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Abstract

The Čebotarev Density Theorem, generalizing Dirichlet’s theorem on primes
in arithmetic progression, gives us a notion of the density of prime ideals in
a number field. We motivate our exposition of the theorem by giving a brief
introduction to `-adic representations, as can be found in [Hus04]. We give a
brief introduction to class field theory, drawing from [Cox89], and present Deur-
ing’s [Deu35] simple proof of the Čebotarev Density Theorem. We conclude
by following the impact of the Čebotarev Density Theorem on `-adic represen-
tations, by looking at `-adic representations attached to elliptic curves, one of
the more famous instances being in the proof of Fermat’s Last Theorem.

1 Introduction

In this paper, we provide a brief survey of `-adic representations of number fields,
which we use to motivate an exposition of the Čebotarev Density Theorem. We
assume the reader has a level of familiarity with algebraic number theory, class field
theory, and elliptic curves.1

In Section 2, we introduce the topic of `-adic representations of number fields,
drawing mostly from the exposition in [Hus04]. The Frobenius is introduced, and
a natural question concerning this object lends nicely to an application of the
Čebotarev Density Theorem.

This celebrated theorem is the main subject of Section 3, but for the sake of
the reader, rather than going straight to the proof, we summarize some of the main
results in class field theory, as can be found in [Cox89]. After this brief exposition,
we provide Deuring’s [Deu35] elegant proof of the Čebotarev Density Theorem and
answer the question posed in Section 2.

With this in hand, we continue our study of `-adic representations, and in Section
4, concern ourselves with a slightly different slant, that of `-adic representations
attached to elliptic curves. After quickly reviewing some basic facts about elliptic
curves and Tate modules, our exposition comes full circle by following an application

1For the motivated reader who might be lacking such background, we cite the standard references
on each of the relevant subjects.
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of the Čebotarev Density Theorem to `-adic representations, as can be found in
Wiles’ proof of Fermat’s Last Theorem.

2 `-adic Representations of Number Fields

Let K be a number field, and let K̄ denote its algebraic closure. Recall that
a complex n-dimensional representation (also called an Artin representation) of
Gal(K/K) is a continuous homomorphism

ρ : Gal(K/K) −→ GLn(C).

That ρ is continuous means that there is a finite Galois extension L/K,L ⊂ K̄,
such that ρ factors through Gal(L/K):
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Taylor [Tay02] concedes that Artin representations are perhaps the most obvious
representations to study, but argues that replacing the complex numbers C with the
`-adic numbers Ql proves more useful in understanding the Galois group Gal(K/K)
than complex representations. Thus, we define an n-dimensional `-adic represen-
tation of the Galois group Gal(K/K), or of the field K, to be the continuous2

homomorphism
ρ : Gal(K/K) −→ GL(V ) = GLn(Ql),

where V is an n-dimensional Ql-vector space.

Remark 2.1. As we shall see when considering Tate modules in Section 4, `-adic
representations typically have infinite image. Thus Artin representations can be
thought of as a special case of `-adic representations: those with finite image.

The representation ρ is said to be unramified at a place v of K provided for
each place w of K̄ over K, we have that the inertia group Iw acts trivially on V ,
i.e., that ρ(Iw) = 1.

Example 2.2 (Tate twist). For the one-dimensional Galois representation Ql(1)(K̄),
the representation is unramified at v if and only if v does not divide `.

Example 2.3. Let H = ker(ρ), where ρ : Gal(K/K) −→ GL(V ) is an `-adic repre-
sentation. Let L be the fixed subfield of K̄ corresponding to H. Then ρ is unramified
if and only if the extension L/K is unramified at the place v.

2with respect to the `-adic topology on GLn(Ql)
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Now let L be a Galois extension of K with Galois group Gal(L/K), and let
w be a place of L extending a place v of K. The decomposition subgroup Dw of
Gal(L/K) is the set of all s ∈ Gal(L/K) such that ws = w. Reducing modulo the
maximal ideal, we have a surjective map

Dw →→ Gal(k(w)/k(v)), (2.1)

where k(w) and k(v) denote the residue class field of Rw and Rv, respectively. The
group Gal(k(w)/k(v)) is generated by Frobw, where Frobw(a) = a|k(w)|. The kernel
of the map (2.1) is the inertia subgroup Iw of the place w, and hence we have the
natural isomorphism

Dw/Iw −→ Gal(k(w)/k(v)). (2.2)

If ρ : Gal(K/K) −→ GL(V ) is unramified at v, then ρ|Dw : Dw −→ GL(V )
induces a map Dw/Iw −→ GL(V ), which can be composed with the inverse of the
natural map (2.2), which yields a canonical l-adic representation of the field

ρw : Gal(k(w)/k(v)) −→ GL(V ).

We denote the image of the canonical generator Frobw in GL(V ) by Frobw,ρ.
Two places w and w′ extending v are conjugate under the Galois group, which
implies that Frobw,ρ and Frobw′,ρ are conjugate in GL(V ). Thus they have the
same characteristic polynomial, which are dependent solely on the v that they are
extending and the representation ρ.

At this point, a natural question to ask is if there are sufficiently many Frobenius
elements in the Galois group. As it turns out, this question is answered for us by
the Čebotarev Density Theorem.

3 The Čebotarev Density Theorem

The goal of this section is to prove the following:

Theorem 3.1 (Čebotarev Density Theorem). Let L/K be a finite Galois ex-
tension of number fields, and denote Gal(L/K) by G. For each subset C ⊂ G that
is stable under conjugation, let S denote the set of places v of K that are unramified
in L such that the Frobenius element Frobw is in C for any w extending v. Then S
has Dirichlet density3 equal to

|C|
|G|

.

3.1 Some Class Field Theory

Before we can present Deuring’s proof [Deu35] of the Čebotarev Density Theorem,
some preliminaries from Class Field Theory4 are in order.

3We shall define Dirichlet density in the next section.
4Mostly drawn from the exposition in [Cox89] and [Lan94]
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Given a number field K, we define a modulus5 in K to be a formal product

m =
∏
p

pnp ,

over all primes p of K, where the exponents np are such that

• np ≥ 0, and at most finitely many are nonzero,

• np = 0 whenever p is a complex infinite prime, and

• np ≤ 1 whenever p is a real infinite prime.

A modulus m can thus be written in the form m0m∞, where m0 is an OK-ideal and
m∞ is a product of distinct real infinite primes of K. In the case that all of the
np = 0, we let m = 1.

Denote by IK(m) the group of all fractional OK-ideals relatively prime to m,
and let PK,1(m) be the subgroup of IK(m) generated by the principal ideals αOK ,
where α ∈ OK is such that a ≡ 1 mod m0 for every real infinite prime σ dividing
m∞. It is a well-known fact that PK,1(m) has finite index in IK(m).

A congruence subgroup for m is a subgroup H ⊂ IK(m) such that

IK,1(m) ⊂ H ⊂ IK(m).

Furthermore, the quotient IK(m)/H is known as a generalized ideal class group for
m.

Example 3.2. As a simple example, or perhaps to see how this generalizes the notion
of ideal class group, consider the modulus m = 1. PK = PK,1(1) is a congruence
subgroup, and our common notion of ideal class group CL(OK) = IK/PK is a
“generalized” ideal class group.

At the center of class field theory is the notion that the generalized ideal class
groups for p ∈ K are the Galois groups of all Abelian extensions of K. These two
ideas are connected by the Artin map, which we shall now briefly discuss.

Given p a modulus divisible by all ramified primes of an Abelian extension
K ⊂ L and a prime p not dividing m, we have the Artin symbol(

L/K

p

)
∈ Gal(L/K)

which extends by multiplicativity to give us a map

Φm : IK(m) −→ Gal(L/K),

called the Artin map for K ⊂ L and m.
The following famous result, known as the Artin Reciprocity Theorem, states

that Gal(L/K) is a generalized ideal class group for some modulus:
5In the terminology of Lang, a “cycle”
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Theorem 3.3. Let K ⊂ L be an Abelian extension, and let m be a modulus divis-
ible by all primes of K, finite or infinite, that ramify in L. Then the Artin map
Φm is surjective. Furthermore, if the exponents of the finite primes dividing m are
sufficiently large, then ker(Φm) is a congruence subgroup for m and thus the iso-
morphism IK(m)/ ker(Φm) −→ Gal(L/K) tells us that Gal(L/K) is a generalized
ideal class group for the modulus m.

Remark 3.4. A proof of the Artin Reciprocity Theorem can be found in [Jan73].
The important observation to make is that ker(Φm) being a congruence subgroup,
i.e., PK,1(m) ⊂ ker(Φm), means that the Artin symbol ((L/K)/p) depends only on
p up to multiplication by α such that α ≡ 1 mod m.

Remark 3.5. Note that the m for which ker(Φm) is a congruence subgroup is not
unique. Indeed, if PK,1(m) ⊂ ker(Φm) and n is any modulus divisible by m, then
PK,1(m) ⊂ ker(Φm) implies that PK,1(n) ⊂ ker(Φn), and thus Gal(L/K) is a gener-
alized ideal class group for infinitely many moduli.

Finally, we introduce the notion of Dirichlet density. Let PK the set of all finite
primes of K. Given a subset S ⊂ PK , the Dirichlet density of S is the limit

δ(S) = lim
s→1+

∑
p∈S

1
N(p)

log 1
s−1

.

Some basic properties of Dirichlet density are as follows:

• δ(PK) = 1

• If δ(S) exists, 0 ≤ δ(S) ≤ 1

• δ(IK(m)/PK,1(m)) = 1
[IK(m):PK,1(m)]

3.2 The Theorem

We are now ready to present Deuring’s proof [Deu35] of the Čebotarev Density
Theorem.

Recall the statement of the theorem:

Theorem 3.6 (Čebotarev Density Theorem). Let L/K be a finite Galois ex-
tension of number fields, and denote Gal(L/K) by G. For each subset C ⊂ G that
is stable under conjugation, let S denote the set of places v of K that are unramified
in L such that the Frobenius element Frobw is in C for any w extending v. Then S
has Dirichlet density equal to

|C|
|G|

.

Proof. Fix σ ∈ G of order f , let C denote its conjugacy class, and let Z denote its
fixed field. Then L/Z is cyclic of degree f and is a class field. If m is a modulus for
L/Z, then by the Artin Reciprocity Theorem, we have the isomorphism

IL/Z(m)/H −→ Gal(L/Z),
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where H is a subgroup of IL/Z(m) containing PL/Z,1. Let S be as above, and let
SL,σ be the set of w in L such that w extends v for any v ∈ S and σ = Frobw.
Let w extend q for q ∈ Z. Then SL,σ is in bijection with the set SZ of q ∈ Z that
lie in a given class mod H and that divide v splitting completely in Z. However,
the density is dependent solely on those primes of degree 1 over Q, and thus SZ

has density 1/f . But for a fixed v, the number of w ∈ L lying above v such that
Frobw = σ is equal to the quotient

[Gσ : 1]
[Gw : 1]

,

where Gσ is the subgroup of elements of G commuting with σ and Gw is the de-
composition group of w. Since [G : Gσ] = |C|, we see that

[Gσ : 1]
[Gw : 1]

=
|G|
|C|f

.

Hence the density of S is
1
f

|G|
|C|f

=
|C|
|G|

,

as desired.

As a corollary, we have an answer to our original question posed in Section 1:

Corollary 3.7. Let L be an algebraic Galois extension of a number field K which
is unramified outside a finite number of places of K. Then the Frobenius elements
of the unramified places of L are dense in Gal(L/K).

Proof. By Theorem 3.6, we know that the set of Frobenius elements maps surjec-
tively onto every finite quotient of Gal(L/K), which implies that every element of
Gal(L/K) is arbitrarily close to a Frobenius element.

4 `-adic Representations and Elliptic Curves

In Section 2, we examined `-adic representations of number fields K, and in so doing,
were drawn to ask if there were sufficiently many Frobenius elements of a Galois
group. We answered this question in Section 3 with the Čebotarev Density Theorem.
Now we return to the subject of `-adic representations, this time considering `-adic
representations of elliptic curves over Q.

We begin with some basic facts about elliptic curves, proofs of which can be
found in [Sil92].

Let E be an elliptic curve over Q in Weierstrass normal form y2 = x3 + ax + b,
where a, b ∈ Z. It is well-known that

Fact 4.1. The points on an elliptic curve form an abelian group.
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With an addition law on the points on an elliptic curve, we can talk about the
m-torsion points on an elliptic curve, which we denote E[m]. One can show that

Fact 4.2. The set of m-torsion points on an elliptic curve, E[m], is such that

E[m] ∼= (Z/mZ)× (Z/mZ).

Yet this is just the tip of the iceberg, because E[m] has even more structure!
Each element of the Galois group Gal(Q/Q) can act on E[m], since if [m]P = O for
P ∈ E[m], then

[m](P σ) = ([m]P )σ = O.

Hence, we have a representation

Gal(Q/Q) −→ Aut(E[m]) ∼= GL2(Z/mZ),

where the last isomorphism necessitates choosing a basis for E[m].
However, we must make a slight adjustment: these representations are not ex-

actly what we want, since it is usually to one’s best interest to work with representa-
tions whose matrices have coefficients in a ring with characteristic 0. So the natural
thing to do is to piece together the information for various m, à la the inverse limit
construction of the `-adic integers Zl from the finite groups Z/lnZ.

Thus, given E an elliptic curve and l ∈ Z a prime, the `-adic Tate module of E
is the group

Tl(E) = lim←−E[ln],

the inverse limit being taken with respect to the natural maps

E[ln+1]
[l]−→ E[ln].

As each E[ln] is a Z/lnZ-module, we see that the Tate module has a natural structure
as a Zl-module, namely,

Tl(E) ∼= Zl × Zl.

We therefore have that the action of Gal(Q/Q) on each E[ln] commutes with
the multiplication-by-` maps used to form the inverse limit, so Gal(Q/Q) also acts
on Tl(E). Furthermore, as the profinite group Gal(Q/Q) acts continuously on each
finite (and thus, discrete) group E[ln], the action on Tl[E] is continuous as well.

Hence we can define the `-adic representation of Gal(Q/Q) on E, denoted by
ρl, to be the map

ρl : Gal(Q/Q) −→ Aut(Tl(E)),

with the action of Gal(Q/Q) on Tl(E) as detailed above.
Finally, we mention a key invariant and an interesting property of elliptic curves.
The conductor N of an elliptic curve is an integer attached to the elliptic curve

which measures the extent to which E fails to define an elliptic curve over Fp for
each prime p. A semistable elliptic curve is one with squarefree conductor.

With this in mind, an elliptic curve over Q with conductor N is said to be
modular if one of the two equivalent formulations of modularity hold:
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1. (Analytic modularity) There exists a modular form f ∈ Γ0(N) of weight two
such that L(E,χ, s) = L(f, χ, s) for all Dirichlet characters χ.

2. (Geometric modularity) E can be parametrized by a modular curve X0(N)
by means of a non-constant morphism, i.e., X0(N) −→ E.

All of these ideas play a crucial role in the proof of Fermat’s Last Theorem. Ken
Ribet [Rib93] notes that at the crux of the issue is proving Taniyama’s conjecture,
i.e., showing that a semistable elliptic curve E/Q is modular. Wiles [Wil95] begins
by fixing an odd prime `, which, as it turns out, is 3 or 5. The elliptic curve E
is associated with an `-adic representation ρl : Gal(Q/Q) −→ GL2(Zl). E satisfies
Taniyama’s conjecture if and only if ρl is modular, i.e., associated to a weight-two
cuspidal eigenform. Indeed, the representation ρl appears to have the necessary
modularity properties, as it has the right determinant and satisfies certain local
conditions at ` and certain other ramified primes.

Drawing from the work of Mazur, Hida, Tilouine, Flach, Kolyvagin, and others,
Wiles proves that a representation ρl is modular if it reduces mod ` to a representa-
tion ρ̄l : Gal(Q/Q) −→ GL2(Fl) that is (1) surjective and (2) is itself modular. That
ρ̄l is modular means that ρ̄l lifts to a modular representation, which implies that we
want ρl to be congruence to some modular representation. Wiles approaches this
problem using the deformation theory of Mazur [Maz89].

The next important step is to show that E is modular. By first looking at the
case ` = 3, Wiles observes that ρ̄3 satisfies (2) whenever it satisfies (1). Hence
E is modular whenever ρ̄3 is surjective. However, what happens when ρ̄3 is not
surjective? Wiles considers the function field Q(t) of a component of a twist of
X(5)/Q and uses the Hilbert irreducibility theorem to show that there exists a
t1 such that f(x, t1) ∈ Q(t)[x] corresponding to ρ̄3 is irreducible. Then using the
Čebotarev density theorem, he picks a prime p1 6= 5 such that f(x, t1) does not
have a root mod p1. Finally, a t0 ∈ Q is chosen that is p1-adically close to t1 and
5-adically close to the original value of t giving E. This construction thus gives us a
semistable elliptic curve E′ having a mod 3 representation satisfying (1) and having
a mod 5 representation isomorphic to ρ̄5. Wiles uses his key theorem to show that
E′ is modular, which implies that ρ̄5 is modular, as it can be thought of as coming
from E′. Applying his key theorem to ρ5, he concludes that E is modular.
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