Harvard Math 129: Algebraic Number Theory Homework Assignment 10

William Stein

Due: Thursday, May 5, 2005

The problems have equal point value, and multi-part problems are of the same value. You are encouraged to look at books for inspiration about how to solve any of the following problems.

1. Let K be a number field. Prove that there is a finite set S of primes of K such that

$$
\mathcal{O}_{K, S}=\left\{a \in K^{*}: \operatorname{ord}_{\mathfrak{p}}\left(a \mathcal{O}_{K}\right) \geq 0 \text { all } \mathfrak{p} \notin S\right\} \cup\{0\}
$$

is a prinicipal ideal domain. The condition $\operatorname{ord}_{\mathfrak{p}}\left(a \mathcal{O}_{K}\right) \geq 0$ means that in the prime ideal factorization of the fractional ideal $a \mathcal{O}_{K}$, we have that \mathfrak{p} occurs to a nonnegative power. [See the notes for hints.]
2. Let $a \in K$ and n a positive integer. Prove that $L=K\left(a^{1 / n}\right)$ is unramified outside the primes that divide n and the norm of a. This means that if \mathfrak{p} is a prime of \mathcal{O}_{K}, and \mathfrak{p} is coprime to $n \operatorname{Norm}_{L / K}(a) \mathcal{O}_{K}$, then the prime factorization of $\mathfrak{p} \mathcal{O}_{L}$ involves no primes with exponent bigger than 1 .
3. Write down a proof of Hilbert's Theorem 90, formulated as the statement that for any number field K, we have

$$
\mathrm{H}^{1}\left(K, \bar{K}^{*}\right)=0 .
$$

