Quadratic Extensions

Suppose $ K/\mathbf{Q}$ is a quadratic field. Then $ K$ is Galois, so for each prime $ p\in\mathbf{Z}$ we have $ 2=efg$. There are exactly three possibilities:

For example, let $ K=\mathbf{Q}(\sqrt{5})$, so $ \O_K=\mathbf{Z}[\gamma]$, where $ \gamma=(1+\sqrt{5})/2$. Then $ p=5$ is ramified, since $ 5\O_K =
(\sqrt{5})^2$. More generally, the order $ \mathbf{Z}[\sqrt{5}]$ has index $ 2$ in $ \O_K$, so for any prime $ p\neq 2$ we can determine the factorization of $ p$ in $ \O_K$ by finding the factorization of the polynomial $ x^2-5\in \mathbf{F}_p[x]$. The polynomial $ x^2-5$ splits as a product of two distinct factors in $ \mathbf{F}_p[x]$ if and only if $ e=f=1$ and $ g=2$. For $ p\neq 2,5$ this is the case if and only if $ 5$ is a square in $ \mathbf{F}_p$, i.e., if $ \left(\frac{5}{p}\right) = 1$, where $ \left(\frac{5}{p}\right)$ is $ +1$ if $ 5$ is a square mod $ p$ and $ -1$ if $ 5$ is not. By quadratic reciprocity,

$\displaystyle \left(\frac{5}{p}\right) = (-1)^{\frac{5-1}{2}\cdot \frac{p-1}{2}...
... if } p\equiv \pm 1\pmod{5} -1&\text{ if } p \equiv \pm 2\pmod{5}.\end{cases}$

Thus whether $ p$ splits or is inert in $ \O_K$ is determined by the residue class of $ p$ modulo $ 5$. It is a theorem of Dirichlet, which was massively generalized by Chebotarev, that $ p\equiv \pm 1$ half the time and $ p \equiv \pm 2$ the other half the time.

William Stein 2012-09-24