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Abstract

We study p-divisibility of discriminant of Hecke algebras associated to spaces of cusp
forms of prime level. By considering cusp forms of weight bigger than 2, we are are led
to make a conjecture about indexes of Hecke algebras in their normalization which, if
true, implies that there are no mod p congruences between non-conjugate newforms in

S2(To(p))-

1 Introduction

I started working in modular forms when Ken Ribet asked about discriminants of Hecke
algebras at prime level. I've recently revisited this question and, with the help of Frank
Calegari, have made some interesting discoveries.

2 Discriminants of Hecke Algebras

Let R be a ring and let A be an R algebra that is free as an R module. The trace of
an element of A is the trace, in the sense of linear algebra, of left multiplication by that
element on A.

Definition 2.1 (Discriminant). Let wy,...,w, is a R-basis for A. Then the discriminant
of A, denoted disc(A), is the determinant of the n xn matrix (tr(w;w;)), which is well defined
modulo squares of units in A.

When R = Z the discriminant is well defined, since the only units are +1.

Proposition 2.2. Suppose R is a field. Then A has discriminant 0 if and only if A is
separable over R, i.e., for every extension R' of R, the ring A® R' contains no nilpotents.

The following proof is summarized from Section 26 of Matsumura. If A contains a
nilpotent then that nilpotent is in the kernel of the trace pairing. If A is separable then
we may assume that R is algebraically closed. Then A is an Artinian reduced ring, hence
isomorphic as a ring to a finite product of copies of R, since R is algebraically closed. Thus
the trace form on A is nondegenerate.

*This will eventually be a joint paper with Frank Calegari.



2.1 The Discriminant Valuation

Let I" be a congruence subgroup of SLy(Z), e.g., I' = T'y(p) or I'1(p). For any integer k > 1,
let Sk(T") denote the space of holomorphic weight-k cusp forms for T'. Let

T =Z|...,T,,...] C End(S(T))

be the associated Hecke algebra. Then T is a commutative ring that is free and of finite
rank as a Z-module. Also of interest is the image T™" of T in End(Sk(I)"%).

Ezample 2.3. Let T' = I'y(243), which is illustrated on my T-shirt. Since 243 = 3°, experts
will immediately deduce that disc(T) = 0. A computation shows that

diSC(TneW) — 213 . 340,
which reflects the mod-2 and mod-3 intersections all over my shirt.

Definition 2.4 (Discriminant Valuation). Let p be a prime and suppose that ' = T'y(p)
or I'1(p). The discriminant valuation is

di(T") = ordp(the discriminant of T).

3 Motivation and Applications

Let p be a prime and suppose that I' = ['y(p) or I'1(p). The quantity di(T') is of interest
because it measures mod p congruences between eigenforms in Sg(T').

Proposition 3.1. Suppose that di(T") is finite. Then the discriminant valuation dg(T") is
nonzero if and only if there is a mod-p congruence between two Hecke eigenforms in Sk (T)
(note that the two congruent eigenforms might be Galois conjugate).

Proof. 1t follows from Proposition 2.2 that di(T') > 0 if and only if T ®F, is not separable.
The Artinian ring T® Fp is not separable if and only if the number of ring homomorphisms
T® Fp — Fp is less than

dimg T ® F,, = dimc Sy(T).

Since di(T") is finite, the number of ring homomorphisms T ® @p — @p equals dimg Sk(T).
Using the standard bijection between congruences and normalized eigenforms, we see that
T®IF, is not separable if and only if there is a mod-p congruence between two eigenforms. [

Ezample 3.2. If T' = T'4(389) and k = 2, then dimg¢ So(T') = 32. Let f be the characteristic
polynomial of T5. One can check that f is square free and 389 exactly divides the discrim-
inant of f, so Ty generated T ® Zsgg as a ring. (If it generated a subring of T ® Zsgg of
finite index, then the discriminant of f would be divisible by 3892.)

Modulo 389 the polynomial f is congruent to

(z + 2)(z + 56)(z + 135)(z + 158)(z + 175)*(x + 315)(z + 342)(z* + 387)
(2 + 97z + 164) (2? + 231z + 64) (2% + 286z + 63) (x5 + 88z + 1962°+
11322 + 168z + 349)(z'! + 276210 + 1822° + 1328 + 29827 + 3162°+
21375 + 248z* + 10823 + 28372 + z + 101)



The factor (z + 175)? indicates that T ® Fagg is not separable since the image of Th + 175 is
nilpotent (its square is 0). There are 32 eigenforms over (% but only 31 mod-389 eigenforms,
so there must be a congruence. Let F' be the 389-adic newform whose ay term is a root of

o+ (=39 + 190 - 389 + 96 - 389% + - - - )z + (=106 + 43 - 389 + 19 - 3892 + ---).

Then the congruence is between F and its Gal(Qsg9/Qss9 )-conjugate.
Ezample 3.3. The discriminant of the Hecke algebra T associated to S(I'o(389)) is

253.34.56.312.37.389.3881-215517113148241-477439237737571441

I computed this using the following algorithm, which was suggested by Hendrik Lenstra.
Using the Sturm bound I found a b such that T1,...,T, generate T as a Z-module. T then
found a subset B of the T; that form a Q-basis for T ®z Q. Next, viewing T as a ring
of matrices acting on @*?, I found a random vector v € Q*2 such that the set of vectors
C = {T'(v) : T € B} is linearly independent. Then I wrote each of T3 (v),...,Tp(v) as
Q-linear combinations of the elements of C. Next I found a Z-basis D for the Z-span of
these Q-linear combinations of elements of C. Tracing everything back, I find the trace
pairing on the elements of D, and deduce the discriminant by computing the determinant
of the trace pairing matrix. The most difficult step is computing D from T3 (v),...,Ty(v)
expressed in terms of C, and this explains why we embed T in Q32 instead of viewing the
elements of T as vectors in Q322. This whole computation takes one second on an Athlon
2000 processor.

3.1 Literature
T’ve seen a version of Theorem 4.1 referred to in the following papers:
1. Ribet: Torsion points on Jo(N) and Galois representations

2. Loic Merel and William Stein: The field generated by the points of small prime order
on an elliptic curve

3. Ken Ono and William McGraw: Modular form Congruences and Selmer groups (Mc-
Graw will speak about this next week in this seminar!)

4. Momose and Ozawa: Rational points of modular curves Xgpyit(p)

4 Data About Discriminant Valuations

4.1 Weight Two

Theorem 4.1. The only prime p < 60000 such that do(To(p)) > 0 is p = 389. (Except
possibly 50923 and 51437, which I haven’t finished checking yet.)

Proof. This is the result of a large computer computation, and perhaps couldn’t be verified
any other way, since I know of no general theorems about do(Ty(p)). The rest of this proof
describes how I did the computation, so you can be convinced that there is valid mathe-
matics behind my computation, and that you could verify the computation given sufficient
time. The computation described below took about one week using 12 Athlon 2000MP
processors. In 1999 I had checked the result stated above but only for p < 14000 using



a completely different implementation of the algorithm and a 200Mhz Pentium computer.
These computations are nontrivial; we compute spaces of modular symbols, supersingular
points, and Hecke operators on spaces of dimensions up to 5000.

The aim is to determine whether or not p divides the discriminant of the Hecke algegra
of level p for each p < 60000. If T is an operator with integral characteristic polynomial, we
write disc(7T") for disc(charpoly(7')), which also equals disc(Z[T']). We will often use that

disc(7T") mod p = disc(charpoly(7T') mod p).

Most levels p < 60000 were ruled out by computing characteristic polynomials of Hecke
operators using an algorithm that David Kohel and I implemented in MAGMA, which is
based on the Mestre-Oesterle method of graphs (our implementation is “The Modular of
Supersingular Points” package that comes with MAGMA). I computed disc(7,) modulo p
for several primes ¢, and in most cases found a ¢ such that this discriminant is nonzero.
The following table summarizes how often we used each prime ¢ (note that there are 6057
primes up to 60000):

number of p < 60000 where g smallest s.t. disc(7,) # 0 mod p
5809 times
161 (largest: 59471)
43 (largest: 57793)
7 | 15 (largest: 58699)
11 | 15 (the smallest is 307; the largest 50971)
13 | 2 (they are 577 and 5417)
17 | 3 (they are 17209, 24533, and 47387)
19 | 1 (it is 15661 )

T W N

The numbers in the right column sum to 6049, so 8 levels are missing. These are
389,487,2341, 7057, 15641, 28279, 50923, and 51437.

(The last two are still being processed. 51437 has the property that disc(7;) = 0 for
qg=2,3,...,17.) We determined the situation with the remaining 6 levels using Hecke
operators T,, with n composite.

P How we rule level p out, if possible
389 p does divide discriminant

487 using charpoly(712)

2341 | using charpoly(7s)

7057 | using charpoly(7is)

15641 | using charpoly(7Ts)

28279 | using charpoly(T5s4)

Computing T;, with n composite is very time consuming when p is large, so it is im-
portant to choose the right T, quickly. For p = 28279, here is the trick I used to quickly
find an n such that disc(7,) is not divisible by p. This trick might be used to speed up
the computation for some other levels. The key idea is to efficiently discover which T;, to
compute. Though computing 7}, on the full space of modular symbols is quite hard, it turns
out that there is an algorithm that quickly computes 7,, on subspaces of modular symbols
with small dimension (see §3.5.2 of my Ph.D. thesis). Let M be the space of mod p modular
symbols of level p = 28279, and let f = ged(charpoly(7%), deriv(charpoly(73))). Let V' be



the kernel of f(7%) (this takes 7 minutes to compute). If V' = 0, we would be done, since
then disc(T) # 0 € F,. In fact, V has dimension 7. We find the first few integers n so that
the charpoly of T}, on V; has distinct roots, and they are n = 34, 47, 53, and 89. I then
computed charpoly(734) directly on the whole space and found that it has distinct roots
modulo p. O

4.2 Higher Weight Data

1. The following are the valuations d = d4(T'y(p)) at p of the discriminant of the Hecke
algebras associated to S4(T'o(p)) for p < 500.

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 &9
0 0 0 0 0 2 2 2 2 4 4 6 6 6 6 8 8

61 67 71 73 79 8 8 97 101 103 107 109 113 127 131 137 139
0 10 10 12 12 12 14 16 16 16 16 18 18 20 20 22 24

149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233
24 24 26 26 26 28 28 30 30 32 32 32 34 36 36 38 38

239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337
38 40 40 42 42 44 44 46 46 46 48 50 S50 52 52 54 56

347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439
56 58 58 58 60 62 62 62 65 66 66 68 68 70 70 T2 T2

R ia | aAa AR ia|Ia

443 449 457 461 463 467 479 487 491 499
72 74 76 76 76 76 78 80 80 82

5 The Conjecture

Let k = 2m be an even integer and p a prime. Let T be the Hecke algebra associated to
Si(To(p)) and let T be the normalization of T in T ® Q.

Conjecture 5.1.
ond(F:7) = [ 5] - (1) + atprm),

where

0 ifp=1 (mod 12),

[§-| ifp=5 (mod 12),
G/(p, m) = 4 m
%]

w

N

ifp=7 (mod 12),

N

La(5,m) +a(7,m) ifp=11 (mod 12).
In particular, when k = 2 we conjecture that ['ﬁ' : T| is not divisible by p.

Here (z) is the binomial coefficient “z choose 3”, and floor and ceiling are as usual. We
have checked this conjecture against significant numerical data. (Will describe here.)



6 Conjectures

Conjecture 6.1. Suppose p is a prime and k > 4 is an even integer. If

(p, k) €{(2,4),(2,6),(2,8),(2,10),
(3,4), (3,6), (3,8),
(5,4), (5,6), (7,4), (11,4)}

oo

then di(To(p)) > 0.
Frank Calegari outlined a possible strategy for proving this conjecture.

Conjecture 6.2. Suppose p > 2 is a prime and k > 3 is an integer. If

(p, k) ¢ {(3:3),(3,4),(3,5), (3,6), (3,7), (3,8),
(5,3), (5,4), (5,5), (5,6), (5,7)
(7,3),(7,4),(7,5),(11,3), (11, 4), (11, 5),
(13,3),(17,3),(19,3)}

then di(T'1(p)) > 0.



