Weight One Over Finite Fields, Ph.D.
thesis (2005).

[Wil95] A. J. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of
Math. (2) 141 (1995), no. 3, 443–551. MR 1333035 (96d:11071)

[Wil00] , The Birch and Swinnerton-Dyer Conjecture,
http://www.claymath.org/prize problems/birchsd.htm.

[Yas05a] D. Yasaki, On the cohomology of SU(2, 1) over the Gaussian integers,
preprint, 2005.

[Yas05b] , On the existence of spines for Q-rank 1 groups, preprint, 2005.

Index

Symbol Index
C(Γ), 5

C[[q]], 4

∆, 15

ε(γ), 180

F , 17

f [γ]k , 5

Γ(N), 4

Γ0(N), 5

Γ1(N), 4

Gk(z), 13

GL2(Q), 5

h, 1

h∗, 6

j-function, 170

Mat2(Z)n, 131

Mk(G), 123

Mk(G; R), 124

Mk(Γ), 7

Mk(N, ε),

Mk(N, ε), 128

Mk, 17

Mk, 179

P1(Q), 5

Sk(Γ), 134

Sk, 18

SL2(Z), 1, 5 180

Algorithm Index
p-adic Nullspace, 118 145 146 187 65

Asymptotically Fast Echelon Form, 111

Baby-step Giant-step Discrete Log, 69

Basis for Mk, 19

Basis of Cusp Forms, 56

Berlekamp-Massey, 116

Bernoulli Number Bn, 32

Conductor, 71

Cremona’s Heilbronn Matrices, 48

Cusp Representation, 135

Decomposition Using Kernels, 119

Dirichlet Character as Kronecker
Symbol, 74

Elliptic Curves of Conductor N ,

Enumerating Eisenstein Series, 88

Evaluate ε, 68

Explicit Cusp Equivalence, 135

Extension of Character, 76

Factorization of Character, 71

Galois Orbit, 76

Gauss Elimination, 104

Generalized Bernoulli Numbers, 84

Hecke Operator, 26

Kronecker Symbol as Dirichlet
Character, 74

List P1(Z/NZ),

Merel’s Algorithm for Computing a
Basis, 165

Minimal Generator for (Z/prZ)∗,

Modular Symbols Presentation, 154

Multimodular Echelon Form, 107

Order of Character, 70

Period Integrals, 181

Rational Reconstruction, 106

Reduction in P1(Z/NZ) to Canonical
Form,

Restriction of Character, 75

Sum over A4(N), 99

System of Eigenvalues, 166

Values of ε, 70

Width of Cusp, 9

265

266 Index

Definition Index
Γ-invariant on the left, 206
k-sharblies, 233

q-expansion, 4
Q-rank, 245 123 125 128 13 134 159 212

218 226 7
abelian variety attached to f , 178

action of Hecke operators, 139
antiholomorphic, 137
arithmetic group, 208
associate proper Q-parabolic subgroups

of G,
automorphic form, 209
automorphy factor, 205
Bernoulli numbers, 16
Bianchi groups, 248
Borel conjecture, 212
boundary map, 40, 134
bounded domains, 211
cellular decomposition, 219
character of the modular form, 160
Cholesky decomposition, 214
codimension, 219
complex upper half plane, 1
conductor, 71
congruence subgroup, 4, 208
congruence subgroup problem, 7
Connected, 207
critical integers, 138
cross polytope, 238
cusp form, 4
cuspidal, 209
cuspidal automorphic form, 210
cuspidal cohomology, 212
cuspidal modular symbols, 40,
cusps for a congruence subgroup Γ, 5
Defined over Q, 207
degeneracy map, 59, 161
diamond-bracket action, 160
diamond-bracket operators, 128,
dimension, 219
Dirichlet character, 64
divisor, xi
echelon form, 103
eigenforms, 59
Eilenberg–Mac Lane, 211
Eisenstein cohomology, 212
Eisenstein series, 210
Eisenstein subspace, 83
extended modular symbols, 179
extended upper half plane, 6
fan, 218
Farey tessellation, 220
formal power series, 4
Fourier expansion, 3
generalized Bernoulli numbers, 83
generalized modular symbol, 251

Grothendieck motive, 179
group cohomology, 211
Hecke algebra, 54, 83,
Hecke correspondence, 225
Hecke operator, 37, 128,
Hecke polynomials, 241
height, 107
Hermite normal form, 120, 240
Hermitian symmetric spaces, 211
holomorphic, 2
holomorphic at ∞, 4

holomorphic at the cusp α,
Humbert forms, 244
hypersimplices, 246
Krylov methods, 116
Krylov subspace, 116
Laplace–Beltrami–Casimir operator, 209
left action of G, 123

left action of GL2(Q), 40
left action of SL2(Z), 133
left translations, 208
level 1, 4
level of Γ, 4
linear fractional transformations, 1
Maass forms, 210
Manin symbol, 124
meromorphic, 2
meromorphic at ∞, 4

Miller basis, 20
modular complex, 244
modular elliptic curves, 187
modular form, 4, 7
modular function, 4
modular group, 2
modular symbols, 228
modular symbols algorithm, 229
modular symbols for Γ0(N), 40
modular symbols over a ring R, 124
newform, 59, 164
new modular symbols, 143
new subspace, 59, 162
nonnormalized weight k Eisenstein series,
normalized Eisenstein series, 17
old modular symbols, 144
old subspace, 161
opposite, 222
perfect, 216
perfection, 244
pivot column, 103
plus one quotient, 165
primitive, 71, 215
primitive character associated to, 71
principal congruence subgroup, 208
Ramanujan function, 25
rational Jordan form, 114
rational period mapping, 185
real-analytic, 210

Index 267

reduced, 234
reducing point, 230
regular, 219
relative to the cusps, 39

restriction of scalars, 207
right action of SL2(Z), 44,
right translation, 209
satisfies condition Cn, 131
self-adjoint homogeneous cone, 248
Semisimple, 207
set of cusps, 5

Set of real points, 207
sharbly complex, 233
sigma function, 15
slowly increasing, 209
split form of SLn, 207
split symplectic group, 208

standard fundamental domain, 17
star involution, 141
strong deformation retract, 219
symplectic sharbly complex, 250
tilings, 246
topological cell, 218

transportable, 182

unimodular, 229

virtual cohomological dimension, 215

Voronǒı decomposition, 219

Voronǒı polyhedron, 215

Voronǒı reduction algorithm,

weakly modular function, 3, 5
Weierstrass ℘-function, 14

weight, 3, 4, 7
weight k modular symbols for G,
weight k right action, 5
well-rounded retract, 219

width of the cusp, 6, 8

SAGE Index
SAGE , vii, x, 2,

M36, 28
q-expansion of ∆, 15
SL2(Z), 2

Z/NZ, 65 106, 144, 161, 15, 16, 20, 22,
163, 198 26, 30, 41, 43, 45, 51, 52, 49
50 56, 58, 63, 65–67, 74, 77, 78, 85, 89,
95,

basis for M24, 20
basis for S2(Γ0(N)), 56
Bernoulli numbers, 16

Bernoulli numbers modulo p, 30
boundary map, 52
continued fraction convergents, 43
cuspidal submodule, 52
dimension formulas, 93
dimension Sk(Γ0(N)), 95

dimension Sk(Γ1(N)), 97

dimension with character, 101, 161
Dirichlet character tutorial, 78
Dirichlet group, 67
echelon form, 112
Eisenstein arithmetic, 26

Eisenstein series, 89
evaluation of character, 67
generalized Bernoulli numbers, 85
Hecke operators M2(Γ0(39)),
Hecke operators M2(Γ0(6)),

Hecke operator T2, 49

Heilbronn matrices, 49
Manin symbols, 45
Miller basis, 22
modular symbols, 44
modular symbols of level 11, 41
modular symbols printing, 46

rational reconstruction, 106

General Index 148, 150
SAGE, 49

Basmaji’s trick, 133
Bernoulli numbers

generalized, 83
Birch and Swinnerton-Dyer conjecture,

10
boundary map, 134

computing, 51

boundary modular symbols
and Manin symbols, 134

congruent number problem, 10
conjecture

Maeda, 28
Shimura-Taniyama, 37

cusp forms

∆, 14

for Γ, 134
higher level dimension, 92, 96

cuspidal modular symbols

and Manin symbols, 134
cusps

action of SL2(Z) on, 5

and boundary map, 134
criterion for vanishing, 136

dimension
cusp forms of higher level, 92, 96

Diophantine equations, 10
Dirichlet character, 142

and cusps, 136

Eisenstein series, 13
algorithm to enumerate, 88
and Bernoulli numbers, 83
are eigenforms, 88
basis of, 88
compute, 63

compute using SAGE, 89

268 Index

Fourier expansion, 15
Eisenstein subspace, 83
Fermat’s last theorem, 10
Hecke algebra

generators over Z, 175
Hecke operator, 54, 225
Heilbronn matrices, 48, 132, 133,
Krylov subspace, 114
lattices, 11
linear symmetric spaces, 245
Maeda’s conjecture, 28
Manin symbols, 44

and boundary space, 134
and cuspidal subspace, 134

modular symbols
finite presentation, 44
new and old subspace of, 143

newform, 155

associated period map, 177
computing, 159
system of eigenvalues, 166

new modular symbols, 143

number field sieve, 69
old modular symbols, 143

partitions, 11
period mapping

computation of, 185
Petersson inner product, 59, 160
Ramanujan graphs, 10
right action of GL2(Q), 5
Serre’s conjecture, 11
Shimura-Taniyama conjecture, 37
valence formula, 17

	Preface
	Chapter 1. Modular Forms
	1.1. Basic Definitions
	1.2. Modular Forms of Level 1
	1.3. Modular Forms of Any Level
	1.4. Remarks on Congruence Subgroups
	1.5. Applications of Modular Forms
	1.6. Exercises

	Chapter 2. Modular Forms of Level 1
	2.1. Examples of Modular Forms of Level 1
	2.2. Structure Theorem for Level 1 Modular Forms
	2.3. The Miller Basis
	2.4. Hecke Operators
	2.5. Computing Hecke Operators
	2.6. Fast Computation of Fourier Coefficients
	2.7. Fast Computation of Bernoulli Numbers
	2.8. Exercises

	Chapter 3. Modular Forms of Weight 2
	3.1. Hecke Operators
	3.2. Modular Symbols
	3.3. Computing with Modular Symbols
	3.4. Hecke Operators
	3.5. Computing the Boundary Map
	3.6. Computing a Basis for S2(0(N))
	3.7. Computing S2(0(N)) Using Eigenvectors
	3.8. Exercises

	Chapter 4. Dirichlet Characters
	4.1. The Definition
	4.2. Representing Dirichlet Characters
	4.3. Evaluation of Dirichlet Characters
	4.4. Conductors of Dirichlet Characters
	4.5. The Kronecker Symbol
	4.6. Restriction, Extension, and Galois Orbits
	4.7. Alternative Representations of Characters
	4.8. Dirichlet Characters in SAGE
	4.9. Exercises

	Chapter 5. Eisenstein Series and Bernoulli Numbers
	5.1. The Eisenstein Subspace
	5.2. Generalized Bernoulli Numbers
	5.3. Explicit Basis for the Eisenstein Subspace
	5.4. Exercises

	Chapter 6. Dimension Formulas
	6.1. Modular Forms for 0(N)
	6.2. Modular Forms for 1(N)
	6.3. Modular Forms with Character
	6.4. Exercises

	Chapter 7. Linear Algebra
	7.1. Echelon Forms of Matrices
	7.2. Rational Reconstruction
	7.3. Echelon Forms over Q
	7.4. Echelon Forms via Matrix Multiplication
	7.5. Decomposing Spaces under the Action of Matrix
	7.6. Exercises

	Chapter 8. General Modular Symbols
	8.1. Modular Symbols
	8.2. Manin Symbols
	8.3. Hecke Operators
	8.4. Cuspidal Modular Symbols
	8.5. Pairing Modular Symbols and Modular Forms
	8.6. Degeneracy Maps
	8.7. Explicitly Computing Mk(0(N))
	8.8. Explicit Examples
	8.9. Refined Algorithm for the Presentation
	8.10. Applications
	8.11. Exercises

	Chapter 9. Computing with Newforms
	9.1. Dirichlet Character Decomposition
	9.2. Atkin-Lehner-Li Theory
	9.3. Computing Cusp Forms
	9.4. Congruences between Newforms
	9.5. Exercises

	Chapter 10. Computing Periods
	10.1. The Period Map
	10.2. Abelian Varieties Attached to Newforms
	10.3. Extended Modular Symbols
	10.4. Approximating Period Integrals
	10.5. Speeding Convergence Using Atkin-Lehner
	10.6. Computing the Period Mapping
	10.7. All Elliptic Curves of Given Conductor
	10.8. Exercises

	Chapter 11. Solutions to Selected Exercises
	11.1. Chapter 1
	11.2. Chapter 2
	11.3. Chapter 3
	11.4. Chapter 4
	11.5. Chapter 5
	11.6. Chapter 6
	11.7. Chapter 7
	11.8. Chapter 8
	11.9. Chapter 9
	11.10. Chapter 10

	Appendix A. Computing in Higher Rank
	A.1. Introduction
	A.2. Automorphic Forms and Arithmetic Groups
	A.3. Combinatorial Models for Group Cohomology
	A.4. Hecke Operators and Modular Symbols
	A.5. Other Cohomology Groups
	A.6. Complements and Open Problems

	Bibliography
	Index

