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0.- SUMMARY.
® is a complete discrete valuation ring with perfect residue field ©/(m)

2
X +a, x+ a

2 _ .3
(%) y +a xy+azy=x +a, 4

6 i

is an equation for an elliptic curve over the field of fractions of ©

The quantitiesb, , b4 s b, , b8 5 €4 s S and A are as in the "Formulaire"

2 6

(this volume). Kodaira's symbols are used to denote the type of fiber over the maxi-
ym P

mal unramified extension of 6

1) Assume a € © .Then A £ 0 = type Io » 1.e. good reduction.

2) Assume ﬂIA » and change coordinates so that T|a a, and a . Then

3774 6

b2 F0= type Iv for some VvV >0 . Conductor is T , and the multiplicative

group is twisted by the root field of the congruence T2 + alT-a2 =0

A
3) Assume also ﬂ1b2 . Then ﬂz*a6 = type II. Conductor is nPrd

4) Assume also ﬂ2|36 (which implies ﬂ2|b6 and b8) . Then ﬂB{Bs = type III.

-1
Conductor is nprdA

5) Assume also ﬂ3|b8 (which implies ﬂ2|b4) . Then ﬂ3fb6 = type IV. Conductor
ordd -2

6) Assume also ﬂ3|b6 . Then it is possible to change coordinates so that also

ﬂlal s ﬂ2|a3 > ﬂlaz, ﬂ2|34 and ﬂ3|a6. This being done, consider the poly-

nomial P(T) = 'r3 + a, n'l T2 +a, 2 T + a, 73 .

R m._“A“_,,L_W-;u”ﬁﬂ-&‘ii



A
Then : (6.1) P(T) has distincts roots = type I: , conductor is ~rd

' *
(6.2) P(T) has one simple root, one double root = type I , with some
v >0

(6.3) P(T) has one triple root = either type II*, type I1I1%¥,or type IV*,.QE the

original equation was not a "minimal" one.

In caée (6.2) the value of VvV , and hence the conductor, can be determi-
ned from the order of j (which is < Q) except in case ﬂ‘Z.In case W|2 there is a simple
algorithm, to the routine method of searching for the solutions X,y €(m) of the

equation (#) , by successively selving congruences mod T , which (conjecturally)

gives V

In case (6.3), the same type of algorithm leads in just three steps to a

determination of which of the three types, or to a new equation of type (%), with a

new A= w12 old A . (This is also conjectural, but almost certain). Explanation

follows later, perhaps-anyway, it must be all in Néron.

TT,ordérfl—n

The 'tonductor" 1is here that given by Ogg's formula : , where

n=number of components of fiber.



1.- GENERALISED WEIERSTRASS FORM.

Let E be an elliptic curve defined over a field K with a K-rational

point O . In the projective embedding defined by 3.0 the curve can be written in the
form
(1.1) £ + a.xy + a,y = 3 + a x2 +a,x+ a a. € K
‘ y 1Y T 83y T x 2 4 6 i
put
4 -
b2 =a; + 4a2
b4 =a a, + 2a4
_ .2
b6 = a3 + 4a6
b, = a2 a, - a, a, a, + 4a, a, + a a2 - a
8 176 173 7% 2 76 2 3 4
(1.2) < 2
4 = b2 - 24b4
¢, = -b3 + 36b, b, - 216b
6 2 2 4 6
_ 2 3 2
A = -b2 b8 - 8b4 - 27b6 + 9b2 b4 b6 #0
: 3
L J = /b
These quantities are related by
_ 2 _ 3 2
(1.3) 4b8 = b2 b6 - b4 1728 A = <~ %6
A differential of first kind is given by
dx dx -dy dy

(1.4)

w = = T = - = 2 ~
2y +a; x + a Fy (x,y) F. (x,y) 3x¢ + 2a,x + a, - ajy
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where we have put

2 3 2
(1.5) F(X,Y) =Y + a1XY + a3Y - X - a2X - a4X - a6
Putting
a,x + a b
_ 1 3 _ 2
(1.6) N =y+r—s— E=x+15

the equation (1.1) becomes
1.7) 12 =3+ m/a)xE+ (b, /2)x + (b /4) = & - (c,/48)E - (c /864)
: N 2 4 6 4 6

Then the relation with Weierstrass is given by

g = P(u) c, = 12g dE
4 2 _
(1.8) w = -z—n = du .
= Pl =
2n (u) e 216g,
2.- CHANGE OF COORDINATES.
1 l2 1 1 1 >
Suppose E' : y +3a; x'y + ... 1is another curve of the same as E ,
and £ : E' ~ E an isomorphism carrying O' into O . Then there are
r, s, t and u# 0 in K such that
xof = uzx' +r B
(2.1) wof = u “®

yof = u3y' + suzx' + t



The coefficients a{ are related to the a; and the bi to the bi by the formulas:

4 u, ai = al + 2s
2, _ s 2
ua) = a, - sa; r - s
u3 a) =a, +ra, + 2t = F (r,t)
3 3 1 y
u4 a'=a, - sa_ + 2ra_ - (t + rs)a, + 3r2 - 2st = -F_(r,t)-sF (r,t)
4 4 3 2 1 x 2 y
6'— - 3 - = -
(2.2) J U oag=a . +ra +r a, +r’ - ta, -t~ - rea; F(r,t)
8 ., _ 2 3 4
u b8 = b8 + 3rb6 + 3r b4 +r b2 + 3r
S 2 3
u b6 b6 + 2rb4 +r b2 + 4r
4 ., _ . 2
u b4 = b4 + rb2 + 6r
2 ., _
L u b2 = b2 + 12r

(2.3) u c

Example :"generic E" . The equation
Example :"g

(36/ . )x - (1/

(2.4) y + xy = 5-1728

[
»

j-1728
has

and A= j2/ Hence for

% = % = /5 1728 (j-1728)3

j #0, 1728 it gives a curve with "invariant" j
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Using the formulas above, it is easy to show that j can be arbitrary in
K , and that for K algebraically closed, two E's with the same j are isomor-
phic. It is also easy to compute the group of automorphisms (but not, also, the ring

of endomorphisms). See the "Formulaire" (this volume) for the details.

3.- THE "MINIMAL" WEIERSTRASS EQUATIONS OVER A VALUATICN RING.

Let v be a discrete valuation of K , with valuation ring R , prime ideal
m , and resudue field k = R/(M . Let E be an elliptic curve over K , with a

K-rational point O

Definition 3.1

An equation for E of the form (1.1) is minimal (with respect to v) if

v(ai) 2 0 for all i and if v(A) is minimal, subject to that condition.

Theorem 3.2

A minimal equation for E exists, and is unique up to a change of coordina-

tes of the form (2.1) with r,s,t € R and u inversible in R

. . ) 2 ..
Existence is obvious. Let T+ al! x '+ ... and + a, Xy + ... be two mini-
y y y 1 Xy

1

mal equations for the same E . Since A # 0 and v(A') = v(A) we conclude from

(2.3) that v(u) = 0 . Now from the transformation of b8 and b6 in (2.2) we

see that 3r € R and 4r € R, hence r € R. Now the transformation of a, shows

that s € R , and that of ag shows that t € R .
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Corollary 3.3

The differential ®w associated with a minimal Weierstrass form is unique

up to a unit of R

Remarks :
1) 1f a, € R and v(A) < 12 , then the equation (1.1) is automatically
minimal. The converse is true if j € R and p = char k # 2,3 . A complete algo-

rithm for reducing to minimal form in all cases is given below.

2) Let M be a collection of discrete valuations of K . For each v € M s
let y2 + a XY + <ss be a minimal equation for E relative to v , with
v 1,v “v'v
corresponding differential @~ and discriminant AV . Then the "divisor"
= % v(A ) .v  should be regarded as the discriminant of E . Let
E veM v
F(x,y) = y2 +a; xy + ... be an arbitrary Weierstrass equation for E over K ,
and let wp and A? be the corresponding differential and discriminant. Then the
class of the divisor G% = g v(w/wv).v is independent of F , and we have
G, ~8
12 B E

3) In case M 1is the set of valuations associated with a principal ideal

domain D with field of fractions K , then it is easy to see that we can find

one equation F which is simultaneously minimal for all v , so that
= 8:
G% 0 , and (AF)
) .. 3 2 3 _ .
4) If j € R, then A divides <, and Cg ¢, = A .j and
cg = A .(j-1728). From (1.7), we see that if 481'1'4 <, and 864"6|c6, then the equa-
tion is not minimal. We have 48 = 24.3 and 864 = 25.33 . Hence, if j € R and

the equation is minimal, we have

v(d) < 12 + 12 v(2) + 6 v(3)
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4 .- THE CANONICAL FILTRATION ON THE GROUP OF v-ADIC POINTS.

Let F(x,y) = y2 +a; Xy + ... be a minimal equation for E relative to
a valuation v . Let F(x,y) be the reduction of F (mod ™ and let E denote
the plane cubic F = 0 defined over the residue field k . By Theorem 3.2, E
is uniquely determined by E up to a projective transformation of the form (2.1)
over k. Let E; denote the smoéth partof E . Then E; is an algebraic group
with origin 6'. (1f E is non singular, then E; =E is an elliptic curve ; if
E has a node Q , then E; ~ P . -(two points) is a multiplicative group ; and
if E has a cusp : <, then E; <P . -(one point) 1is an additive group ; here
we have ignored questions of rationality, but if k is perfect, so that the sin-
gularity of E is rational over k , then the analysis is the same, except that

in case of a node, E is a multiplicative group "twisted" by the quadratic exten-

sion obtained by adjoining to k the two tangents at the node).

Let E(K) denote the group of points on E rational over K , and let
P : E(K)——>E(K) denote the reduction map defined naively in terms of the given
projective coordinates - by Theorem 3.2 it is independent of the coordinates). Let
EO(K) = D_I(E;(K)) be the set of points whose reduction is non singular.

Theorem 4.1

EO(K) is a subgroup of finite index in E(K) , and po : EO(K)———QEO(K)

is a homomorphism of groups.

A straightforward but tedious proof can be given, using the addition for-
mulae, for everything except the "finite index". That finiteness depends on the
minimality of the equation ; and a proof of finiteness is implicit in the algorithm

for reducing to minimal form given below.
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We denote the kernel of P, by E;(K), it consist of the points
P = (x,y) in E(K) such that v(x) < 0 and v(y) < 0 . Clearly, from (1.1),
since v(ai) 20 , we have v(x) < 0 ® v(y) < 0 , in which case v(x) = -2m

and v(y) = -3m for some m . For each m 2 1 we let

Em(K) = {(x;y) € E(K)lv(x) < -2m and v(y) S -3m} , (understanding

of course that 0 € Em(K) for all m).

Theorem 4.2

Let z = -x/y . Then 2z 1is a uniformising parameter at 0 . The expan-

sions.

(4.3){ Y=z x=-z7 +az +ay L +a; + (a4 + ala3)z + ...

B 2 2 3 3 4 2
w = dz(l + ajz + (a1 + az)z + (a1 + Zala2 + a3)z + (al - 3a1 a, +6ala3 +
2 4
\
+a2 - 2a4) z +

have coefficients in R . So also does the formal group law Q(Zl, ZZ) =Zl+22+...

defined by the equation =z(P + Q) = & (z(p), z(Q) ) . If R is complete, then the

map  z+—3(x(2), y(2) ) , for z € (M gives an isomorphism of (Mg Cehe

prime ideal endowed with group structure via &) onto El(K) , under which the

m
>
subgroups (T )Q correspond to Em(K) for all m 21

The proof is straightforward. Let gz = -x/y , w= -1/y , so that
x = z/w and y = -1/w . Then in terms of w and z the equation for E is
(4.4) w (1l -a,z-a,w = z3 + a 22w + a zw2 +a, w
: 1 3 2 4 6
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This shows that we have

_ 3 4 2 5 3 6
w=z + az + (al + az)z - (al - 2a1a2 + a3)z -

4 2 2 7
(4.5) ﬁ + (a + 3aja, + 32;a3 + 2, + a )z’ + ...
3 4 5

\w =z + Alz + Azz + ...

where Av is a polynomial of weight V 1in the a, with positive integral coeffi-
cients. Hence the expansions of y = -1/w and x = -zy in terms of 2z have coeffi-

cients in Z [al’ a,, a3, 3,5 36] .

W dx/dz 283 4 ... dy/dz - 327
Now = = = =

dz 2y + a;x + a, 2273 ¢ ... 3x2 + 2a,% + 3, - a1y 3274
has coefficients in Z1/2, a5 eees a6] but also in 2 [1/3, ays eees 36] , hence

in Zl[al,..., a6] . As for the group law, if =z and z, € (m) , then the line

1

1
joining the points (zl, wl), (zz,wz) in the (z, w)-plane has slope € (ﬂ)2 S

because

W, - W 23 - 7 2, - 2

zz - zl = 22 = zl - Al Z—Z—_—z'}' + ... with Ai as above

2t 2 E . in (4.5)

_ ~ A 2 32 2 3
Call this slope X = )\(z1 s 22) =z, + 292, +z) Al(zz+zzzl+zlzz+zl)+...

Put V = V(zl,zz) ol Xzi (i =1,2) . Substituing w = X(zl,zz)z +V(zl,zz) in
(4.4 we find a cubic in z with roots w, and LON Looking at the sum of the

roots, one sees that the third root 2z is expressed as a power series in 21529

3

. with coefficients in R . In fact,

alk + a3X2 - a2V - 234XV - 3a6X2v
(4.6)

+z, + 2z, =

Z
1 2 3 2 3
1+ azk + ahk + a6k

Thus we have the '"canonical filtration"

4.7) E(K) > EO(K) > El(K) o EZ(K) D ...D> () = msl Em(K)



with quotients
~ +
ini >
E(K)/EO(K) finite, EO/Elc__,EO(K) , and Em/E fL—)k for m 21,

Of course the conclusionsepare bijections _~4 if R is complete.

5.- APPLICATION: THE RELATION BETWEEN Lv(l) AND -j; lwvl IN CASE k FINITE.
v
Suppose now R is complete and k is finite with q=Card k . On K
We agree to use the additive Haar mesure with respect to which R has mesure 1 .
This being agreed, a differential @ on E gives us a mesure lw] on E(K) in

the usual manner.

Corollary 5.1 (of Theorem 4.2) [ 'ml =1/q , if ® is a differential of
E, (K)
1

first kind on E coming from a "minimal equation'.

dz
Indeed, by (4.2) we have [ ko | =[ laz | =I&J~J~ =1/q .
(m

The local factor occuring in the Euler product with a good functional

equation should be (Serre tells me) as foliows, in which N, = Card (EO(K)).

1

( , 1f E is non-singular
l1-(+1- Nv)q-s - ql.ZS
i | if E has a node with two tan-
1- q-s > gents rational over & (in which
J case N = q - 1 and E is the
(5.2) L, te) = 1 multiplicative group).
1+ q—s s 1f E has a node with irrational
tangents(in which case N =q+l ,
and E_is the twisted letipli—
1 cative group).
» if E has a cusp (in which case
. Nv = q and Eo is the additive

group)
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In all cases therefore, L (1) = q/N . Since N = (E (K) : E,(K) ) it
A4 v v o 1
: |wl -1 .
follows from corollary 5.1 that we have = (Lv(l)) , because |w| is

E (K)
invariant under translation. Finally then,

Theorem 5.2

If we use the measure on K for which R gets measure 1 , and use a

differential of first kind ® coming from a minimal equation then

f o | EX : E & )
3) = -
(. E(K) LM

In other words, the '"fudge factors" of Birch and Swinnerton-Dyer are just

the indices (E(K):EO(K) )

6. - THE NERON MINIMUM MODEL.

Suppose k algebraically closed. One can find a regular sheme X over

R such that XXX = E and such that X is "minimal" relative to the map
R
X— Spec R (i.e.such that thampcannot be factored X-3X'—>Spec R in such a way

that XXK —Z 3 X'XK 1is an isomorphism) Such an X 1is unique up to isomorphism.
R R
Its fiber X = XXk 1is one of the following types :
R
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Koraira symbol I I,020) |11 | 1II |1V 10* IV*(V>O) IV*| III% |rp*
Néron symbol A BV Cl C2 C3 C[4 CS,V C6 C7 C8
Picture
(the numbers
indicate mul-
tiplicities) f 4 i

i
2
1
n = number of
1 Y 1 2 3 5 5+v 7 8 9
irred. components
type of group (4)
Vodd
E(K)/E (K) 1) (v) (Df (2) [(3) [(2x2)|=22¢ (3) (2) (1)
o
~X (k)/E (k) Veven
o o
E’o(k)wso(x)/sl(xl E(k)| k* S S I I K K|t
BELOW THIS LINE THINGS ARE VALID ONLY FOR C R(k) # 2,3

v(Av) 0 v 2 3 4 6 |6+V 8 9 10
v(Av)+1—n = f
I 0 1 2] 2 |22 |2 2 2 2
conductor
behavior of j  [v@2d v(j)=-VT=0T-1728| T=0fp2 0 Wi)=-v 520 |3e1728 =0

Here ib denotes the non-singular part of the fiber. This is a (non connected in
general) algebraic group over k , whose connected component is E; . We have
E(K)/El(K)*’ig(k) » the isomorphism induced by the reduction map, and assuming now
R complete. Note that if P = char k # 2,3 | then we have : minimality ® either
v(d <12, or v(8)+v(j)<12 . Also if P#2,3 ,and f = 2, then EO(K) is uniquely
divisible by 2 and 3, while E(K)/EO(K) is killed by 12, hence E(K)/EO(K) is iso-

morphic to the group of points in E(K) which are killed by 12 in this case.
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7.- ALGORITHM FOR ANALYSING SINGULAR FIBERS (first five cases).

We assume now that our valuation ring R 1is complete, with perfect residue

field k . In connection with various conjectures, it is well to be able to compute
effectively various invariants of an elliptic curve E over K , to wit
The conductor fE = ﬂf , where f =v(A) + 1 - n, n being the number of

~ -—

components of X over k .

The group E(K)/EO(K) , whose order we denote by ¢
The group E;(K)

To compute these it is necessary to analyse the singular fiber X 2la
Néron, at least when p = char k = 2 or 3 (if p # 2 or 3, everything can be read
off the table 6., if one notes the remarks at the end of 6., however the algorithm
below applies in all cases). When we refer to the "type" we mean the type of the

singular fiber X over the algebraic closure k of k , which is designated by

one of the 10 Kodaira symbols.

To begin with, we simply assume an equation of the form (1.1) with coeffi-

cients a; € R |; we do not assume it minimal. If it is not minimal, our algo-

rithm will lead us to a minimalization of it. As we go along we make more and more

assumptions. These are cumulative, and are‘onedlfor clarity. We include only brief

remarks on proofs.

1)y nia-= type Io , £=0,c=1, E elliptic.

2) Assume . Then we can change of coordinates so that

M a

30 3, and a, . Do so. Then T { b2 = type I, , with V= v(bd) .

Let k' be the splitting field over k of the congruence T2+alT - a,= 0.
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2a) k' =k : f=1, ¢ = v(d) ,E'o(k)zk*

2b) k'b¢ k : £f=

|
[
-
0
I

1 if v(4) 1is odd and 2 if v(A) is even,

I3

the group of elements of k' whose norm to k is 1.

Proof : This case (2) is the one in which E can be described by 6-functions, possi-

bly twisted by an unramified extension. Every thing clear from that point of view.

v
From now on, E has a cusp and Eo =K -

3) Assume | T ib2 . Then ™ *-36 = type II, and £ = v(8) , c =1,

- E
E k) = & . '
i .

Proof : Consider the 2-dimensional local ring A = R[x,y]ln where m = (m,x,y).

It is regular because a € (x,y) ® m = (x,y). Hence Weierstrass model = Néron

model.

4) Assume | |a6 (which implies T |b6 and bg) . Then rr3{b8 = type III,

and f=v(D-1,e=2,F @ =«
Proof : Let a, = T a, x =1 x sy = s y_» etc... Our equation can be written
S———— i i,m m m
(7.1) y2 + a X,y, + a, .y, = ﬂx3 + a x2 +a, .x+ a
: 1 1,07171 3,1°1 1 2,071 4,171 76,2

The singular point on the fiber (whose local ring was A) blows up into

/

the conic ]
///
/
2 2 k-
* — 5 )
) Y + al,OXY + a3’1Y az,ox + a4’1X + a6’2 /s ot
:) U ’:(,' T =0
+3) ¢ -
. .. . -2
whose discriminant is b_ T ° = p

8 8,2 °
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5) Assume w b8 (which implies ﬂzlb4 ) . Then w { b6 = type IV, and

_ . 2 _ .
f=v(p) -2 ,c=31if T + a3,lT - a6’2 =0 has roots in k and 1

if it has not roots in k , E;(k) =K.

2
Proof : The conic (%) becomes T + a, 1T -2, , = 0 , where T =Y -0X 1is defined
— ) )

2 2 2 " - 2 s
by (Y -X) " =Y + a1XY - aX . The discriminant of T + a3,1T - aé,2 is

2
-2 ) . X .
m so that if b6 , then our conic degenerate into two distinct

b6 = b6,2 5
lines. Dividing (7.1) by Xi , we get an equation of the form F(u,v) = 7, where

F is a cubic with coefficients in R which, mod T , factors into three distincts

L1L2L3 (mod ™) , such that the congruences Li = 0 have a

linear factors, F
point in common. The local ring of that point is easily seen to be regular (the
maximal ideal is generated by any two of the three factors Li)' Thus (7.1) gives
a regular scheme over R with fiber %* consisting of the three lines Li =0 ,
i =1,2,3 meeting in a point. Concerning the value of ¢ , we see that ¢ 1is
equal to the number of these lines which are rational over k . One of them is,

) . 2 _
and the others are given by T + 33,1T - a6’2 =0 -

8.- ALGORITHM CONTINUED (the last five cases).

Assume now that |ﬂ3 |b6 . Then we can change coordinates so that

o 2y and a, ﬂ2|a3 and a4 , and ﬂ3|a6\ . This being done, consider the
polynomial
(8.1) P(T) = T3 + a 'I‘2 +a, ,T+a

. 2,1 4,2 6,3 ’

where the notation is a explained in the proof of step 4) . Our equation now

becomes

2
(8.2) TTYZ + Ttal’lxlyz + TT3.3 2y2 = P(Xl) )



and our algorithm has three branches, according to the multiplicities of the roots

of the congruence P(T) = 0

First Branch : 6) If P(T) = O has three distinct roots, then we have type I: s

and f = v(A) -4 and ¢ =1 + (number of roots of P(T) = 0 in k).

Second Branch : 7) If P(T) = 0 has one simple and one double root, then Type It A

V>0 ,and f=v(A) -4 -v » € =2 or &4 , where V-and c are obtained by the

following procedure :

Subprocedure Branch 7) . Translate x > So that T 0 1is a double root

i

of P(T)

0 . Then ﬂ3|a4,ﬂ4|a6,ﬂ2152 and (8.2) becomes

2 - g 2
(7.1 Yy + ﬂ'al,lxzy2 + a3,2y2 - ﬂ2x + Ta, 1X0 ¥+ Ta, .x, +a

2 ,172 4,372 6,4

If Y2 + a Y - a = 0 has distinct roots, then

o
~
1]

, and ¢ 4 1if roots in k,2 if not.

If Y2 + a Y - a

0 has a double root we can translate y so that the root

is Y =0 . Then

n3 I 33,ﬂ5|a6 » and our equation becomes

(7.2 y§ T Ay %Yyt Tag gy, = "'xg +a, 1“5 T 3,,3% t g ¢

= 0 has distinct roots then

>
+
n
>
+
o
]

V=2 ,and ¢ =4 if roots in k , 2 otherwise.
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2 =
1f aZ,lX + aA,BX * B x 0 has a double root, then we can tramnslate x SO

that the root is X=0 , so that ﬂlla4 and ﬂﬁ‘a6 . Equation is now
2 - ™ 3 ﬂz 2 2
(7.3) y3+ Tay 1X3y3+ 33 Y3+ 43 373 X3+ Tay %3+ 73, ;%37 %6
2 _ —
If Y + a3’3Y - a6,6 0 has distinct roots, then

v=23, and ¢ = 4 1if roots in k , 2 otherwise.

1f otherwise.... etc. Keep going until the quadratic congruence which appears has
distinct root. The process terminates, because the coefficients ay, a4 and a6
are being made more and more highly divisible by ™ . Hence also bh’ b6 and b8’
hence also A . But A is fixed under all change of coordinates (translations

involved). A crude estimate gives v=ord A-3 if I'm not mistaken.

Branch 3 begins : 8) Suppose now P(T) = 0 has a triple root. We may assume the

root is T =0 , so ﬂz‘az,ﬂBla and ﬂé‘a6 . The equation is

4

(8.1) y22+ﬂal’1x2y2+a3,3y2 = ﬂ2x3+ﬂ232’2x§+ﬂ'34 3Xot3g 4,

If Y2 + ay ¥ -2 4 = 0 has distinct roots, then type iv¥ and £ =v(D-6 ,

¢ =3 if roots are in k , 1 otherwise.
-~
2 ¥

Branch 3 continues : 9) Suppose Y + 24 ¥ -3, = O has a double root. Then

bl 3
we can assume it is Y =0 , so ﬂ3la3, ﬂ3‘a6 . The equation is now

5
T jac

2 3 2 —
9.1 ﬂy3 + nal,1x2y3 + ﬂa3 3y3 = ﬂxz + ﬂaz 2%o - a4 3x2 - a6 5

If a, 3 £0 , i.e. if ﬂlfal , then type III* and f = v(&)-7 and c =2
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Branch 3 continues : 10) Assume TT4

a, . Then TT6"fa6 the type is II* and

f=v(D-8 c=1 .

6 T , . )
If m |a6 » original equation was not minimal. Start over with

2 3 2
= |
Y3 81,1%23 * 25 3¥3 = x; + 82,2%2 Y 3 4 Xyt ag o !

3



