The $ 10$-adic Numbers

It's a familiar fact that every real number can be written in the form

$\displaystyle d_n\ldots d_1 d_0.d_{-1}d_{-2}\ldots
= d_n 10^{n} + \cdots + d_1 10 + d_0
+ d_{-1} 10^{-1} + d_{-2} 10^{-2} + \cdots
$

where each digit $ d_i$ is between 0 and $ 9$, and the sequence can continue indefinitely to the right.

The $ 10$-adic numbers also have decimal expansions, but everything is backward! To get a feeling for why this might be the case, we consider Euler's nonsensical series

$\displaystyle \sum_{n=1}^{\infty} (-1)^{n+1}n! = 1! - 2! + 3! - 4! + 5! - 6! + \cdots.
$

One can prove (see Exercise 55) that this series converges in $ \mathbf{Q}_{10}$ to some element $ \alpha\in\mathbf{Q}_{10}$.

What is $ \alpha$? How can we write it down? First note that for all $ M\geq 5$, the terms of the sum are divisible by $ 10$, so the difference between $ \alpha$ and $ 1! - 2! + 3! - 4!$ is divisible by $ 10$. Thus we can compute $ \alpha$ modulo $ 10$ by computing $ 1! - 2! + 3! - 4!$ modulo $ 10$. Likewise, we can compute $ \alpha$ modulo $ 100$ by compute $ 1! - 2! + \cdots + 9! - 10!$, etc. We obtain the following table:

$ \alpha$ $ \mod 10^r$
$ 1$ $ \mod 10$
$ 81$ $ \mod 10^2$
$ 981$ $ \mod 10^3$
$ 2981$ $ \mod 10^4$
$ 22981$ $ \mod 10^5$
$ 422981$ $ \mod 10^6$
Continuing we see that

$\displaystyle 1! - 2! + 3! - 4! + \cdots =
\ldots 637838364422981$   in $Q_10$ !

Here's another example. Reducing $ 1/7$ modulo larger and larger powers of $ 10$ we see that

$\displaystyle \frac{1}{7} = \ldots857142857143$   in $Q_10$$\displaystyle .$

Here's another example, but with a decimal point.

$\displaystyle \frac{1}{70} = \frac{1}{10}\cdot \frac{1}{7} = \ldots85714285714.3
$

We have

$\displaystyle \frac{1}{3} + \frac{1}{7} =
\ldots66667 + \ldots57143 = \frac{10}{21} = \ldots 23810,
$

which illustrates that addition with carrying works as usual.

William Stein 2004-05-06