The Volume of $ \O_K$

Since $ \sigma(\O_K)$ is a lattice in $ V$, the volume of $ V/\sigma(\O_K)$ is finite. Suppose $ w_1,\ldots,w_n$ is a basis for $ \O_K$. Then if $ A$ is the matrix whose $ i$th row is $ \sigma(w_i)$, then we define the volume of $ V/\sigma(\O_K)$ to be $ \vert\det(A)\vert$.

Example 6.1.5   The ring $ \O_K = \mathbf{Z}[i]$ of integers of $ K=\mathbf{Q}(i)$ has $ \mathbf {Z}$-basis $ w_1=1$, $ w_2=i$. The map $ \sigma:K\to \mathbf{C}^2$ is given by

$\displaystyle \sigma(a+bi) = (a+bi,a-bi)\in\mathbf{C}^2.
$

The image $ \sigma(\O_K)$ is spanned by $ (1,1)$ and $ (i,-i)$. The volume determinant is

$\displaystyle \left\vert\left(
\begin{matrix}1&1 i&-i
\end{matrix}\right)\right\vert = \vert-2i\vert = 2.
$

Let $ \O_K=\mathbf{Z}[\sqrt{2}]$ be the ring of integers of $ K=\mathbf{Q}(\sqrt{2})$. The map $ \sigma$ is

$\displaystyle \sigma(a+b\sqrt{2}) = (a+b\sqrt{2},a-b\sqrt{2})\in\mathbf{R}^2,
$

and

$\displaystyle A = \left(
\begin{matrix}1&1 \sqrt{2}&-\sqrt{2}
\end{matrix}\right),
$

which has determinant $ -2\sqrt{2}$, so the volume of $ V/\sigma(\O_K)$ is $ 2\sqrt{2}$.

As the above example illustrates, the volume $ V/\sigma(\O_K)$ need not be an integer.



William Stein 2012-09-24