William A. Stein
Abstract:      Using an implementation of the modular symbols algorithm
described in Cremona's book Algorithms for modular
elliptic curves I computed, for each
prime N between 2 and 577, an integer DNwhich is divisible by the discriminant of
the Hecke algebra TN
associated to weight 2 cusp forms
of level N for
    The Hecke algebra T=TN
is an order in a
product E =
E1 × E2 × ... × En
of totally
real number fields. The discriminant of T,
denoted disc(T),
is the product of
the discriminants of the number fields Ei, multiplied by the
square of the index of T
in its normalization.
Fix a prime number N and let S(N) be the space of
weight 2 cusp forms of level N for
.
For p not equal to N let Tp be the p-th Hecke
operator, and let dp be the discriminant
of the characteristic polynomial of Tp acting on S(N).
Consider the sequence of integers
where we omit p if p=N.
Since each term divides its predecessor, this sequence must
eventually stabilize at some limit .
Since each term is divisible by the discriminant
of ,
this discriminant divides .
      I have written a program which
computes the above sequence until it repeats some value DN for
15 terms. The result of that computation is given
in table 1, which can be found at the end of this document.
It is interesting to note that N=389 is the only case in our tables
for which N|DN.
I have checked up to N=14537 and found no other
cases in which this occurs. Whether or not this ever occurs
is of interest to
Ribet
as this hypothesis plays a role in his paper,
``Torsion points on J0(N) and galois representations.''
      Another problem is to determine, for each N in table 1, whether
the primes dividing DN are exactly the same as the primes dividing
disc(T).
I have checked that this is the case for
N < 73.
If the ring
is not reduced then
p|disc(T).
This ring can't be reduced if Tq is not diagonalizable
(modulo p) for some prime q not equal to N.
However, this sufficient condition is not always necessary, as the
case N=37 illustrates. Here 2 ramifies in the Hecke algebra
even though the Hecke operators Tq with
act semisimply modulo 2.
  N
DN
  (upper bound on discriminant of Hecke algebra)
11
1
13
0
17
1
19
1
23
5
29
23
31
5
37
22
41
22×37
43
25
47
19×103
53
24×37
59
27×31×557
61
24×37
67
24×54
71
34×2572
73
24×32×5×13
79
24×83×983
83
28×197×11497
89
26×53×6689
97
26×72×2777
101
28×17568767
103
28×5×17×411721
107
212×5×7×1667×19079
109
210×72×7537
113
210×34×72×112×107
127
212×34×7×86235899
131
219×5×46141×75619573
137
210×52×29×401×895241
139
214×32×72×997×2151701
149
212×72×234893×1252037
151
218×72×11×672×257×439867
157
213×61×397×48795779
163
215×32×65657×82536739
167
216×5×8269×5103536431379173
173
214×52×7×29×5608385124289
179
222×34×72×313×137707×536747147
181
216×52×7×61×397×595051637
191
28×33×5×382146223×319500117632677
193
214×5×112×17×103×401×4153×680059
197
218×52×61×397×35217676193989
199
216×3×53×29×31×712×347×947×37316093
211
220×3×5×74×412×43×229×52184516509
223
236×72×19×103×3995922697473293141
227
237×32×53×74×132×29×312×13591×57139×273349
229
232×107×17467×39555937×53625889
233
222×37×53×139×653×4127×24989×8388019
239
212×72×2833×51817×97423×1174779433×8920940047
241
223×97×1489×20857×651474368435017
251
228×52×29×373×8768135668531×2006012696666681
257
265×29×479×71711×409177×654233×32354821
263
220×11×61×397×15631853×34867513×97092067×252746489
269
222×32×43×151×27767×65657×5550873754172978311
271
224×32×1367×6091×592661×1132673×14171513×172450541
277
222×52×19×29×37×1372×92767×1530091×25531570859
281
222×3×5×181×857×8388019×2647382149×1778899342669
283
246×349×1297×413713×73199099×5832488839
293
226×32×29×233×23512×69763×42711913589792108923
307
250×36×55×112×133×1072×457×3697×21577×974513×568380457
311
216×52×29×3013091897×2106873009119126062143259000543887593
313
224×5×412×8619587×9614923×130838023×2164322751511
317
226×7×367×3217×660603043×14989400036918065702697531
331
238×32×532×229×1399×21911×205493×6363601×584461573862449
337
228×113×593×2791×2963615537×747945736667×4122851467451
347
261×5×72×192×331×349×479×617×1797330450291217×918291275915301361
349
228×13×103×1118857×72318613×6771977049413×1313981654817031
353
234×32×5×1272×229×114641×551801×12611821×7779730837×24314514437
359
236×36×2777×16512254293×64542630435970307×2171776478013633068927
367
244×7×81421×251387×418175501×15354151381×13144405392643360366681
373
232×7×113×23×199×673×2143×1542194372227×72819251148518000363297
379
234×59×317×421×278329×5698591×2117788336277×2851210737989187265253
383
232×5×112×13×72893×3151861×16141144314299×
178236551484825400362837637090811
389
263×34×56×312×37×389×3881×215517113148241×477439237737571441
397
257×232×312×97×317×7612×302609750073209×83566618884497478937
401
296×52×19×163×2932×811×1218675071×71742740351×388881803749×34393898968391
409
232×33×17×1667×1741×2341×537071×14884451×18631199×1334964067081334453235547
419
255×17×43×113×151×167×971×493657×20375986548898473293×53097073649092855361102575237
421
234×3×31×557×4729×825403×857459×144211946777593109
×2328579379136648917067
431
291×34×56×11×192×29×31×43×197×257×69472×37619×29252013842927×806505757406715084824003
433
268×37×72×372×101×379×1439×3613×18719×2792477×77087971×5830108671536745647
439
266×32×5×312×173×84179×85667×16794662617×513841517138871835091506167235408934202857
443
288×32×72×312×499×6899×48508479390300197×2817219327571188909266947704801865987
449
240×3×72×101×44933757980789×188247485945671
×653016225615601×1431966252229376199841
457
236×5×312×653×3169×38983093×52621913×33122975406370693×5653726203394180386934181
461
273×5×72×193×972×80750473×3104029729×607263139073×3729490905341009668647473177
463
262×113×311×9929×568201×132502583×1474412920219×2770309905285622039024420194209857723
467
271×172×1212648089519×32432206859088781×6296651104824906148358708614333895055221783
479
232×13×17×1861×4021×28745083×41556253×1202203127423×201529385024397103×7037463122648759781611869895003
487
272×316×54×132×172×194×59×1032×109×257×623519211698413571686763×15408475904697077364866629
491
2104×56×192×43×131×479×887×5650859×54796097920639362740205317747356273097682333252495603721
499
269×311×5×712×167×495613×25224990196319×573452584782809×277143583167463430555979797274731
503
278×32×54×112×193×257×821×20032×13597×45587×384479819×8659024393×20115672029938390602701696607766073563
509
271×33×13×157×971×1277×4567×3691783×42330311×1157039662523351992921397×6331071860925306189417509
521
242×23×53×67×929×13877×531096383×19526270957×1089951135204631559833×14340527343875384245648725589439
523
291×3×5×413×59×1492×1201×279121937×8371971617×9059602909494267071628228952878552757512056969593
541
246×32×5×13×277×307×591581×1940573213×221136462575339×1453183329662653×18044474614550745414465332996771
547
2105×73×73×1032×5501×11783×16097×43781×1152631×146768003×9959758037×91268351929×102277460687×106666343972273
557
246×74×132×4787×252163×16849164271275021852893×53296770296923102812608983×2381022539751738307256162767
563
2139×52×134×372×612×37591×52667×155083×301703×938251×46706589087295134421×299128314984453465128592656821021
569
246×73×449531828286229614392569×189316003×257022598600391962761793946239×2294643649486046267496627432517
571
2166×312×58×74×132×17×373×412×792×1272×181×211×293×709×15792×16672×12030433×807024744595934649052018211
577
2131×312×54×133×592×612×257×163753×41340850017998228328234516909328723846661×85934741209775683850815667