
DIFFERENCE SETS AND ALGEBRAIC NUMBER THEORY
AN EXPOSITION OF SOME RESULTS OF SCHMIDT

GREGORY PRICE

Several combinatorical problems reduce to classifying certain families of dif-

ference sets. Schmidt, in [1], obtained strong new nonexistence results for this
class of problem by applying algebraic number theory: a difference set can be
related to a cyclotomic integer with bounded coefficients and a prescribed abso-
lute value, and in many cases these integers can be number-theoretically proven
not to exist. We lay out the core of Schmidt’s results, simplifying what we can
and omitting some of the less interesting details.

1. Difference Sets

A (v, k, λ, n)-difference set in a group G of order v is a k-subset D ⊂ G such
that each nonzero element of G has exactly λ representations as the difference of
elements in D, with n = k − λ.

For instance, a Hadamard matrix is an m × m matrix H with entries ±1
satisfying HT H = mI. If we identify the row and column indices in the matrix
with elements of an order-m group G, then a G-invariant Hadamard matrix is a
Hadamard matrix with Hg,h = Hfg,fh for f, g, h ∈ G. Such a matrix is described
by the entries H1,g; if we let D ⊂ G consist of the elements g ∈ G with H1,g = 1,
then D is a difference set with v = m; with some work it turns out that n = m/4
if m > 2.

In particular, we may consider circulant Hadamard matrices—Hadamard ma-
trices invariant under cyclic groups Z/mZ. Such matrices are known only for
m = 1, 4; it is known that any others must be of the form 4u2 for some u. A
conjecture holds that there exist no circulant Hadamard matrices of order greater
than 4. The results described herein will rule out almost all u as candidates.

To study difference sets, we first describe a few preliminaries. We identify any
set S ⊂ G with the element

∑

g∈S g of the integral group ring Z[G], and for any

element A =
∑

g∈G agg of the ring write A(−1) for
∑

g∈G agg
−1. A character of

a finite abelian group G is a homomorphism χ : G → C∗ to the multiplicative
group of nonzero complex numbers, hence to the group of e-th roots of unity for
some e called the order of χ. We extend group homomorphisms G → H linearly
to ring homomorphisms Z[G] → Z[H].
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Now the condition that D be a difference set becomes

DD(−1) = n + λG.

If we require G to be abelian and apply any nontrivial character χ of G to this
equation we obtain

χ(D)χ(D) = n

since χ(G) = 0. A bit more generally, if we take a normal subgroup U of G with
G/U abelian and ρ : G → G/U the quotient map, then

ρ(D)ρ(D)(−1) = n + λ|U |(G/U)

so for any nontrivial character χ of G/U

χ(ρ(D))χ(ρ(D)) = n.

So, writing X for χ(ρ(D)), XX = n. But X is a very particular sort of number;
it’s a cyclotomic integer, writable as X =

∑

i aiζ
i
m where 0 ≤ ai ≤ |U | and m

is the order of χ. For any particular U and m, there are only finitely many of
these, so the condition XX = n will turn out to be a restrictive one. We can use
this to rule out classes of difference sets.

2. Bounding the Absolute Value of Cyclotomic Integers

We’ll be concerned with the following version of the remaining problem: given
a cyclotomic integer X =

∑

i aiζ
i
m ∈ Z[ζm] with |ai| < C, for what n ∈ Z can

XX = n? For instance, by the triangle inequality, the complex absolute value of
X =

∑

i aiζ
i
m, |ai| ≤ C, is at most mC, so its square XX is at most m2C2. We

thus have a bound on the possible values of XX; we’ll find others. For clarity
we write the bounds we obtain as

XX = n ≤ M(m,n)C2

(since they must scale quadratically with C); thus the bound we’ve already ob-
tained is M(m,n) = m2.

(Observe that we’ve given up the information that ai ≥ 0, which is true of
all the cases arising from difference sets above. A careful analysis, keeping this
information, gains about a factor of 2 in the bound M obtained, but complicates
the results that answer this question and the results that use the answer. For
our purposes this isn’t worth the loss in clarity.)

A sufficiently tight answer to this problem will allow us to rule out many
possibilities for difference sets:

Proposition 2.1. Let a group G contain a (v, k, λ, n)-difference set D, and let

U be a normal subgroup of G with G/U cyclic of order e and ρ : G → G/U be
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the quotient map. Then with M(m,n) as above, we have

e ≤

(

M(e, n)

n

)1/2

v.

Proof. Let χ be a character of order e on G/U . Since the homomorphism χ ◦ ρ
has kernel of order v/e, the image of D can be written χ(ρ(D)) =

∑e−1
i=0 aiζ

i
e with

0 ≤ ai ≤ v/e and in particular |ai| ≤ v/e. Hence

n = χ(ρ(D))χ(ρ(D)) ≤ M(e, n)
v2

e2

which leads immediately to the result. ¤

We can be a bit more explicit in the abelian case, which follows immediately:

Proposition 2.2. Let an abelian group G contain a (v, k, λ, n)-difference set D.

Then with M(m,n) as above, we have

exp G ≤

(

M(v, n)

n

)1/2

v

where the exponent exp G of an abelian group G is the order of its largest cyclic

subgroup.

In particular, if we have a circulant Hadamard matrix of order m = 4u2, then
exp G = v = 4u2 and n = u2, so that

u ≤ M(4u2, u2)1/2.

Unfortunately, these results have little use for the trivial bound M(m,n) = m2

found above; the resulting version of (2.1) is

n ≤ v2

which is uninteresting since in any case n ≤ k ≤ v. We’ll need a better bound.
However, but for a constant factor, no better bound will come without using

more specific information from the situation we’re interested in. Indeed, taking

X = 1 + ζm + ζ2
m + · · · + ζ

bm/2c
m gives for large m a norm |X| ' m

π
, so that

XX ≈ π−2m2. What’s going wrong in this case?

3. The Norm is Rational

The first refinement we can make is to observe that the absolute values n
we’re interested in are rational integers. This means that once the absolute value
is written in a basis (rather than the more-than-basis {ζ i

m}i=0,··· ,m−1), only the
coefficient on 1 may be nonzero, and so the bound on each coefficient becomes
a bound on the whole sum. It is straightforward to show that a bound k on the
coefficients in the more-than-basis implies a bound 2δ(m)k on the coefficients in
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the basis, where δ(m) is the number of distinct prime divisors of m. The bound
on the more-than-basis coefficients in XX is C2m, so

XX ≤ 2δ(m)mC2,

and
M(m,n) = 2δ(m)m

works.
This, unfortunately, still gives us little in (2.1); the resulting inequality is

ne2−δ(e) ≤ v2

which is still uninteresting since in any case ne2−δ(e) ≤ v · v · 1 = v2.
This refinement, however, will help us after we make another one; and the fact

that our n of interest are rational will be essential in making the latter.

4. A Smaller Field

It turns out that for most m and n, if XX = n lies in Z for some X ∈ Z[ζm],
then X in fact lies, up to multiplication by a root of unity, in a much smaller
cyclotomic field Z[ζf ]. A bit more precisely,

Theorem 4.1. If X ∈ Z[ζm] satisfies XX = n ∈ Z, then in fact X ∈ ζj
mZ[ζF (m,n)]

for some j, where F is a function to be defined.

It will turn out that F is usually on the order of the squarefree part of m.
The proof of this depends on the following lemma, the most algebraic-number-

theoretical of the results discussed in this paper. The decomposition group of a
prime P in a Galois extension K/L is the subgroup of σ in the Galois group with
P σ = P .

Lemma 4.2. Let P | p be prime ideals in Z[ζm], Z respectively, and write m =
pam′ with p - m′. Then the decomposition group of P over Q consists of exactly

those σ ∈ Gal(Q(ζm)/Q) that for some j satisfy

σ(ζm′) = ζpj

m′ .

Now write m =
∏

i p
ci

i . We will define in terms of m and n a sequence of
exponents bi ∈ {1, . . . , ci} that are as small as we can make them while keeping
the properties we need. We’ll then outline a proof that for each Fi = m/pci−bi

we can write X as a pci-th root of unity ξi (i.e. an element of the Fj, j 6= i)
times an element of Z[ζFi

]. Writing ξ =
∏

i ξi then gives Xξ ∈ Z[ζFi
] for all i, so

Xξ ∈
⋂

i Z[ζFi
] = Z[ζF ] where F = gcdi Fi =

∏

i p
bi

i .
The property we need the bi to satisfy concerns automorphisms σi : ζm 7→ ζ1+Fi

m :
each σi must stabilize each prime ideal in Z[ζm] lying over n. By the lemma on
decomposition groups in cyclotomic fields, this is true if, for each prime q | n and

each i, ζ1+Fi

Mq
= ζql

Mq
for some power l, where Mq =

∏

pj 6=q p
cj

j . In other words, we
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need 1 + Fi ≡ ql (mod Mq); if pi = q then l = 0 suffices, and otherwise we split
this congruence into primes by the Chinese Remainder Theorem to obtain

1 + pbi

i ≡ ql (mod pci

i )

1 ≡ ql (mod p
cj

j ) (pj 6= pi, q)

For pi odd, we define bi to be the least integer such that these congruences are
solvable. (We omit the case pi = 2 for simplicity; it’s a bit more complicated
since the multiplicative groups modulo powers of 2 are in general not cyclic.)
This is at most ci, since bi = ci makes l = 0 work. Otherwise, it’s the exact
power to which pi divides one less than the first power of q satisfying 1 ≡ ql

(mod p
cj

j ) for all j (which makes this power of q generate the group of 1 + kpbi

i

modulo pci

i .)
Now, since the σi stabilize each prime lying over n and since XX = n so that

each prime dividing X divides also n, the σi stabilize X. Hence each Xσi is X
times a unit εi of Z[ζm]. With some work it can be shown that this unit is in fact a
root of unity; with some further work using only elementary modular arithmetic
it can be shown that multiplying X by a suitable pci

i -th root of unity ξi eliminates
this unit factor and produces an Xξi which is fixed by σi. So Xξi lies in the fixed
field of σi. This field certainly contains Q(ζFi

), since ζσi

Fi
= ζ1+Fi

Fi
= ζFi

; and
by counting dimensions and applying the fundamental theorem of Galois theory,
this is the entire fixed field. So Xξi lies in Q(ζFi

) and hence, being an integer, in
Z[ζFi

].
We’ve now proven Theorem 4.1 modulo the lemma on decomposition groups,

the case pi = 2, and the details of showing that Xσi = Xεi implies the existence
of ξi with (Xξi)

σi = Xξi.
To apply this result to our main problem, it’s some straightforward work to

show that a bound C on the coefficients of X as a sum of powers of ζm implies
the same bound C on its coefficients as a sum of powers of ζF (m,n), using the
fact that F (m,n) contains all the same primes as m; then applying the result of
Section 3 gives

XX ≤ 2δ(F (m,n))F (m,n)C2 ≤ 2δ(m)F (m,n)C2,

so that

M(m,n) = 2δ(m)F (m,n)

works. The resulting version of (2.1) is

e ≤

(

2δ(e)F (e, n)

n

)1/2

v

and in the circulant-Hadamard case

2u ≤ 2δ(2u)/2F (4u2, u2)1/2.
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It remains to see just how much good this actually does us—nothing yet said
has suggested that F (m,n) is in general much smaller than m itself, though by
definition it can be no larger.

4.1. How Much Smaller? The first observation we can make about F (m,n)
is that it is independent of the powers to which primes occur in n and nearly so
in m; indeed, for any finite set of primes there is a finite bound on the value of
F (m,n) for m,n products of powers of primes in the set. Hence for any choice
of the primes making up m, n we can make F (m,n) much smaller than m,n by
taking these primes to large powers.

We can be a bit more specific by accepting some heuristicity, and by restricting
to a common case. Write m0 for the squarefree part of m, and let n ≤ m, m ≈ m2

0,
where ‘≈’ is used loosely. We’ll show that for most such m,n, none of the large
prime divisors of m will occur more than once in F (m,n). Schmidt claims in [1]
that this makes F (m,n) of the order of m0 for such m,n. It’s not obvious to me
that it implies anything of the kind, especially since Schmidt defines the ‘large’
primes as those that are larger than the expected average of the prime powers in
the factorization of m, and these primes are precisely the ones that usually occur
only once in m in the first place.

For a prime q | n, let qomq (q) be the power of q appearing in the definition of
the bi, where mq is the product of the pj distinct from q. Fix a prime pi | m.
Then bi > 1 just if

p2
i | qomq (q) − 1

for some q. Now omq
(q) | φ(q), and most pi do not divide φ(q), so for any n it is

unlikely that any large pi divide omq
(q). In the remaining cases, Q ≡ 1 (mod p2

i )
only if q lies in the subgroup of (Z/p2Z)∗ with order not divisible by p, which has
p − 1 elements, a fraction 1/p of the total. Since large primes are nearly evenly
distributed modulo each other, this happens a fraction 1/p of the time.

Now, excluding a set of density zero, any positive integer x has approximately
log log x prime divisors. So outside of this set, we have no more than about
(log log m)(log log n) ≈ (log log m0)

2 pairs (pi, q).

Now consider any ‘large’ pi; Schmidt takes pi ≥ m
1/ log log m0

0 = exp( log m0

log log m0

),

but we may take instead pi ≥ log m0 = exp(log log m0), which is much smaller
for large m0. The probability that any of the divisions above for any of these
primes holds is then at most (log log m0)

2/ log m0, which goes to zero for large
m0. For large m0, then, we might hope that only a few small primes occur more
than once in F (m,n); i.e., that F (m,n) is not much bigger than m0.

What does this heuristic bound do for us in (2.1)? For m ≈ n ≈ v and
m0 ≈ m1/2, we obtain

e /

(

2δ(e)e1/2

n

)1/2

m
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which in the abelian case becomes

e / 2δ(m)/2m3/4 ≈ m3/4

since δ(m) grows very slowly with m.
In the case of circulant Hadamard matrices, this bound is quite powerful in-

deed. For when it applies, it requires

m / m3/4

which is false. Hence a circulant Hadamard matrix can only exist for m on which
this bound fails. Indeed, a circulant Hadamard matrix can only exist if F (4u2, u2)
is very nearly 4u2, and our heuristics suggest this should very rarely be the case.
As expected, an explicit application of the bound, without heuristics, succeeds
in ruling out nearly all u for which it’s been tried; for instance, only 26 values of
u less than 10000 are not ruled out, two between 105 and 105 + 104, and none at
all between 108 and 108 + 104.
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